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Abstract: We elaborate on the brane configuration that gives rise to a QCD-like gauge
theory that confines at low energies and becomes scale invariant at the highest energies. In
the limit where the rank of the gauge group is large, a gravitational description emerges.
For the confined phase, we obtain a vector meson spectrum and demonstrate how a certain
choice of parameters can lead to quantitative agreement with empirical data.
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1. Introduction
Quantum Chromo-Dynamics (QCD) is the accepted gauge theory of the strong in-

teraction, and its degrees of freedom are the fermionic quarks (and anti-quarks) and the
bosonic gluons. The fact that the gluon gauge fields admit self-interaction creates a scale-
dependent coupling: at short distances, smaller than that of a proton, a quark-antiquark
pair experiences a Coulomb-like potential while at larger distances the pair binds in a field
configuration that is like that of a flux tube. In the regime where the coupling between
partons becomes large, calculations of the low-energy properties of QCD have traditionally
relied either on large numerical simulation of the theory, discretised on a space-time lattice
(“lattice QCD”), or on the use of effective theories based on some of the fundamental
symmetries of QCD. However, a new class of approaches that have generated great inter-
est is that based on the concept of holographic duality as expressed through the famous
AdS/CFT correspondence [1]. A powerful feature of such dualities is that even though the
field theory sector might be strongly coupled, its gravity dual can be treated in perturba-
tion theory. This opens the tantalising prospect of being able to treat systems interacting
through low-energy QCD analytically, at least to some extent. Theories that attempt to
realise this potential are globally labelled AdS/QCD. Even though no formal gravity dual
of QCD is known, several models use holographic techniques to arrive at “QCD-like” field
theories, at least to explain the infra-red (IR) dynamics. One important example being the
Klebanov–Strassler model [2]. Bottom-up approaches are phenomenologically based and
are not as such compelled by the rules of string theory. Top-down approaches start with
gauge theory arising from open strings ending on branes and then study the dual closed
string sector described by classical gravity. Such an approach, that in fact covers the regime
from low to high energies, is used in this work; the next section describes this top-down
model. Then, we construct a pseudo-QCD action from our gravity dual, and calculate
the vector meson mass spectrum. We compare our results with those obtained using the
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Sakai–Sugimoto model, and also with experimentally measured masses. We end with
a conclusion.

2. Brane Configuration
We start with coincident N Dirichlet three-branes (D3 branes) and M Dirichlet five-

branes (D5 branes) at the tip of a cone [see Figure 1] and add M anti-five branes separated
from each other and from the D3/D5 branes [see Figure 1]. To obtain this separation,
we must blow up one of the S2’s at the tip and give it a finite size. The separation gives
masses Λ0 to the D5/D̄5 strings and at scales Λ < Λ0, the gauge group is SU(N + M)×
SU(N)× U(1)M, where the additional U(1) groups arise from the massless strings ending
on the D̄5-branes spread above the equator of the S2. The SU(M + N) sector has 2N
effective flavors while the SU(N) sector has 2(N + M) effective flavors; thus, it is dual to
the SU(N − M)× SU(N) gauge theory under a Seiberg duality. Under a series of such
dualities, which is called cascading, at the far IR region, the gauge theory can be described
by an SU(M)× SU(K) group, where N = lM + K, l, 0 ≤ K < M are positive integers.
Now, the number of ‘actual’ D3 branes N is no longer the relevant quantity, rather N ± pM,
where p is an integer that describes the D3 brane charge. We take K = 0 in all our analysis,
so at the bottom of the cascade, we are left with N = 1 SUSY SU(M) strongly coupled
gauge theory which looks very much like strongly coupled SUSY QCD.

as dissolved fluxes. Additional fluxes on D7 give vector mesons
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Figure 1. Brane configuration and the dual gravity in the extremal limit for a UV regular theory.
The anti-branes should be thought of as spread above the equator of the resolved sphere although
the branes are all localised at the south pole of the sphere. The manifolds appearing on both sides of
the duality are in general non-Kähler manifolds although in the limit of vanishing resolution and
squashing they become Kähler Calabi–Yau spaces.

