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Abstract: Predators impact prey populations directly through consumption and indi-
rectly via trait-mediated effects like predator-induced emigration (PIE), where prey alter
movement due to predation risk. While PIE can significantly influence prey dynam-
ics, its combined effect with direct predation in fragmented habitats is underexplored.
Habitat fragmentation reduces viable habitats and isolates populations, necessitating an
understanding of these interactions for conservation. In this paper, we present a reaction–
diffusion model to investigate prey persistence under both direct predation and PIE in
fragmented landscapes. The model considers prey growing logistically within a bounded
habitat patch surrounded by a hostile matrix. Prey move via unbiased random walks
internally but exhibit biased movement at habitat boundaries influenced by predation risk.
Predators are assumed constant, operating on a different timescale. We examine three
predation functional responses—constant yield, Holling Type I, and Holling Type III—and
three emigration patterns: density-independent, positive density-dependent, and negative
density-dependent emigration. Using the method of sub- and supersolutions, we establish
conditions for the existence and multiplicity of positive steady-state solutions. Numerical
simulations in one-dimensional habitats further elucidate the structure of these solutions.
Our findings demonstrate that the interplay between direct predation and PIE crucially
affects prey persistence in fragmented habitats. Depending on the functional response and
emigration pattern, PIE can either mitigate or amplify the impact of direct predation. This
underscores the importance of incorporating both direct and indirect predation effects in
ecological models to better predict species dynamics and inform conservation strategies in
fragmented landscapes.

Keywords: boundary value problems; population dynamics; harvesting models; reaction
diffusion; nonlinear boundary conditions; predator induced emigration

MSC: 35J15; 35J25; 35J30; 35J60; 35J66

1. Introduction
Studies have shown that predators have both direct (density-mediated) and indirect

(trait-mediated indirect) effects on prey populations (see [1–4]). In fact, it is widely accepted
that ecological communities are replete with trait-mediated indirect effects arising from
phenotypic plasticity, and these effects are important to community dynamics (see [1,3,5]).
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Trait-mediated behavioral responses to predators have the potential to greatly affect the
dynamics of a population (see [1,3,4]). One such effect is trait-mediated emigration, wherein
the prey changes its emigration patterns due to the presence of a predator [2,6–8]. This
can, in turn, modify population dynamics and species interactions (see [9], for example).
Few empirical studies have considered this effect in the predator–prey context, where
increased predation risk was shown to increase the emigration rates of prey. For example,
ref. [2] found evidence of predator-induced emigration (PIE) in a spider (predator) and
planthopper (prey) system, and concluded that at high predator density, the predator had
a greater impact on prey density through induced emigration than consumption (also
see [6–8]).

Human-dominated habitat fragmentation continues at unprecedented levels, giving
rise to the need for a better understanding of the consequences of density dependence and
its role in conservation efforts [10–14]. Habitat fragmentation reduces viable habitat or
patch size and also separates populations among much smaller residual patches which
are surrounded by a human-modified “matrix” with varying degrees of hostility [11].
The modeling of theoretical populations has seen great success in predicting patch- and
even landscape-level patterns in response to habitat fragmentation. The reaction diffusion
framework has been particularly successful at providing better understanding of the
coupling of density dependent growth mechanisms with density dependent movement
or dispersal (see [15]). The framework’s ability to handle space explicitly at the landscape
level, including modeling animal movement behavior differences when a patch boundary
is reached, has been well demonstrated [16–19].

The modeling of predator–prey population dynamics dates back to the classic works
of [20,21]. A key component of those models is the predator functional response, the re-
lationship between prey consumption per predator per unit of time as prey density in-
creases [22,23]. In the original formulation of the Lotka–Volterra model, predators and prey
were assumed to encounter each other at random, resulting in a constant rate of prey con-
sumption as the prey density increased. Subsequent derivations of the functional response
have included more realistic predator behaviors such as handling time constraints and
predator satiation that result in a decreasing rate of prey consumption as the prey density
increases (Holling’s type II functional response), or learning or switching to more abundant
or profitable prey that results in an increasing, then decreasing, rate of prey consumption as
the prey density increases (Holling’s type III functional response) (see [22,24,25]). Over the
years, many studies have expanded on Holling’s seminal work and investigated the biolog-
ical implications of a wide range of predator functional responses (e.g., see [26–30]).

In this paper, we employ a model based on the reaction diffusion framework to study
the persistence of a prey species that is experiencing both direct (density-mediated) and
indirect (predator-induced emigration) effects while facing habitat fragmentation. This
framework was derived in [19] (but also see [31]) and connects assumptions regarding
movement behavior at the individual level to the patch- and landscape levels. To our
knowledge, no other study has examined the linkage between predator presence, the prey’s
density–emigration relationship and prey population dynamics in a landscape context.
Here, we envision a prey species which inhabits a patch Ω which is a bounded domain in
RN ; N > 1 with smooth boundary ∂Ω or Ω = (0, 1) that is surrounded by a hostile matrix.
In the framework, prey grow logistically and move according to an unbiased random walk
inside the patch and in the matrix but follow a biased random walk at the patch/matrix
interface, making an emigration decision based upon the presence of a predator. We assume
that the predator is acting on a different timescale than the prey and thus assume a constant
predator population. The nondimensionalized steady-state equation for the model is then
given by
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{
−∆u = λ[u(1 − u)− h(c, u)]; Ω

∂u
∂η +

√
λγg(c, u)u = 0; ∂Ω

(1)

where u(x) is the prey population density for x ∈ Ω, λ > 0 is a composite parameter
that is proportional to the patch size squared, γ > 0 is a parameter that quantifies the
matrix hostility, and ∂u

∂η is the outward normal derivative of u. Here, g(c, s) = 1−α(s)
α(s) , where

α(s) is the probability of the organism staying inside Ω upon reaching the boundary and
represents emigration patterns such as density-independent emigration (DIE) when α is
a constant, positive density-dependent emigration (+DDE) when 1 − α(s) is increasing,
and negative density-dependent emigration (−DDE) where 1 − α(s) is decreasing.
Here, h(c, s) represents the predation functional response, and we consider the follow-
ing forms:

(i) Constant-yield predation (CYP): h1(c, s) = c; c > 0.
(ii) Constant-effort predation: Holling Type I functional response: h2(c, s) = cs; c > 0.

(iii) Prey switching predation: Holling Type III functional response: h3(c, s) = cs2

m+s2 ;
c > 0, m > 0.

For the emigration form g, we consider the following:

(i) Density-independent emigration (DIE): g1(c, s) = 1 + µc; µ ≥ 0
(ii) Positive density-dependent emigration (+DDE): g2(c, s) = 1 + βs + µc; µ ≥ 0, β > 0
(iii) Negative density-dependent emigration (−DDE): g3(c, s) = 1

1+βs + µc; µ ≥ 0, β > 0

Where µ ≥ 0 is a composite parameter that measures the prey’s sensitivity to the
presence of the predator (we will also denote this as the strength of the PIE relationship)
and β ≥ 0 is a composite parameter that dictates the strength of the DDE form (see [32]).
For example, a −DDE form with β ≈ 0 is very similar to DIE, while one with β ≫ 1 shows
a strong negative relationship between density and emigration.

Recently, several studies have either considered models similar to (1) but with only
direct effects of predation or indirect effects such as PIE (see [29,33–38]).

To date, few, if any, studies have considered the combined effects of both the direct
and indirect effects of the predation of a prey in the presence of habitat fragmentation.
Our motivation here is to compare the structure of the positive solutions for (1) when
predation does not affect the emigration rate (µ = 0) to the case when predation does
influence the emigration rate (µ > 0). We establish several existence, non-existence,
and multiplicity results via the method of sub- and supersolutions and then numerically
explore the structure of positive steady-state solutions in the one-dimensional case where
more complete results and biological interpretation can be obtained.

To present our main results, we first describe a useful eigenvalue problem. Given
M, b > 0 and γ > 0, let E1(M, b, γ) be the principal eigenvalue of{

−∆ϕ = EMϕ; Ω
∂ϕ
∂η + γb

√
Eϕ = 0; ∂Ω

(2)

with corresponding eigenfunction ϕ > 0; Ω. Further, let g0(µ, c) = gi(c, 0) = 1 + µc for
i = 1, 2, 3, and z0(c) be the positive falling zero of f (c, s) = s(1 − s)− h(c, s). Throughout
this paper, to ensure the existence of positive solutions for (1), we assume that c > 0 is a fixed
number small enough so that this z0 exists and F(c, z0) > 0, where F(c, s) =

∫ s
0 f (c, r)dr.

Now, we state our main results.

Results for Case A: Constant-Yield Predation h(c, s) = h1(c, s) ≡ c
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Notice that for c < 1
4 , f (c, s) has two distinct zeros, z0, z1 with 0 < z1 < z0. We now

state the results for this case with an expected bifurcation curve presented in Figure 1.

Figure 1. An expected bifurcation diagram for Case A constant-yield predation.

Theorem 1. Let g = g1, g2, or g3 and µ ≥ 0 be fixed. Then, (1) has at least one positive solution
uλ for λ ≫ 1 such that ∥uλ∥∞ −→ z0 as λ −→ ∞ (see Figure 1). Moreover, the time-dependent
model predicts extinction for any λ > 0 when the initial density profile is below z1.

For the next two cases (h = h2 and h = h3), we also focus on exploring the existence of
a patch-level Allee effect (PAE). In this scenario, the trivial solution and at least one other
positive solution of (1) are both stable, giving rise to a population density threshold that
must be maintained to ensure the persistence of the population. A sufficient condition
for a PAE is the existence of a range of λ to the left of E1(M, g0(µ, c), γ) where at least one
positive solution exists (see Figure 2 and [32]). Here, M = 1 − c when h = h2 and M = 1
when h = h3. Furthermore, when h = h1, numerical evidence shows that there is also a
range of λ with multiple positive solutions. However, this is a well-known open problem
to establish analytically (see the literature on semi-positone problems).

Figure 2. Bifurcation diagram exhibiting a patch level Allee effect.

Results for Case B: Constant-Effort Predation: h(c, s) = h2(c, s) = cs
In this case, the roots of f (c, s) are zero and z0. We now state the results for this case.