At high energies Λ >> Λ0, D5/D̄5 strings are excited and we have SU(N + M)×
SU(N + M) gauge theory. Essentially, M pairs of D5/D̄5 branes with fluxes are equivalent
to M number of D3 branes and hence they contribute an additional M units of D3 charge,
resulting in SU(N + M)× SU(N + M) conformal theory. In summary, for Λ ≪ Λ0, i.e., at
low energy, we have an SU(M) gauge group that confines, while at high energy Λ ≫ Λ0,
we have a conformal field theory with two copies of the SU(N + M) group. Pure glue
QCD, with a large number of colors, confines in the IR and becomes conformal at the UV;
thus, the brane setup gives rise to a QCD-like gauge theory. To add flavor, we can add D7
branes but the overall setup does not change—we still have UV conformal gauge theory
that confines in the IR. In fact, the walking RG flow in the UV due to the flavor seven-branes
match up precisely with the IR RG flow leading to confinement.

Now, of course, the presence of anti-branes will create tachyonic modes and the system
will be unstable. To stabilise the system against gravitational and RR forces, we need to add
world volume fluxes on the D5/D̄5 branes. Alternatively, we can introduce D7 branes and
absorb the anti-D5 branes as gauge fluxes on the D7 branes. Then, a stable configuration of
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D7 branes with gauge fluxes in the presence of coincident D3/D5 branes will be equivalent
to a stable configuration of coincident D3/D5 branes and anti-D5 along with D7 branes.
More details on the stabilisation procedure are discussed in [3].

Observe that D7 branes also introduce fundamental matter and with world volume
fluxes on Minkowski directions, they give rise to vector mesons as we shall see shortly.
In summary, D7 branes play two crucial roles: they source the anti-D5 charge and produce
vector mesons for the four-dimensional gauge theory. In principal, different embeddings
can be used for distinct purposes. In Figure 1, we have sketched a generic D7 embedding.
Introducing various fluxes will determine the precise embedding and, in turn, modify the
gauge theory.

3. Gravity Description
When the ’tHooft coupling for the gauge theory is large, which can be achieved, for

example, with large M, we can obtain a classical gravitational description for the gauge
theory arising from the above brane setup. The gravity action arises from the low energy
limit of type IIB critical superstring action with localised sources given as:

Stotal = SSUGRA + N f SDp

SSUGRA =
1

2κ2
10

∫
d10x

√
G

(
R +

∂Mτ∂Mτ̄

2|Imτ|2 − |F̃5|2
4 · 5!

− G3 · Ḡ3

12Imτ

)
+

1
8iκ2

10

∫ C4 ∧ G3 ∧ Ḡ3

Imτ

SDp = −
∫

dp+1σ Tp e
ϕ(p+1)

4
√
− f
(

1 + e−ϕ 1
4

F̃ab F̃ab

)
+ µp

∫ (
C ∧ eF̃

)
p+1

(1)

where N f is number of Dp branes, τ = C0 + ie−ϕ, F1 = dC0 and G = detgPQ,
P, Q = 0, . . . , 9 with gPQ is the metric in the Einstein frame. Also G3 = F3 − τH3, f = det fab

with fab = gPQ∂aXP∂bXQ. Note that F̃ab = Fab + Bab, Fab is the world volume flux,
Bab = BPQ∂aXP∂bXQ with BPQ being the NS-NS two form and F̃ab is raised or lowered with
the pullback metric fab. The background warped metric takes the following familiar form

ds2 = gPQ dxPdxQ ≡ gµν dxµdxν + gmn dxmdxn

= −e2A+2Bdt2 + e2Adx⃗2 + e−2A−2B g̃mndxmdxn (2)

where dx⃗2 = dx2 + dy2 + dz2, µ, ν = 0, . . . , 3, m, n = 4, . . . , 9 and the internal unwarped
metric is given by g̃mn ≡ g̃0

mn + g̃1
mn. Here, g̃0

mn describes the base of a deformed cone with
or without resolution or squashing, while g̃1