Theorem 2. Let g = g1 or g2 and µ ≥ 0 be fixed. Then, (1) has a unique positive solution uλ

for λ > E1(1 − c, g0(µ, c), γ) and no positive solution for λ < E1(1 − c, g0(µ, c), γ). Further,
∥uλ∥∞ → 0 as λ → E1(1 − c, g0(µ, c), γ) and ∥uλ∥∞ → z0 as λ → ∞ (see Figure 3).
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Figure 3. An expected bifurcation diagram for Case B constant-effort predation with g = g1 (DIE) or
g = g2 (+DDE).

Remark 1. Let g = g1 or g2, µ1 > µ2 ≥ 0, λ > E1(1− c, g0(µ1, c), γ), uµ1 and uµ2 be the unique
positive solutions of (1) when µ = µ1 and µ = µ2, respectively, then uµ1(x) < uµ2(x), ∀x ∈ Ω̄
(see Figure 4).

Figure 4. Variation of bifurcation diagrams when µ varies for Case B constant-effort predation, where
0 < µ2 < µ1 < ∞.

Before we state our next theorem, we defineλ∗ =
E1(1−c,g0(µ,c),γ)+E1

(
1−c, g0(µ,c)+µc

2 ,γ
)

2
I := [λ∗, E1(1 − c, g0(µ, c), γ)]

(3)

Theorem 3. Let g = g3. Then, for fixed c > 0 and µ ≥ 0, there exists β1(µ) > 0 such that a
PAE occurs for λ ∈ I for β > β1(µ). Further, if λ0 < ED

1 and β > 0 are fixed, then there exists
µ1(β, λ0) > 0 such that (1) has no positive solution for λ < λ0 when µ > µ1(β, λ0), where ED

1 is
the principal eigenvalue of {

−∆ϕ = Eϕ; Ω
ϕ = 0; ∂Ω

(4)

(see Figure 5).

Next, we state the following conjecture based on our numerical results (see Section 2).
Conjecture: For any gi and fixed β > 0, when µ ≫ 1, (1) has no positive so-

lution for λ < E1(1 − c, g0(µ, c), γ), and (1) has a unique positive solution uλ for
λ > E1(1 − c, g0(µ, c), γ) such that ∥uλ∥∞ → 0+ as λ → E1(1 − c, g0(µ, c), γ)+ and
∥uλ∥∞ → z0 as λ → ∞ (see Figure 6).
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(a) (b)

Figure 5. Expected bifurcation diagrams for Case B constant-effort predation when g = g3 (−DDE)
with β ≫ 1 in (a) and µ ≫ 1 in (b).

Figure 6. Expected bifurcation diagram for Case B constant-effort predation for any DDE and when
µ ≫ 1.

Results for Case C: Prey Switching Predation: h(c, s) = h3(c, s) = cs2

m+s2

Here, we state two hypotheses before we state our results. Let R > 0 be the radius

of the largest ball that can be inscribed inside the domain Ω, CN := (N+1)N+1

2NN (> 1),
f ∗(c, s) := max

r∈[0,s]
f (c, r), and given a b > 0, denote v(µ, b, c) as the unique solution of

{
−∆v = 1; Ω

∂v
∂η + γτ(b, c)g∞(c)v = 0; ∂Ω

(5)

with τ(b, c) =
√

2bNCN
R2 f (c,b) and g∞(c) = min

s∈[0,z0(c)]
g(c, s).

Now, we state two hypotheses regarding f :
(H1) : there exist a, b > 0 such that a < b < z0

CN
and a

f ∗(c,a)/ b
f (c,b) >

2NCN∥v(µ,b,c)∥∞
R2 .

(H2) : there exist r1 ∈ (0, b) and r2 ∈ (bCN , z0) such that f is non-decreasing in (r1, r2).
Define λ∗∗ =

E1(1,g0(µ,c),γ)+E1

(
1, g0(µ,c)+µc

2 ,γ
)

2
I∗ := [λ∗∗, E1(1, g0(µ, c), γ)].

(6)

Theorem 4. Let g = g3. Then, for c > 0 and fixed µ > 0, there exists β1(µ) > 0 such that
a PAE occurs for λ ∈ I∗ for β > β1(µ). Further, if λ0 < ED

1 and β > 0 are fixed, there exists
µ1(β, λ0) > 0 such that (1) has no positive solution for λ < λ0 when µ > µ1(β, λ0).

Theorem 5. Let g = g1, g = g2, or g = g3 with β be fixed. Let (H1) and (H2) hold. Then (1) has
at least three positive solutions for

λ ∈
(

max
{

E1(1, g0(µ, c), γ), 2bNCN
R2 f (c,b)

}
, min

{
a

∥v(µ,b,c)∥∞ f ∗(c,a) , 2r2 N
f (c,b)R2

})
(see Figure 7).
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Figure 7. Occurrence of an S-shaped bifurcation diagram for Case C prey switching predation for any
DDE form.

Remark 2. In Section 4, when Ω is a ball of radius R, we prove that f and g satisfy the hypothesis
of Theorem 5 for certain parameter values when µ is large.

Theorem 6. Let g = g1 or g = g2. Then, (1) has no positive solution for λ < E1(1, g0(µ, c), γ)

(see Figure 7).

Remark 3. In Case A, (1) has no positive solutions for λ ≈ 0 and one can easily adapt the
techniques used in the literature of semi-positone problems with Dirichlet boundary conditions
to prove this. For Cases B and C, we will later establish that (1) has no positive solutions for
λ < E1(1, g∞(c), γ).

In Section 2, we numerically compute complete bifurcation diagrams of the positive
solutions in the one-dimensional case where Ω = (0, 1) and discuss their biological rel-
evance. We provide some mathematical preliminaries in Section 3, and in Section 4 we
construct several sub- and supersolutions that we will use to establish our analytical results.
Finally, we prove Theorems 1–6 and Remark 1 in Section 5.

2. One-Dimensional Results and Biological Conclusions
In this section, we present computationally generated results for the one-dimensional

case when Ω = (0, 1). In this way, we obtain more detailed bifurcation diagrams and provide
some biological conclusions of these results. Namely, we consider the steady-state model:

−u′′ = λ[u(1 − u)− h(c, u)]; (0, 1)
−u′(0) + γ

√
λg(c, u(0))u(0) = 0

u′(1) + γ
√

λg(c, u(1))u(1) = 0
(7)

and study the structure of positive solutions via bifurcation curves (λ vs ∥u∥∞ curves)
in order to contrast model predictions of the cases: µ = 0 (when predation does not
affect emigration probability) and µ > 0 (when predation does influence the emigration
probability). Here, we denote ∥u∥∞ as the maximum density of the positive solution
of (7). We obtain complete bifurcation diagrams via a quadrature method (presented in
Lemma 3 of Section 3 and numerical computation using Mathematica (Wolfram Research
Inc., version 14.0). See [32,39], and [40] for extensions of the original quadrature method
developed in [41] for the case of Dirichlet boundary conditions. For completeness, we
prove the extension of the quadrature method employed here in Appendix A. For simplicity
of presentation, we choose c = 0.1 for h1 and h2, and c = 0.13 and m = 0.01 for h3. We
note that a full exposition of the parameter space is outside the scope of this current work.
Rather, we choose certain parameter ranges to provide prototypical model predictions. We
also highlight several cases where predator-induced emigration and the strength of this
response as measured in µ plays a significant role on model predictions.
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2.1. Results for Case A: Constant-Yield Predation h(c, s) = c

In this subsection, we present results for the constant-yield predation case, where we
have fixed c = 0.1 and γ = 1.

We note that when h(c, s) = h1(c, s) = c, our model has a semi-positone structure
(see [29]), and for Lemma 3 to hold, the ρ-value must be between θ and z0, where θ is the
first positive zero of F and z0 is the falling positive zero of f (see Figure 8).

(a) Shape of f (c, s) (b) Shape of f (c, s)
Figure 8. Shapes of f (c, s) and F(c, s) in the constant-yield predation case: h(c, s) = h1(c, s).

Before we state our results, we denote the λ-value associated with the minimum patch
size as λmin, namely, λmin is proportional to the minimum size of the habitat that will allow
unconditional population persistence.

2.1.1. Bifurcation Diagrams for DIE: g(c, s) = g1(c, s) = 1 + µc

The evolution of bifurcation curves with respect to PIE strength µ is shown in Figure 9,
while Table 1 shows the evolution of λmin, the uniqueness region, and the multiplicity
region. Notice that for all λ > 0, the smaller root of f (c, u) is a supersolution of (7), implying
that the time-dependent problem would predict extinction for any size patch if the initial
density distribution is too small. Here, µ = 0 corresponds to the case where predation does
not influence the emigration probability. We observe that the bifurcation curves shift from
left to the right, the multiplicity region increases, and the uniqueness region decreases as
µ increases. The bifurcation curves are approaching the bifurcation curve corresponding
to a case of a completely lethal matrix (Dirichlet boundary condition) as the PIE strength
µ → ∞. For a given λ-value, we see that the number of positive steady states also varies
as µ changes. To highlight changes in model predictions with respect to the PIE strength,
consider a patch with fixed matrix hostility and patch size yielding a λ = λ1 = 17 as shown
in Figure 9. In the absence of PIE (µ = 0), there is a unique positive solution of (7), µ = 1
and µ = 3 show two positive solutions, and no positive solution is possible (extinction)
when µ > µ∗ for some µ∗ > 3. Notice also that the red curve (µ = 0) and the black curve
(µ → ∞) define an envelope of possible bifurcation curves, where PIE would have an effect
on the model predictions of the population’s persistence. In other words, only populations
with patch sizes having corresponding λ-values lying in this envelope could be adversely
affected by the presence of PIE.

Table 1. g1(c, u) = 1 + µc.

µ 0 1 3 5 10

λmin 11.83 12.85 14.64 16.12 18.86

Uniqueness Region (15.88, ∞) (17.51, ∞) (20.44, ∞) (22.98, ∞) (27.91, ∞)

Multiplicity Region (11.83, 15.88] (12.85, 17.51] (14.64, 20.44] (16.12, 22.98] (18.86, 27.91]
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Figure 9. Bifurcation diagram of positive solutions for (7) with g1(c, u) = 1 + µc (DIE). Note that the
dashed line is for λ1 = 17, red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black
µ → ∞.

2.1.2. Bifurcation Diagrams for +DDE g(c, s) = g2(c, s) = 1 + βu + µc

In the case of +DDE with strength measured in the nondimensional parameter β,
the bifurcation diagram given in Figure 10 is very similar to that of the DIE case (Figure 9),
albeit shifted further to the right. The λmin, uniqueness region, and multiplicity region are
given in Table 2 for β = 1, and in Table 3 for β = 10 (a stronger +DDE response). Model
predictions are identical for this case as the previous one, including our ability to identify
λ-values where the number of positive solutions changes from one to two, and then to
none, as µ increases in the respective envelope.