mn is the perturbation due to the presence of
fluxes and localised sources (The resolved deformed cones, with or without squashing, are
not Calabi-Yau manifolds but more general non-Kähler manifolds.). A resolved-deformed
cone refers to the base where cycles never go to zero size and squashing describes the
deviation of shapes from an ordinary n-sphere. The resolution, deformation and squashing
parameters are a dual description of a particular expectation value of the gauge-invariant
combinations of bifundamental matter fields at the far IR of the gauge theory. The right
figure in Figure 1 is a sketch of a warped resolved-deformed and sqaushed conifold which
captures the most general dual gravity corresponding to a confining gauge theory with
some expectation value of baryonic operators. When resolution and squashing are set to
zero, we also have non-zero expectation values, provided we consider a deformed cone
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just like Klebanov–Strassler [2]. When we are away from the resolved-deformed tip of the
cone and there is no squashing, g̃0

mn is the metric of R1 × T1,1.
The action (1) in the absence of any localised sources can describe the gauge theory

arising from the brane setup of Figure 1, provided G3 ̸= 0. When G3 = 0, one can obtain an
AdS5 × T1,1 geometry which describes a CFT [4]. The presence of localised sources allows
us to patch together a warped deformed conifold geometry with G3 ̸= 0 at small radial
distances to an asymptotically AdS5 × T1,1 geometry. The localised sources have to alter G3,
so we look for D5 or anti-D5 branes. We can also dissolve these branes as gauge fluxes on
D7 branes. We take the latter approach since it is easier to find stable D7 brane embeddings.

The D7 branes fill up Minkowski space (t, x, y, z), stretching along the radial r direction
and filling up S3 inside the T1,1 = S3 × S2. In the absence of resolution and squashing,
ref. [5] proposed D7 branes embeddings that source the world volume fluxes F̃2, inducing
the anti-D5 charge. There were two branches of the D7 brane and the world volume flux
on each branch modifies the background RR and NS-NS three-form flux, resulting in the
following fluxes

F3 =
Mα′

2
ω3 + 4κ2

10M̃N f α′µ7

(
F(r)ω̃3

1 + H(r)ω̃3
2

)

H3 =
∗6
(
eBF3

)
Imτ

(3)

where ∗6 is the hodge star for the metric gmn. The definitions of the three forms ω3, ω̃3
1, ω̃3

2

and of the scalar functions F(r), H(r) can be found in [5] (see also earlier works [6–8]). The
effective number of D5 branes in the dual gauge theory can be obtained using Gauss’ law:

Mtotal
eff =

∫
F3 (4)

For a given value of M, we can choose M̃ such that∫
r→∞

F3 = 0 ⇒ Mtotal
eff (r → ∞) = 0 (5)

Since the radial coordinate r is dual to the energy scale of the gauge theory, we find
that the total D5 brane charge vanishes in the far UV and we are left only with D3 branes.
Thus, for r < r0, that is Λ < Λ0, one finds using (3) that Mtotal

eff (Λ < Λ0) ∼ M, i.e., we have
M units of D5 charge.

The introduction of r0 gives rise to a scale and we divide the geometry into three
regions—a classification that will be particularly useful in studying the meson spectrum—
Region I: r < r0; Region II: r ∼ r0; Region III: r ≫ r0