Figure 10. Bifurcation diagram of positive solutions for (7) with g2(c, u) = 1 + u + µc (+DDE with
β = 1). Note that red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black µ → ∞.

Table 2. g2(c, u) = 1 + u + µc (with β = 1).

µ 0 1 3 5 10

λmin 13.46 14.27 15.70 16.92 19.28

Uniqueness Region (17.43, ∞) (18.83, ∞) (21.40, ∞) (23.68, ∞) (28.24, ∞)

Multiplicity Region (13.46, 17.43] (14.27, 18.83] (15.70, 21.40] (16.92, 23.68] (19.28, 28.24]

Table 3. g2(c, u) = 1 + 10u + µc (with β = 10).

µ 0 1 3 5 10

λmin 18.85 19.15 19.72 20.25 21.38

Uniqueness Region (24.02, ∞) (24.73, ∞) (26.11, ∞) (27.41, ∞) (30.33, ∞)

Multiplicity Region (18.85, 24.02] (19.25, 24.73] (19.72, 26.11] (20.25, 27.41] (21.38, 30.33]
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2.1.3. Bifurcation Diagrams for −DDE: g(c, s) = g3(c, s) = 1
1+βu + µc

Figure 11 shows the evolution of bifurcation curves with respect to µ, the −DDE case
with β = 1. Again, the bifurcation diagram is very similar to that of the DIE case (Figure 9),
albeit shifted further to the left. The λmin, uniqueness region, and multiplicity region are
given in Table 4 for β = 1, and in Table 5 for β = 10 (a stronger +DDE response). Model
predictions are identical for this case as the previous one, including our ability to identify
λ-values where the number of positive solutions changes from one to two, and then to
none, as µ increases in the respective envelope.

Figure 11. Bifurcation diagram of positive solutions for (7) with g = g3(c, u) = 1
1+u + µc (−DDE).

Note that red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black µ → ∞.

Table 4. g3(c, u) = 1
1+u + µc (with β = 1).

µ 0 1 3 5 10

λmin 9.72 11.07 13.36 15.19 18.40

Uniqueness Region (14.04, ∞) (15.96, ∞) (19.35, ∞) (22.21, ∞) (27.56, ∞)

Multiplicity Region (9.72, 14.04] (11.07, 15.96] (13.36, 19.35] (15.19, 22.21] (18.40, 27.56]

Table 5. g3(c, u) = 1
1+10u + µc (with β = 10).

µ 0 1 3 5 10

λmin 1.21 2.72 6.23 9.54 15.42

Uniqueness Region (3.11, ∞) (5.37, ∞) (10.57, ∞) (15.57, ∞) (24.52, ∞)

Multiplicity Region (1.21, 3.11] (2.72, 5.37] (6.23, 10.57] (9.54, 15.57] (15.42, 24.52]

2.2. Results for Case B: Constant-Effort Predation: h(c, s) = h2(c, s) = cs

In this subsection, we present results for the constant-effort predation case, where we
have fixed c = 0.1 and γ = 1. We note that f (c, s) = s(1 − s)− cs = s(1 − c − s) has two
zeros (0 and 0.9) when c = 0.1. Here, Lemma 3 holds for ρ ∈ (0, 0.9) and the shapes of
f (c, s) and F(c, s) are as in Figure 12.

(a) Shape of f (c, s) (b) Shape of F(c, s)
Figure 12. Shapes of f (c, s) and F(c, s) in the case of constant-effort predation (h(c, s) = h2(c, s)).
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2.2.1. Bifurcation diagrams for DIE: g(c, s) = g1(c, s) = 1 + µc

For the DIE case, Figure 13 displays the bifurcation diagram of the positive solutions
for (7), and Table 6 gives the corresponding λmin-values for various µ-values. We observe
that the solution to (7) is always unique with a prediction of extinction for λ ≤ λmin and
unconditional persistence for λ > λmin. The bifurcations curve translate to the right, and hence
λmin-values increase as µ increases (see Table 6). The bifurcation curves are again approaching
the bifurcation curve corresponding to the completely lethal matrix case (Dirichlet boundary
condition) as µ → ∞. We again highlight that model predictions are drastically affected by PIE
strength as measured in µ for patch sizes with a corresponding λ-value inside the envelope
determined by the red (µ = 0) and black (µ → ∞) curves. For example, for a patch size with
corresponding λ = λ1 = 5, Figure 13 shows model predictions of unconditional persistence
when µ = 0, 1, 3, and extinction when µ ≥ µ∗ for some µ∗ > 3.

Figure 13. Bifurcation diagram of positive solutions for (7) with g1(c, u) = 1 + µc (DIE). Note that
the dashed line is for λ1 = 5, red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black
µ → ∞.

Table 6. g1(c, u) = 1 + µc.

µ 0 1 3 5 10

λmin = E1(1, 1 + 0.1µ) 2.95 3.30 3.96 4.53 5.69

2.2.2. Bifurcation Diagrams for +DDE: g(c, s) = g2(c, s) = 1 + βu + µc

Figure 14 shows evolution of the bifurcation curves, and Table 7 gives the correspond-
ing λmin-values for the +DDE case with various µ values. The bifurcation curves translate
to the right and approach the bifurcation curve corresponding to the completely lethal
matrix case (Dirichlet boundary condition) as µ increases to ∞. Model predictions are
identical to that of the DIE case.

Figure 14. Bifurcation diagram of positive solutions for (7) with g = g2(c, u) = 1 + u + µc (+DDE
with β = 1). Note that red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black
µ → ∞.
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Table 7. g2(c, u) = 1 + u + µc (with β = 1).

µ 0 1 3 5 10

λmin = E1(1, 1 + 0.1µ) 2.96 3.31 3.96 4.54 5.69

2.2.3. Bifurcation Diagrams for −DDE: g(c, s) = g3(c, s) = 1
1+βu + µc

Figures 15 and 16 show the bifurcation curves for the −DDE case with strength β = 1
and β = 10, respectively, for various PIE strength values µ. Tables 8 and 9 give λmin-values,
uniqueness regions, and multiplicity regions for various values of µ for β = 1 and β = 10,
respectively. First, we observe that for any fixed DDE strength β, the bifurcation curves
translate to the right as µ increases, approaching the bifurcation curve of the completely
hostile matrix case (Dirichlet boundary condition) when µ → ∞. For β ≈ 0, model
predictions are again similar to those of the previous DIE and +DDE cases. However, when
the DDE strength is sufficiently high (as in Figure 16 with β = 10), model predictions
become much more interesting. For small PIE strength (µ ≈ 0, red, blue, green, and orange
in Figure 16), there is a range of patch sizes where a patch-level Allee effect (PAE) is
predicted by the model. For a patch with size corresponding to a λ-value in this range,
the model predicts that the population will need to remain above a certain threshold in
order to persist. Since the growth term is logistic, this PAE arises solely from the −DDE
relationship. Similar cases of PAE have been noted by previous authors for the case when
µ = 0 (see [18,32,37,42]). However, for higher PIE strength (µ ≫ 1, black in Figure 16), no
such PAE is present and unconditional persistence is predicted by the model for patch sizes
corresponding to λ > λmin.

Figure 15. Bifurcation diagram of positive solutions for (7) with g = g3(c, u) = 1
1+u + µc (−DDE

with β = 1). Note that red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black
µ → ∞.

Figure 16. Bifurcation diagram of positive solutions for (7) with g = g3(c, u) = 1
1+10u + µc (−DDE

with β = 10). Note that the dashed lines represent λ1 = 1.28 and λ2 = 5, respectively, red represents
µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black µ → ∞.
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Table 8. g3(c, u) = 1
1+u + µc (with β = 1).

µ 0 1 3 5 10

λmin = E1(1, 1 + 0.1µ) 2.94 3.29 3.95 4.53 5.68

Uniqueness Region (2.94, ∞) (3.29, ∞) (3.95, ∞) (4.53, ∞) (5.68, ∞)

Table 9. g3(c, u) = 1
1+10u + µc (with β = 10).

µ 0 1 3 5 10

λmin 0.63 1.28 2.63 3.81 5.64

Uniqueness Region (2.84, ∞) (3.20, ∞) (3.88, ∞) (4.47, ∞) (5.65, ∞)

Patch Allee Effect Region [0.63, 2.84] [1.28, 3.20] [2.63, 3.88] [3.81, 4.47] [5.64, 5.65]

Notice the PIE envelope between the red and black curves in Figure 16 provides a
varied range of predictions crucially dependent upon the PIE strength. As an example,
a patch with size corresponding to λ = λ1 would have predictions of a PAE for µ ≈ 0
and extinction for µ ≫ 1. For a patch corresponding to λ = λ2, the model predicts the
population is not as sensitive to PIE strength with unconditional persistence predicted
for low PIE strength, a PAE for medium levels of PIE, and extinction predicted for high
sensitivity to predation. For patches with corresponding λmin outside of this envelope,
predictions of unconditional persistence for λ > λmin and extinction for λ ≤ λmin are
unaffected by PIE altogether.

2.3. Results for Case C: Prey Switching Predation: h(c, s) = h3(c, s) = cs2

m+s2

In this subsection, we present the results for the prey switching predation (Holling
Type III) case, where we have fixed c = 0.13 and m = 0.01. We note that f (c, s) =

s(1 − s)− cs2

m+s2 has two zeros (0 and 0.849) when c = 0.13 and m = 0.01. Here, Lemma 3
holds when ρ ∈ (0, 0.849) and f (c, s), F(c, s) have similar shapes to those in Figure 12.

2.3.1. Bifurcation Diagrams for DIE: g(c, s) = g1(c, s) = 1 + µc

For these results, we fix the effective matrix hostility at γ = 1. Figure 17 shows the
bifurcation curves for the DIE case for various µ-values. Regardless of the PIE strength,
the model predicts one of four outcomes: (1) extinction for λ ≤ λmin, (2) unconditional
persistence at a low maximum density level, (3) multiple positive steady states (one at low
max density and one at high density), or (4) unconditional persistence at a high maximum
density level. Table 10 shows the evolution of the uniqueness region as µ varies and
Table 11 gives multiplicity regions. We also observe that there are three solutions for a
certain interval of λ between the uniqueness regions. The λ interval where the multiplicity
occurs translates to the right as µ increases. The variation in λmin-values is given in Table 12
and we observe that the bifurcation curves translate to the right, approaching the bifurcation
curve of the completely lethal matrix case (Dirichlet boundary condition) when µ → ∞.

Table 10. Uniqueness regions.

µ g1 = 1 + µc g2 = 1 + u + µc (With β = 1)

0 (3.00, 14.91) ∪ (19.79, ∞) (3.02, 16.57) ∪ (20.57, ∞)
1 (3.45, 16.39) ∪ (21.37, ∞) (3.47, 17.73) ∪ (21.98, ∞)
3 (4.27, 18.79) ∪ (23.87, ∞) (4.28, 19.67) ∪ (24.26, ∞)
5 (4.96, 20.61) ∪ (25.75, ∞) (4.97, 21.20) ∪ (26.02, ∞)

10 (6.25, 23.62) ∪ (28.88, ∞) (6.25, 23.87) ∪ (29.00, ∞)
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Table 11. Multiplicity regions.

µ g1 = 1 + µc g2 = 1 + u + µc (With β = 1)

0 [14.91, 19.79] [16.57, 20.57]
1 [16.39, 21.37] [17.73, 21.98]
3 [18.79, 23.87] [19.67, 24.26]
5 [20.61, 25.75] [21.20, 26.02]

10 [23.62, 28.88] [23.87, 29.00]

Table 12. Variation in λmin = E1(1, 1 + 0.1µ).

µ 0 1 3 5 10

g1(c, u) = 1 + µc 3.00 3.45 4.27 4.96 6.25

g2(c, u) = 1 + u + µc (with β = 1) 3.02 3.47 4.28 4.97 6.25

Figure 17. Bifurcation diagram of positive solutions for (7) with g = g1(c, u) = 1 + µc (DIE). Note
that the dashed lines represent λ1 = 16.39 and λ2 = 22, respectively, red represents µ = 0, blue µ = 1,
green µ = 3, orange µ = 10, and black µ → ∞.

As in previous cases, the envelope of λ-values for which model predictions are es-
pecially sensitive to PIE strength is given between the red and black curves in Figure 17.
To highlight the effects of PIE, we first consider the example of a patch with size corre-
sponding to λ = λ1 in Figure 17. For a small PIE strength (µ ≈ 0), there is a non-Allee
type bi-stability as denoted in case (3) above; however, for large PIE strength, uncondi-
tional persistence at a low density level (as in case (2) above) is predicted. For a larger
patch with size corresponding to λ = λ2, cases (2)–(4) from above are possible as the PIE
strength increases. Again, the sensitivity of the predation–emigration relationship causes
vast population dynamical outcomes, even for the same patch size and matrix quality.

2.3.2. Bifurcation Diagrams for +DDE: g(c, s) = g2(c, s) = 1 + βu + µc, γ = 1

For the +DDE case, we again fix γ = 1. Figure 18 shows how the bifurcation curves
translate to the right as the PIE strength µ increases. Corresponding λmin-values are given
in Table 12, while Table 10 shows the variation in the uniqueness regions as µ changes.
The λ-interval where the multiplicity occurs translates to the right as µ increases. Model
predictions are identical to those of the DIE case.
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Figure 18. Bifurcation diagram of positive solutions for (7) with g = g2(c, u) = 1 + u + µc (+DDE
with β = 1). Note that red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black
µ → ∞.

2.3.3. Bifurcation Diagrams for −DDE: g(c, s) = g3(c, s) = 1
1+βu + µc

For the final case of −DDE, Figures 19–21 show the evolution of bifurcation curves for
β = 1, 30, 40, respectively, as µ varies. Table 13 gives uniqueness regions, Table 14 gives
multiplicity regions, Table 15 gives patch level Alllee effect regions, and Table 16 provide
uniqueness regions and λmin-values, respectively, as µ varies. The case of low DDE strength
(β = 1) gives a scenario that is identical to the DIE and +DDE cases but with a leftward
translation in the curves as illustrated in Figure 19. However, the envelope created by the
red and black curves in Figures 20 and 21 show a myriad of possible model predictions.

Figure 19. Bifurcation diagram of positive solutions for (7) with g = g3(c, u) = 1
1+u + µc (−DDE

with β = 1). Note that red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black
µ → ∞.

Figure 20. Bifurcation diagram of positive solutions for (7) with g = g3(c, u) = 1
1+30u + µc (−DDE

with β = 30). Note that red represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black
µ → ∞.
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Figure 21. Bifurcation diagram of positive solutions for (7) with g = g3(c, u) = 1
1+40u + µc (−DDE

with β = 40). Note that the dashed lines represent λ1 = 2.11 & λ2 = 13.35, respectively, and red
represents µ = 0, blue µ = 1, green µ = 3, orange µ = 10, and black µ → ∞.

Table 13. g3(c, u) = 1
1+βu + µc, uniqueness regions.

µ β = 1 β = 30 β = 40

0 (2.98, 12.67) ∪ (18.91, ∞) (4.00, ∞) (2.68, ∞)
1 (3.43, 14.66) ∪ (20.70, ∞) (2.40, 4.32) ∪ (6.37, ∞) (6.02, ∞)
3 (4.25, 17.73) ∪ (23.46, ∞) (3.85, 7.01) ∪ (14.76, ∞) (3.72, 6.50) ∪ (13.35, ∞)
5 (4.95, 19.93) ∪ (25.48, ∞) (4.64, 12.01) ∪ (19.75, ∞) (4.55, 11.49) ∪ (18.75, ∞)

10 (6.24, 23.34) ∪ (28.77, ∞) (6.09, 19.73) ∪ (26.35, ∞) (6.04, 19.38) ∪ (25.88, ∞)

Table 14. g3(c, u) = 1
1+βu + µc, multiplicity region.

µ β = 1 β = 30 β = 40

0 [12.67, 18.91] (2.37, 4.00] (2.19, 2.68]
1 [14.66, 20.70] [4.32, 6.37] [2.73, 6.02]
3 [17.73, 23.46] [7.01, 14.76] [6.50, 3.35]
5 [19.93, 25.48] [12.01, 19.75] [11.49, 18.75]

10 [23.34, 28.77] [19.73, 26.35] [19.38, 25.88]

Table 15. g3(c, u) = 1
1+βu + µc, Patch Allee effect region.

µ β = 1 β = 30 β = 40

0 None [0.25, 2.37] [0.14, 2.19]
1 None [1.86, 2.90] [1.55, 2.73]
3 None None None
5 None None None

10 None None None

Table 16. g3(c, u) = 1
1+βu + µc, λmin.

µ 0 1 3 5 10

β = 1 2.98 3.43 4.25 4.95 6.24

β = 30 2.37 2.40 3.85 4.64 6.09

β = 40 2.19 2.73 3.72 4.55 6.04

In the case of medium DDE strength (β = 30 in Figure 20), potential model predictions
include (1) extinction for λ ≤ λmin, (2) a PAE, (3) unconditional persistence at a low
maximum density level, (4) non-Allee effect type bi-stability (one positive steady state
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at low max density and one at high density), or (5) unconditional persistence at a high
maximum density level. For the high DDE strength case (β = 40), all five of these dynamical
outcomes are possible with the addition of a scenario as illustrated at λ = λ1 in the red
curve of Figure 21. For this λ-value, a PAE occurs and persistence is possible at either a
high maximum density or a small maximum density level. Increasing the PIE strength for
this patch size will change model prediction to that of a PAE, followed by extinction for
sufficiently high PIE strength. However, for a patch with size corresponding to λ = λ2,
outcomes (2)–(5) above are possible as the PIE sensitivity increases.

Next, we explore the effects of matrix hostility by considering the case with high DDE
strength (β = 80) and high matrix hostility (γ = 26). Figure 22 illustrates the effect that
extreme matrix hostility has on the model predictions, showing a new dynamical scenario
at λ = λ1. At this value, there are five positive solutions to the steady-state problem,
showing a very complex situation. Here, persistence is possible but with a variety of
different maximum density levels. Figure 23 shows the evolution of bifurcation curves for
µ ≈ 0 as the PIE strength increases.

Figure 22. Bifurcation diagram of positive solutions for (7) with g = g3(c, u) = 1
1+80u + µc (−DDE

with β = 80) and γ = 26. Note that the dashed line represents λ1 = 31.10, red represents µ = 0, blue
µ = 1, green µ = 3, orange µ = 10, and black µ → ∞.

Figure 23. Bifurcation diagram of positive solutions for (7) with g = g3(c, u) = 1
1+80u + µc (−DDE

with β = 80) and γ = 26. Note that red represents µ = 0, blue µ = 0.003, green µ = 0.005, purple
µ = 0.01, and orange µ = 0.02.

3. Preliminaries
In this section, we introduce definitions of the (strict) subsolution and (strict) su-

persolution of (1), state a sub-supersolution theorem that is used to prove the existence
and multiplicity results of positive solutions, and state a lemma which we employ to
numerically generate bifurcation curves.
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By a subsolution of (1), we mean ψ ∈ C2(Ω) ∩ C1(Ω) that satisfies{
−∆ψ ≤ λ f (c, ψ); Ω

∂ψ
∂η + γ

√
λg(c, ψ)ψ ≤ 0; ∂Ω.

By a supersolution of (1), we mean Z ∈ C2(Ω) ∩ C1(Ω) that satisfies{
−∆Z ≥ λ f (c, Z); Ω

∂Z
∂η + γ

√
λg(c, Z)Z ≥ 0; ∂Ω.

By a strict subsolution (supersolution) of (1), we mean a subsolution (supersolution)
which is not a solution. Then, the following results hold (see [43–45]):

Lemma 1. Let ψ and Z be a subsolution and a supersolution of (1), respectively, such that ψ ≤ Z.
Then, (1) has a solution u ∈ C2(Ω) ∩ C1(Ω) such that u ∈ [ψ, Z].

Lemma 2. Let ψ1 and Z2 be a subsolution and a supersolution of (1), respectively, such that
ψ1 ≤ Z2. Let ψ2 and Z1 be a strict subsolution and a strict supersolution of (1), respectively, such
that ψ2, Z1 ∈ [ψ1, Z2] and ψ2 ̸≤ Z1. Then, (1) has at least three solutions, u1, u2 and u3 where
ui ∈ [ψi, Zi]; i = 1, 2 and u3 ∈ [ψ1, Z2]\([ψ1, Z1] ∪ [ψ2, Z2]).

Let u be a positive solution of (7) when Ω = (0, 1). Since g(c, s)s is increasing for all
s > 0, it follows that u must be symmetric about x = 1

2 and has the shape as in Figure 24
below (see [32]). Let u(0) = u(1) = q and ∥u∥∞ = u( 1

2 ) = ρ.

Figure 24. The shape of the symmetric positive solutions of (7).

Then the following result holds:

Lemma 3 (See [32]). For λ > 0, (7) has a positive solution u such that ∥u∥∞ = ρ, u(0) =

u(1) = q, with 0 < q < ρ if and only if λ, ρ, and q satisfy

λ = 2
( ∫ ρ

q(ρ)

ds√
F(c, ρ)− F(c, s)

)2
(8)

and
2[F(c, ρ)− F(c, q)] = γ2(g(c, q))2q2 (9)

where f (c, s) = s(1 − s)− h(c, s) and F(c, s) =
∫ s

0 f (c, r)dr.

Remark 4. We provide the proof of Lemma 3 in the appendix for the convenience of the reader.

Next, we briefly explain how we obtain bifurcation curves using (8)–(9). Let z0 be the
unique positive falling zero of f and xi = θ + (z0−θ)

n+1 i; i = 1, ..., n for some n ≥ 1, where θ
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is the smallest positive zero of F when h(c, s) = h1(c, s) and θ = 0 when h(c, s) = h2(c, s)
or h(c, s) = h3(c, s). Letting ρ = x1, we numerically solve the equation (9) for q using the
FindRoot command in Mathematica. The values of q and ρ are substituted into (8) to find
the corresponding value of λ. Repeating this procedure for ρ = xi, i = 2, ......, n, we obtain
(λ, ρ) points for the bifurcation diagram.

We note that, in our study, when f (c, 0) = 0, the branch of positive solutions bifurcates
from (λ, 0) at E1(M, g0(µ, c), γ), where E1(M, g0(µ, c), γ) is the principal (first positive)
eigenvalue of 

−ϕ′′ = EMϕ; (0, 1)
−ϕ′(0) + γ

√
Eg0(µ, c)ϕ(0) = 0

ϕ′(1) + γ
√

Eg0(µ, c)ϕ(1) = 0
(10)

with an eigenfunction ϕ > 0; [0, 1]. Here, M = 1 − c when h = h2 and M = 1 when h = h3.

4. Construction of Subsolutions and Supersolutions to Prove
Theorems 1–6

Here, we state a couple of eigenvalue problems which are crucial to our proofs and
recall some properties of their respective principal eigenvalues. For M, b, λ, γ > 0, let
σ0 = σ0(M, b, λ, γ) be the principal eigenvalue, ϕ0 > 0; Ω be the corresponding normalized
eigenfunction of {

−∆ϕ0 − λMϕ0 = σ0ϕ0; Ω
∂ϕ0
∂η + γ

√
λbϕ0 = 0; ∂Ω

(11)

and let σ1 = σ1(M, b, λ, γ) be the principal eigenvalue and ϕ1 > 0; Ω be the corresponding
normalized eigenfunction of {

−∆ϕ1 − λMϕ1 = σ1ϕ1; Ω
∂ϕ1
∂η + γ

√
λbϕ1 = σ1ϕ1; ∂Ω.

(12)

Note that the existence of both principle eigenvalues is standard (see [15,46]). For sim-
plicity of notation, we denote σ̃i = σi(1 − c, g0(µ, c), λ, γ) with corresponding normalized
eigenfunction ϕ̃i for i = 0, 1.

The following lemma gives several useful properties of σi(M, b, λ, γ) and E1(M, b, γ)

(see [15,46,47]).

Lemma 4. Let M, γ, b > 0, σ0(M, b, λ, γ) denote the principal eigenvalue of (11), σ1(M, b, λ, γ)

the principal eigenvalue of (12), and E1(M, b, γ) the principal eigenvalue of (2). Then, we have the
following for i = 0, 1:

(1) σi(M, b, λ, γ) ≥ 0 for λ ≤ E1(M, b, γ).
(2) σi(M, b, λ, γ) < 0 for λ > E1(M, b, γ).
(3) σi(M, b, λ, γ) is decreasing in M and increasing in b and γ.
(4) sgn(σ0(M, b, λ, γ)) = sgn(σ1(M, b, λ, γ)).
(5) E1(M, b, γ) is decreasing in M and increasing in b and γ.

Now, we present the construction of several crucial sub- and supersolutions for (2).
Construction of a subsolution ψ1 when λ > E1(M, g0(µ, c), γ) for γ > 0, h = h2 or h = h3

and g = g1 (DIE), g = g2 (+DDE) or g = g3 (−DDE), where M = 1 − c when h = h2 and
M = 1 when h = h3.

For a fixed λ > 0, recall that σ̃1 = σ1(M, g0(µ, c), λ, γ) is the principal eigenvalue and
ϕ̃1 > 0; Ω the corresponding normalized eigenfunction of (12). We note that σ̃1 < 0 for
λ > E1(M, g0(µ, c), γ). Let ψ1 := δ1ϕ̃1 for δ1 > 0 and l(s) = (σ̃1 + λM)s − λ f (c, s). Then,
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we have l(0) = 0 and l′(0) = (σ̃1 + λM)− λ f ′(c, 0) = σ̃1 < 0 since f ′(c, 0) = M. Therefore,
l(s) < 0; s ≈ 0. This implies that

−∆ψ1 = δ1(λ + σ̃1)ϕ̃1 < λ f (c, δ1ϕ̃1) = λ f (c, ψ1); Ω

for δ1 ≈ 0. We also have

∂ψ1

∂η
+ γ

√
λg(c, ψ1)ψ1 = δ1

(∂ϕ̃1

∂η
+ γ

√
λg(c, δ1ϕ̃1)ϕ̃1

)
= δ1

(
− γ

√
λbϕ̃1 + σ̃1ϕ̃1 + γ

√
λg(c, δ1ϕ̃1)ϕ̃1

)
= δ1ϕ̃1

(
γ
√

λ(g(c, δ1ϕ̃1)− g0(µ, c)) + σ̃1

)
< 0; ∂Ω

for δ1 ≈ 0 since g(c, δ1ϕ̃1) ≈ g0(µ, c) and σ̃1 < 0 for λ > E1(M, g0(µ, c), γ). Hence, ψ1 is a
subsolution of (1) for λ > E1(M, g0(µ, c), γ).

Construction of a subsolution ψ2 when λ > ED
1 such that ∥ψ2∥∞ −→ 1 as λ −→ ∞

for γ > 0, h = h2 and g = g1 (DIE) or g = g2 (+DDE).

Consider the following problem:{
−∆w = λ[w(1 − w)− cw]; Ω

w = 0; ∂Ω.
(13)

Let wλ be the unique positive solution of (13) for λ > ED
1 (see [15]), where ED

1 is the
principal eigenvalue of (4).

We note that ∥wλ∥∞ → z0 as λ → ∞. Let ψ2 := wλ. Then, we have −∆ψ2 =

λ f (c, ψ2); Ω. Also,

∂ψ2

∂η
+ γ

√
λg(c, ψ2)ψ2 =

∂wλ

∂η
< 0; ∂Ω

by the Hopf maximum principle. Therefore, ψ2 is a subsolution of (1) for λ > ED
1 such that

∥ψ2∥∞ −→ z0 as λ −→ ∞.

Construction of a strict subsolution ψ3 in
[
λ∗, E1(1 − c, g0(µ, c), γ)

]
when γ > 0, h = h2,

and g = g3 (−DDE) when β > β1(µ) for some β1(µ) > 0.

Let λ ∈ I where I is as in (3). Choose M = 1 − c and b = g0(µ,c)+µc
2 in (11). Next,

for a fixed λ > 0, let σ0 = σ0(1 − c, g0(µ,c)+µc
2 , λ, γ) be the principal eigenvalue and ϕ0 >

0; Ω be the corresponding normalized eigenfunction of (11). We note that σ0 < 0 when
λ > E1(1 − c, g0(µ,c)+µc

2 , γ). Define H(s) := (λ(1 − c) + σ0)s − λ f (c, s) for λ ≥ λ∗. Then,
H(0) = 0 and H′(0) = σ0 < 0 since f (c, 0) = 0, f ′(c, 0) = 1 − c, and σ0 < 0. This implies
that H(s) < 0 for s ≈ 0. Let sλ ∈ (0, z0) be such that

H(s) = (λ(1 − c) + σ0)s − λ f (c, s) < 0; for all s ∈ (0, sλ]. (14)
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Next, we define K = K(a, Ω) := min
λ∈I

min
Ω

{δ4ϕ0} where δ4 := min
λ∈I

{sλ}. Observe that

0 < δ4 < z0, and ∥ϕ0∥∞ ≤ 1 implies that K < z0. Let λ ∈ I and define ψ3 := δ4ϕ0. From
(14), we have

−∆ψ3 = −δ4∆ϕ0 = δ4(λ(1 − c) + σ0)ϕ0 < λ f (c, δ4ϕ0) = λ f (c, ψ3); Ω.

Next, since δ4ϕ0 ≥ K, we have

1 + βδ4ϕ0 ≥ 1 + βK; ∂Ω.

This implies that

1
1 + βδ4ϕ0

+ µc −
( g0(µ, c) + µc

2

)
≤ 1

1 + βK
+ µc −

( g0(µ, c) + µc
2

)
; ∂Ω. (15)

Let β1 := β1(µ) be such that

1
1 + β1K

+ µc −
( g0(µ, c) + µc

2

)
= 0.

This implies that β1 = 1
K . Observe that β1 > 0 and

1
1 + βK

+ µc −
( g0(µ, c) + µc

2

)
< 0

for β > β1. Now, for β > β1, we have

∂ψ3

∂η
+ γ

√
λg(c, ψ3)ψ3 = δ4

(∂ϕ0
∂η

+ γ
√

λg(c, δ4ϕ0)ϕ0
)

= δ4γ
√

λϕ0

( 1
1 + βδ4ϕ0

+ µc −
( g0(µ, c) + µc

2

))
< 0; ∂Ω

by (15). Hence, ψ3 is a strict subsolution of (1) for λ ∈ I and β > β1.

Construction of a strict subsolution ψ4 when (H1) & (H2) hold for λ ∈
(

2bNCN
R2 f (c,b) , 2r2N

f (c,b)R2

)
.

Let g̃ ∈ C1([0, ∞)) be such that g̃ is non-decreasing on [0, r2), 0 ≤ g̃(s) ≤ f (c, s) on
[0, r1) and g̃(s) = f (c, s) on [r1, r2). Then, the following boundary value problem{

−∆w = λg̃(w); Ω
u = 0; ∂Ω,

has a solution w̃λ ≥ 0 such that ∥w̃λ∥∞ ≥ b for λ ∈
(

2bNCN
R2 f (c,b) , 2r2 N

f (c,b)R2

)
provided (H3) and

(H4) are satisfied (see [33]). Let ψ4 := w̃λ. Since g̃(s) ≤ f (c, s) on [0, z0) and ∂w̃λ
∂η < 0 on ∂Ω

by the Hopf maximum principle, it is easy to show that ψ4 is a strict subsolution of (1) for
λ ∈

(
2bNCN
R2 f (c,b) , 2r2 N

f (c,b)R2

)
.

Construction of a strict supersolution Z1 for λ > 0, γ > 0, h = h1, h = h2, or h = h3,
and any form of g.
Z1 = z0 is a global supersolution of (1) for all λ > 0.
Construction of a strict supersolution Z2 for λ ∈ (0, E1(M, g0(µ, c), γ)), for γ > 0, h = h2

or h = h3 and any form of g where M = 1 − c when h = h2 and M = 1 when h = h3.
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For a fixed λ > 0, recall σ̃1 = σ1(M, g0(µ, c), λ, γ) is the principal eigenvalue and
ϕ̃1 > 0; Ω the corresponding normalized eigenfunction of (12). We note that σ̃1 > 0 for
λ < E1(M, g0(µ, c), γ) (see Lemma 4). Let Z2 := m2ϕ̃1 and l(s) = (σ̃1 + λM)s − λ f (c, s).
Since f (c, 0) = 0 and f ′(c, 0) = M, we have l(0) = 0 and l′(0) = (σ̃1 + λM)− λ f ′(c, 0) =
σ̃1 > 0 giving that l(s) > 0 for s ≈ 0. This implies that

−∆Z2 = m2(λM + σ̃1)ϕ̃1 > λ f (c, m2ϕ̃1) = λ f (c, Z2); Ω

and

∂Z2

∂η
+ γ

√
λg(c, Z2)Z2 = m2

(∂ϕ̃1

∂η
+ γ

√
λg(c, m2ϕ̃1)ϕ̃1

)
= m2

(
− γ

√
λg0(µ, c)ϕ̃1 + σ̃1ϕ̃1 + γ

√
λg(c, m2ϕ̃1)ϕ̃1

)
= m2ϕ̃1

(
γ
√

λ(g(c, m2ϕ̃1)− g0(µ, c)) + σ̃1

)
> 0; ∂Ω

for m2 ≈ 0 since g(c, 0) = g0(µ, c). Hence, Z2 is a strict supersolution of (1) for
λ < E1(M, g0(µ, c), γ) and m2 ≈ 0.

Construction of a small supersolution Z3 for λ > E1(1 − c, g0(µ, c), γ) and
λ ≈ E1(1 − c, g0(µ, c), γ) when h = h2 and g = g1 (DIE) or g = g2 (+DDE).

For a fixed λ > 0, recall σ̃0 = σ0(1 − c, g0(µ, c), λ, γ) is the principal eigenvalue and
ϕ̃0 > 0; Ω is the corresponding normalized eigenfunction of (11) (here, M = 1 − c and
b = g0(µ, c) = 1 + µc). We note that σ̃0 < 0 for λ > E1(1 − c, g0(µ, c), γ) (see Lemma 4).
Define Z3 := m3ϕ̃0, where m3 = −σ̃0

λ min
Ω

{ϕ̃0}
> 0. Then, we have

−∆Z3 − λ f (c, Z3) = m3(λ(1 − c) + σ̃0)ϕ̃0 − λ[m3ϕ̃0(1 − m3ϕ̃0)− cm3ϕ̃0]

= m3ϕ̃0[σ̃0 + λ(1 − c)− λ(1 − c) + λm3ϕ̃0]

= m3ϕ̃0(σ̃0 + λm3ϕ̃0)

≥ m3ϕ̃0(σ̃0 + λm3 min
Ω

{ϕ̃0}) = 0; Ω.

Also, we have

∂Z3

∂η
+ γ

√
λg(c, Z3)Z3 = −m3γ

√
λg0(µ, c)ϕ̃0 + γ

√
λg(c, m3ϕ̃0)m3ϕ̃0

= γ
√

λm3ϕ̃0[g(c, m3ϕ̃0)− g0(µ, c)] ≥ 0; ∂Ω

since g ≥ g0(µ, c); [0, ∞] when g = g1 (DIE) or g = g3 (+DDE). This implies that
Z3 is a supersolution of (1) when λ > E1(1 − c, g0(µ, c), γ). Since σ̃0 → 0 as λ →
E1(1 − c, g0(µ, c), γ)+, m3 → 0 as λ → E1(1 − c, g0(µ, c), γ)+ and hence, ∥Z3∥∞ → 0
as λ → E1(1 − c, g0(µ, c), γ)+.

Construction of a strict supersolution Z4 when (H1) & (H2) hold for

λ ∈
(

2bNCN
R2 f (c,b) , a

∥v(µ,b,c)∥∞ f ∗(c,a)

)
.
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Let Z4 := av(µ,b,c)
∥v(µ,b,c)∥∞

, where v(µ, b, c) is the unique positive solution of (5). Thus, we
have

−∆Z4 =
a

∥v(µ, b, c)∥∞

> λ f ∗(c, a)

≥ λ f ∗
(

c,
av(µ, b, c)

∥v(µ, b, c)∥∞

)
≥ λ f

(
c,

av(µ, b, c)
∥v(µ, b, c)∥∞

)
= λ f (c, Z4); Ω

since λ < a
∥v(µ,b,c)∥∞ f ∗(c,a) and f ∗(c, s) = max

t∈[0,s]
f (c, t). Now, since λ > 2bNCN

R2 f (c,b) and g(c, s) ≥

g∞(c); [0, z0], we have

∂Z4

∂η
+
√

λγg(c, Z4)Z4 =
∂
(

av(µ,b,c)
∥v(µ,b,c)∥∞

)
∂η

+
√

λγg
(

c,
av(µ, b, c)

∥v(µ, b, c)∥∞

)
av(µ, b, c)

∥v(µ, b, c)∥∞

=
a

∥v(µ, b, c)∥∞

(
∂v(µ, b, c)

∂η
+
√

λγg
(

c,
av(µ, b, c)

∥v(µ, b, c)∥∞

)
v(µ, b, c)

)
≥ a

∥v(µ, b, c)∥∞

(
∂v(µ, b, c)

∂η
+

√
2bNCN

R2 f (c, b)
γg∞(c)v(µ, b, c)

)

=
a

∥v(µ, b, c)∥∞

(
∂v(µ, b, c)

∂η
+ γτ(b, c)g∞(c)v(µ, b, c)

)
= 0; ∂Ω.

Hence, Z4 is a strict supersolution of (1) with ∥Z4∥∞ = a.

5. Proofs of Theorems 1–4
In this section, we provide proofs of our main results.

Proof of Theorem 1. We note that the problem{
−∆u = λ[u(1 − u)− h(c, u)]; Ω

u = 0; ∂Ω

has a positive solution wλ for λ ≫ 1 such that ∥wλ∥∞ −→ z0 as λ −→ ∞ (see [48]). Let
ψ∗ = wλ. Then, we have −∆ψ∗ = λ f (c, ψ∗); Ω. Also,

∂ψ∗

∂η
+ γ

√
λg(c, ψ∗)ψ∗ =

∂ψ∗

∂η
≤ 0; ∂Ω

by the Hopf maximum principle. Therefore, ψ∗ is a subsolution of (1) for λ ≫ 1. Further,
Z1 = z0 is a global supersolution of (1). Then, by Lemma 1, it follows that (1) has at least one
positive solution in [ψ∗, Z1] for λ ≫ 1. This implies that (1) has at least one positive solution
uλ for λ ≫ 1 such that ∥uλ∥∞ −→ z0 as λ −→ ∞ since ∥ψ∗∥∞ −→ z0 as λ −→ ∞.

Proof of Theorem 2. We first prove here the non-existence of a positive solution for λ <

E1(1 − c, g0(µ, c), γ). Let σ0(1 − c, g0(µ, c), γ) be the principal eigenvalue and ϕ0 > 0; Ω be
the corresponding normalized eigenfunction of (11). We note that σ0(1 − c, g0(µ, c), γ) > 0
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when λ < E1(1 − c, g0(µ, c), γ) (see Lemma 4). Suppose uλ is a positive solution of (1) for
λ < E1(1 − c, g0(µ, c), γ). Then, by Green’s Second Identity, we have

∫
Ω

(
ϕ0∆uλ − uλ∆ϕ0

)
dx =

∫
∂Ω

(
ϕ0

∂uλ

∂η
− uλ

∂ϕ0

∂η

)
ds

=
∫

∂Ω

(
− ϕ0γ

√
λg(c, uλ)uλ + γuλ

√
λg0(µ, c)ϕ0

)
ds

=
∫

∂Ω
γϕ0uλ

√
λ
(

g0(µ, c)− g(c, uλ)
)

ds

≤ 0.

On the other hand, we have∫
Ω

(
ϕ0∆uλ − uλ∆ϕ0

)
dx =

∫
Ω

(
− ϕ0λ f (c, uλ) + [(1 − c)λ + σ0]uλϕ0

)
dx

>
∫

Ω

(
− ϕ0λ(1 − c)uλ + [(1 − c)λ + σ0]uλϕ0

)
dx

=
∫

Ω
σ0ϕ0uλdx > 0

since f (c, uλ) < (1 − c)uλ; uλ ∈ (0, 1) and σ0(1 − c, g0(µ, c), γ) > 0 when λ < E1(1 −
c, g0(µ, c), γ). This is a contradiction. Thus, (1) has no positive solution for λ < E1(1 −
c, g0(µ, c), γ).

We prove the existence of a positive solution, uλ, for λ > E1(1 − c, g0(µ, c), γ) such
that ∥uλ∥∞ → z0 as λ → ∞.

Recall the subsolution ψ1 = δ1ϕ̃1 for λ > E1(1 − c, g0(µ, c), γ) and the supersolution
Z1 ≡ z0. Since ψ1 < Z1, by Lemma 1, it follows that (1) has a positive solution in [ψ1, Z1] for
λ > E1(1 − c, g0(µ, c), γ). Also, recall the subsolution ψ2 = wλ < z0; Ω for λ > ED

1 . Then,
by Lemma 1, it follows that (1) has a positive solution in [ψ2, Z1] for λ > ED

1 . This implies
that (1) has a positive solution uλ for λ > E1(1 − c, g0(µ, c), γ) such that ∥uλ∥∞ −→ z0 as
λ −→ ∞ since ∥ψ2∥∞ −→ z0 as λ −→ ∞.

Next, we prove that ∥uλ∥∞ → 0 as λ → E1(1 − c, g0(µ, c), γ)+. Recall the subsolution
ψ1 = δ1ϕ̃1 and supersolution Z3 = m3ϕ̃0 and choose δ1 small enough such that ψ1 ≤ Z3.
Then, by Lemma 1, (1) has a positive solution vλ ∈ [ψ1, Z3] such that ∥vλ∥∞ → 0 as
λ → E1(1 − c, g0(µ, c), γ)+ since ∥Z3∥∞ → 0 as λ → E1(1 − c, g0(µ, c), γ)+. But, the
uniqueness of positive solutions of (1) proved above implies that vλ ≡ uλ. Hence, we have
∥uλ∥∞ → 0 as λ → E1(1 − c, g0(µ, c), γ)+.

Now, we prove the uniqueness of the positive solution for λ > E1(1 − c, g0(µ, c), γ).
Suppose that (1) has two distinct positive solutions, u1, u2, for λ > E1(1 − c, g0(µ, c), γ).
Since Z1 ≡ z0 is a global supersolution, it follows that (1) has a maximal solution. Thus,
without loss of generality, we may assume that u2 > u1. Then, by Green’s Second Identity,
we have ∫

Ω

(∆u1u2 − ∆u2u1)dx =
∫

∂Ω

(∂u1

∂η
u2 −

∂u2

∂η
u1

)
ds

=
∫

∂Ω

(
− γ

√
λg(c, u1)u1u2 + γ

√
λg(c, u2)u2u1

)
ds

=
∫

∂Ω

γ
√

λu1u2

(
g(c, u2)− g(c, u1)

)
ds

≥ 0,
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since g is non-decreasing and u2 > u1. We note that f (c,s)
s = 1 − c − s is decreasing, and

hence

∫
Ω

(∆u1u2 − ∆u2u1)dx =
∫
Ω

(
− λ f (c, u1)u2 + λ f (c, u2)u1

)
ds

=
∫
Ω

λu1u2

(
f (c, u2)

u2
− f (c, u1)

u1

)
ds

< 0

since u2 > u1. This is a contradiction. Hence, (1) has at most one positive solution for
λ > E1(1 − c, g0(µ, c), γ).

Proof of Remark 1. Let β ≥ 0, µ1 > µ2 > 0, λ > E1(1 − c, g0(µ1, c), γ), uµ1 and uµ2 be the
unique positive solutions of (1) when µ = µ1 and µ = µ2, respectively. Then, we have{

−∆uµ1 = λ
[
uµ1(1 − uµ1)− cuµ1

]
; Ω

∂uµ1
∂η +

√
λγ[1 + βuµ1 + µ1c]uµ1 = 0; ∂Ω.

(16)

It is clear that uµ1 is a strict subsolution of{
−∆u = λ[u(1 − u)− cu]; Ω

∂u
∂η +

√
λγ[1 + βu + µ2c]u = 0; ∂Ω.

(17)

Note that that Z1 = z0 is a global supersolution of (17). Hence, by Lemma 1, (17) has a
positive solution vµ2 ∈ [uµ1 , Z1]. Since the solution of (17) is unique by Theorem 2, we have
vµ2 = uµ2 . Thus uµ1 < uµ2 . This completes the proof.

Proof of Theorem 3. We note that ψ0 ≡ 0 is a solution and hence a subsolution of (1). Recall
the strict subsolution ψ3 = δ4ϕ0 ≤ z0; Ω for λ ∈ I = [λ∗, E1(1 − c, g0(µ, c), γ)] when β >

β1(µ), strict supersolution Z2 = m2ϕ̃1 ≤ 1; Ω (with m2 ≈ 0) for λ < E1(1 − c, g0(µ, c), γ),
and supersolution Z1 ≡ z0 for λ > 0. We can also choose m2 to be small enough such
that ψ3 ̸≤ Z2. By Lemma 2, (1) has at least two positive solutions, u1 ∈ [ψ3, Z1] and
u2 ∈ [ψ0, Z1]\([ψ0, Z2] ∪ [ψ3, Z1]), for λ ∈

[
λ∗, E1(1 − c, g0(µ, c), γ)

)
. Since ψ0 ≡ 0 is a

solution, Lemma 2 can only guarantee the existence of at least two positive solutions.
Hence, there is a PAE for λ ∈

[
λ∗, E1(1 − c, g0(µ, c), γ)

)
.

We now show that if λ0 < ED
1 and β > 0 are fixed, then there exists µ1(β, λ0) > 0

such that (1) has no positive solution for λ < λ0 when µ > µ1(β, λ0). Choose b0 ∈ (0, ∞)

in (11) such that λ0 = E1(1 − c, b0, γ) (see Lemma 4). For a given λ < λ0, recall that
σ0 = σ0(1 − c, b0, λ, γ) is the principal eigenvalue, and ϕ0 > 0; Ω is the corresponding
normalized eigenfunction of (11). We note that σ0 > 0 for λ < λ0. (see Lemma 4). Now,
suppose that (1) has a positive solution uλ, for λ < λ0. Then, we have 1 + βuλ < 1 + β; ∂Ω.
This implies that

b0 −
1

1 + βuλ
− µc < b0 −

1
1 + β

− µc; ∂Ω. (18)

Clearly, there exists µ1 := µ1(β, λ0) > 0 such that

b0 −
1

1 + β
− µc < 0 (19)

for µ > µ1. Then, by Green’s Second Identity, we have
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∫
Ω

(
∆uλϕ0 − uλ∆ϕ0

)
dx =

∫
∂Ω

(∂uλ

∂η
ϕ0 −

∂ϕ

∂η
uλ

)
ds

=
∫

∂Ω

(
− γ

√
λg(c, uλ)uλϕ0 + γ

√
λb0ϕ0uλ

)
ds

=
∫

∂Ω
γ
√

λuλϕ0

(
b0 − g(c, uλ)

)
ds

=
∫

∂Ω
γ
√

λuλϕ0

(
b0 −

1
1 + βuλ

− µc
)

ds

<
∫

∂Ω
γ
√

λuλϕ0

(
b0 −

1
1 + β

− µc
)

ds

≤ 0

for µ > µ1 by (18) and (19). On the other hand, noting that f (c, uλ) ≤ (1− c)uλ; Ω, we have∫
Ω

(
∆uλϕ0 − uλ∆ϕ0

)
dx =

∫
Ω

(
− ϕ0λ f (c, uλ) + (λ(1 − c) + σ0)ϕ0uλ

)
dx

≥
∫

Ω

(
(λ(1 − c) + σ0)ϕ0uλ − ϕ0λ(1 − c)uλ

)
dx

=
∫

Ω
ϕ0uλσ0 dx

> 0

since σ0 > 0 for λ < λ0. This is a contradiction. Hence, (1) has no positive solution for
λ < λ0 when µ > µ1.

Proof of Theorem 4. The proof of this Theorem follows from the proof of Theorem 3.

Proof of Theorem 5. Recall the subsolution ψ1 := δ1ϕ̃1 for λ > E1(M, g0(µ, c), γ) (here,
M = 1), strict subsolution ψ4 for λ ∈

(
2bNCN
R2 f (c,b) , 2r2 N

f (c,b)R2

)
, supersolution Z1 for λ > 0, and

strict supersolution Z4 = av(µ,b,c)
∥v(µ,b,c)∥∞

for λ ∈
(

2bNCN
R2 f (c,b) , a

∥v(µ,b,c)∥∞ f ∗(c,a)

)
. Since a < z0, we

have Z4 < Z1. By construction, we have ∥ψ4∥∞ > b > a = ∥Z4∥∞. Choosing δ1 ≈ 0, we
have ψ1 ≤ ψ4 ≤ Z1. Then, by Lemma 2, the result follows.

Justification of the Remark 3:
Here, we prove that our growth term f and emigration term g satisfy the conditions

in Theorem 5 when N = 1, 2, 3, and Ω is a ball of radius R.
Recall that f (c, s) = s(1 − s)− cs2

m+s2 . For simplicity of demonstration, we let c = 0.019,
m = 0.0001. Note that

f ′(c, s) =
2cs3

(m + s2)2 − 2s
(

1 +
c

m + s2

)
+ 1 = 1 − 2s − 2mcs

(m + s2)2

and f ′(c, s) = 0 has three positive solutions s = c0, r1, and r2 such that c0 < r1 < r2 (see
Figure 25). It can be shown that c0 ≈ 0.0032, r1 ≈ 0.0097, and r2 ≈ 0.5. Note that f (c, s)
increases on (0, c0) ∪ (r1, r2) and decreases on (c0, r1) ∪ (r2, ∞) with respect to s. Hence
f (c, c0) and f (c, r2) are the local maximum and f (c, r1) is a local minimum.

We choose a = 0.01454 such that f (c, a) = f (c, c0) = f ∗(c, a), and a
f ∗(c,a) ≈ 10.1690.

Now, we will show that b < r2
CN

which will imply 2NCN b
R2 f (c,b) < 2Nr2

R2 f (c,b) for N = 1, 2, 3.

By choosing b = 0.1054, we have b < r2
C3

≈ 0.1055. This implies that b < r2
CN

for N = 1, 2, 3
since CN is an increasing function of N. Then, we have

C3b
f (c, b)

≈ 6.6217 <
a

f ∗(c, a)
≈ 10.1690 (20)
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Figure 25. The shape of f along with the values of c0, a, b, r1, and r2.

We note that the solution v(µ, b, c) of (5) is given by

v(µ, b, c) =
R2 − |x|2

2N
+

1
γg∞

R
N

√
f (c, b)

b
R2

2NCN
,

and ∥v(µ, b, c)∥∞ → R2

2N as µ → ∞ since g∞ ≥ µc → ∞ as µ → ∞. Hence, we have

2NCNb
R2 f (c, b)

≤ 2N
R2

C3b
f (c, b)

<
2N
R2 · a

f ∗(c, a)
=

a
R2

2N f ∗(c, a)

by (20) for N = 1, 2, 3. Hence, when µ is large, we have

2NCNb
R2 f (c, b)

<
a

∥v(µ, b, c)∥∞ f ∗(c, a)
.

Thus, we have 2NCN b
R2 f (c,b) < min

{
a

∥v(µ,b,c)∥∞ f ∗(c,a) , 2Nr2
R2 f (c,b)

}
when µ is large for N = 1, 2, 3.

We note that the principal eigenvalue ED
1 (of (4)) when Ω is a ball of radius R is given

by

ED
1 =


π2

4R2 ≈ 2.4674
R2 N = 1

j20,1
R2 ≈ 5.7832

R2 N = 2
jN/2−1,1

R2 <
√

N/2(
√

N/2+1+1)
R2 N ≥ 3

where jn,1 is the first zero of the Bessel function of order n. From [33], we have jn,1 <
√

n + 1(
√

n + 2 + 1) for n > −1, and ED
1 <

√
N/2(

√
N/2+1+1)
R2 =

√
1.5(

√
2.5+1)

R2 ≈ 3.1612
R2 when

N = 3. Then, ED
1 < 6

R2 and

ED
1 <

6
R2 <

13.2520
R2 =

2r2

f (c, b)R2 ≤ 2Nr2

f (c, b)R2

for N = 1, 2, 3. On the other hand, we have

ED
1 <

6
R2 <

2 × 10.1690
R2 =

2a
R2 f ∗(c, a)

≤ 2Na
R2 f ∗(c, a)

=
a

R2

2N f ∗(c, a)

This implies that E1(1, g0(µ, c), γ) < ED
1 < a

∥v(µ,b,c)∥∞ f ∗(c,a) when µ is large for

N = 1, 2, 3 since ∥v(µ, b, c)∥∞ → R2

2N as µ → ∞. Thus, we have E1(1, g0(µ, c), γ) <

min
{

a
∥v(µ,b,c)∥∞ f ∗(c,a) , 2Nr2

R2 f (c,b)

}
and

max
{

E1(1, g0(µ, c), γ),
2NCNb

R2 f (c, b)

}
< min

{
a

∥v(µ, b, c)∥∞ f ∗(c, a)
,

2Nr2

R2 f (c, b)

}
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holds when N = 1, 2, 3. This completes the justification.

Proof of Theorem 6. Here, we prove the non-existence of a positive solution for λ <

E1(1, g0(µ, c), γ).
Note that f (c, s) < s for all s ∈ (0, ∞). Let σ0(1, g0(µ, c), λ, γ) be the principal eigen-

value and ϕ0 > 0; Ω be the corresponding normalized eigenfunction of (11). We note that
σ0(1, g0(µ, c), λ, γ) > 0 when λ < E1(1, g0(µ, c), γ) (see Lemma 4). Suppose uλ is a positive
solution of (1) for λ < E1(1, g0(µ, c), γ). Then, by Green’s Second Identity, we have

∫
Ω

(
ϕ0∆uλ − uλ∆ϕ0

)
dx =

∫
∂Ω

(
ϕ0

∂uλ

∂η
− uλ

∂ϕ0

∂η

)
ds

=
∫

∂Ω

(
− ϕ0γ

√
λg(c, uλ)uλ + γuλ

√
λg0(µ, c)ϕ0

)
ds

=
∫

∂Ω
γϕ0uλ

√
λ
(

g0(µ, c)− g(c, uλ)
)

ds

≤ 0.

On the other hand, we have∫
Ω

(
ϕ0∆uλ − uλ∆ϕ0

)
dx =

∫
Ω

(
− ϕ0λ f (c, uλ) + (λ + σ0(1, g0(µ, c), λ, γ))uλϕ0

)
dx

>
∫

Ω

(
− ϕ0λuλ + (λ + σ0(1, g0(µ, c), λ, γ))uλϕ0

)
dx

=
∫

Ω
σ0(1, g0(µ, c), λ, γ)ϕ0uλ dx

> 0

since f (c, uλ) < uλ and σ0(1, g0(µ, c), λ, γ) > 0 for λ < E1(1, g0(µ, c), γ). This is a contra-
diction. Thus, (1) has no positive solution for λ < E1(1, g0(µ, c), γ).

Proof of Remark 3. Here, we prove non-existence for λ < E1(1, g∞(c), γ) in the Cases A
and B. Recall that σ0 = σ0(1, g∞(c), γ) > 0 for λ < E1(1, g∞(c), γ). Assume uλ is a positive
solution of (1) for λ < E1(1, g∞(c), γ). Then, by Green’s Second Identity, we have∫

Ω

(
ϕ0∆uλ − uλ∆ϕ0

)
dx

=
∫

∂Ω

(
ϕ0

∂uλ

∂η
− uλ

∂ϕ0

∂η

)
ds

=
∫

∂Ω

(
− ϕ0

√
λγg(c, uλ)uλ + uλ

√
λγg∞(c)ϕ0

)
ds

=
∫

∂Ω
γϕ0uλ

√
λ
(

g∞(c)− g(c, uλ)
)

ds

≤ 0

(21)

since g(c, s) ≥ g∞(c); [0, z0]. On the other hand, we have∫
Ω

(
ϕ0∆uλ − uλ∆ϕ0

)
dx

=
∫

Ω

(
− ϕ0λ f (c, uλ) + (λ + σ0)uλϕ0

)
dx

≥
∫

Ω

(
− ϕ0λuλ + (λ + σ0)uλϕ0

)
dx since f (c, uλ) ≤ uλ

=
∫

Ω
ϕ0uλ

(
− λ + λ + σ0

)
dx

=
∫

Ω
σ0ϕ0uλdx

> 0 since σ0 > 0 for λ < E1(1, g∞(c), γ).

(22)



Axioms 2025, 14, 63 29 of 33

This is a contradiction. Thus, (1) has no positive solution for λ < E1(1, g∞(c), γ). This
completes the proof.
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Appendix A
Appendix A.1. Proof of Lemma 3

Let u(x) be a positive solution of (7) such that u(0) = u(1) = q and ∥u∥∞ = ρ.
Multiplying both sides of (7) by u′, we obtain

−u′′u′ = λ f (c, u)u′.

Integrating both sides gives us

− (u′)2

2
= λF(c, u) + C.

Now using the fact that u′( 1
2 ) = ρ, we obtain

u′(x) =
√

2λ[F(c, ρ)− F(c, u)] ;
[
0,

1
2

)
(A1)

and
u′(x) = −

√
2λ[F(c, ρ)− F(c, u)] ;

(1
2

, 1
]
. (A2)

Since the solution is symmetric about x = 1
2 , it is enough to consider the case u′(x) =√

2λ[F(c, ρ)− F(c, u)] when 0 < x < 1
2 . Then, integrating both sides, we obtain

∫ x

0

u′(s)√
F(c, ρ)− F(u(s))

ds =
√

2λx ;
[
0,

1
2

)
.

Using the substitution z = u(s), we have

∫ u(x)

q

ds√
F(c, ρ)− F(c, s)

=
√

2λx ;
[
0,

1
2

)
. (A3)

By letting x → 1
2 , we obtain

∫ ρ

q

ds√
F(c, ρ)− F(c, s)

=

√
2λ

2
;
[
0,

1
2

)
.
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This implies that

λ = 2
( ∫ ρ

q(ρ)

ds√
F(c, ρ)− F(c, s)

)2
. (A4)

Now, from (A1) and the boundary condition −u′(0) + γ
√

λg(c, u(0))u(0) = 0 with
u(0) = q, we obtain

−
√

2λ[F(c, ρ)− F(c, q)] + γ
√

λg(c, q)q = 0

which is equivalent to

2[F(c, ρ)− F(c, q)] = γ2(g(c, q))2q2.

Conversely, assume that λ, ρ satisfy the equations

λ = 2
( ∫ ρ

q(ρ)

ds√
F(c, ρ)− F(c, s)

)2
(A5)

and
2[F(c, ρ)− F(c, q)] = γ2(g(c, q))2q2. (A6)

Define u : [0, 1] −→ [q, ρ] by

∫ u(x)

q

dz√
F(c, ρ)− F(c, z)

=
√

2λx; x ∈
[
0,

1
2

)
(A7)

∫ u(x)

ρ

dz√
F(c, ρ)− F(c, z)

= −
√

2λ
(

x − 1
2

)
; x ∈

(1
2

, 1
]

(A8)

and u( 1
2 ) = ρ.

We will now show that u(x) is a positive solution of (7). The function

1√
2λ

∫ u

q

dz√
F(c, ρ)− F(c, z)

,

is a differentiable function of u which is strictly increasing from 0 to 1
2 as u increases from q

to ρ. Thus, for each x ∈ [0, 1
2 ), there is a unique u(x) such that

∫ u(x)

q

dt√
F(c, ρ)− F(c, t)

=
√

2λx. (A9)

Moreover, by the Implicit Function Theorem, u(x) is differentiable with respect to x.
Differentiating (A9) gives

u′(x) =
√

2[F(c, ρ)− F(c, u(x))]; x ∈
[
0,

1
2

)
. (A10)

Through a similar argument, u(x) is a differentiable, decreasing function of x for

x ∈
(

1
2 , 1
]

with

u′(x) = −
√

2[F(c, ρ)− F(c, u(x))]; x ∈
(1

2
, 1
]
. (A11)

These imply

[u′(x)]2

2
= F(c, ρ)− F(c, u(x)); x ∈ (0, 1).
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Differentiating again, we have

−u′′(x) = f (c, u(x)); x ∈ (0, 1).

Thus, u(x) satisfies Equation (7). Now, we show that u(x) satisfies the boundary
conditions in (7). Since q is a solution of (A6), we have

F(c, ρ)− F(c, q) =
γ2(g(c, q))2q2

2
. (A12)

Substituting x = 0 into (A10) gives

u′(0) =
√

2λ
√

F(c, ρ)− F(c, q). (A13)

Combining (A12) and (A13), we have

−u′(0) + γ
√

λg(c, q)q = 0.

A similar argument shows that

u′(1) + γ
√

λg(c, q)q = 0.

Hence, u(x) satisfies (7), and the proof is complete.
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