3.1. Confinement and Meson Spectrum

The form of the metric (2) describes a manifold X with or without a black hole.
When B = 0, we have a geometry without a black hole, while in the presence of a black
hole, we have a horizon with radial location r = rh such that eB(rh) = 0, e2A(rh) ̸= 0.
The temperature of the gauge theory dual to X is determined by the singularity structure of
X in the following way: analytically continue τ̃ = −it to obtain the Euclidean metric where
τ̃ ∈ [0, β]. Then, the temperature is given by T−1 = β. In the presence of a black hole, X is
singular and removing the singularity fixes the period β. Thus, for a black hole geometry,
the temperature is related to the horizon. On the other hand, in the absence of a black hole,
we pick any value of β since we consider warp factors e−4A = h to be regular on X. If we
denote the ‘vacuum’ geometry without a black hole by X1 with on-shell action S1 and black
hole geometry by X2 with on-shell action S2, then at a given temperature, the geometry
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with a smaller value of the on-shell action will be preferred. At T = Tc, △S ≡ S2 − S1 = 0
and we have a phase transition. At T < Tc, △S > 0 and X1 is preferred [5,9–11]. Since
there is no black hole, X1 corresponds to zero entropy and confinement. On the other
hand, for T > Tc, △S < 0 and black hole geometry is preferred. Since the black hole has
non-zero entropy, the gauge theory is in the deconfined phase and T = Tc corresponds to
the confinement/deconfinement transition temperature.

Thus, at small temperatures T < Tc, we can consider the ‘vacuum’ geometry without
a black hole since it describes the confined phase. We can obtain the meson spectrum by
introducing additional D7 branes embedded as probes in the geometry with metric (2) in
the limit B = 0. Note that these probe D7 branes differ from the D7 branes considered
in [5]. The additional probe branes with world volume fluxes in Minkowski directions give
rise to QCD-like vector mesons. The world volume fluxes on the background D7 branes
have no legs in the Minkowski directions and they represent dissolved anti-D5 branes
necessary for a UV complete theory.

Before going into the details of the probe brane embedding, observe that the energy
scale Λ0 corresponding to r0 provides us a notion of UV and IR energies. Since mesons
appear at low energies, we expect the spectrum to be sensitive to Region I with r < r0 and
the characteristic mass scale for the mesons to be set by rc < r0. This mass scale manifests
itself in the dual geometry via D7 embedding that stretches from r = ∞ to r = rc. Now,
if we consider the trivial embedding where the pull back metric is the spacetime metric
and the brane is a point in the transverse directions with the embedding function being
constant, then the brane will slide down to the region r < rc due to gravitational pull. If we
consider the brane to have some shape, i.e., the embedding function is not a constant, then
it will be possible for it to end at rc, just like the U-shaped embedding in [12]. However,
the spectrum analysis becomes quite involved for a non-trivial embedding, since the gauge
fluxes and embedding will be coupled.

One alternative to avoid such complications is to cut off the geometry at r = rc and
only consider the r ≥ rc region. In this scenario, the constant embedding D7 brane will
extend from r = ∞ to r = rc and rc will provide the characteristic scale of the mesons.
For instance, all the meson masses will be expressed in units of rc. In the following analysis,
we will introduce rc as a cutoff in the geometry, which essentially acts as an IR cutoff in
the gauge theory. The cutoff geometry will have the same form (1) as its action with the
boundary condition for metric and fluxes at r = rc consistent with the bulk solution without
the cutoff.

To draw a parallel with the celebrated Sakai–Sugimoto model [13,14], we T-dualise the
metric (2) along the ψ coordinate of the conifold geometry and analyse the DBI action of a
single D6 brane. We pick world volume parametrisation (σ0, . . . , σ6) = (t, x, y, z, r, ϕ2, θ2)

and the brane is a point inside S3 with the embedding: (θ1, ϕ1, ψ) = (0, 0, ψ(r)). The in-
duced metric and B-field on the D6 world volume are:

fabdXadXb =
ηµνdxµdxν√

h(r)
+

9L4

r2
√

h(r)
ψ′(r)2dr2

+
√

h(r)
[
dr2 + r2

(
dθ2

2 + (u + sin(θ2)
2)dϕ2

2

)]
B2 = 3gs M log(r/rc) sin(θ2)dθ2 ∧ dϕ2

+ 2L2ψ′(r) cos(θ2)dr ∧ dϕ2 (6)

e−ϕ(r) =
h(r)

1
4 r

6gs
, h(r) =

L4
(

1 + 3gs M2 log(r/rc)
2πN

)
4 r4
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where L4 = 27πNα′2 and u is a squashing parameter describing a squashed sphere at the
base of the cone. Since we will only consider u << 1, we do not show its dependence
on the RR fields; and (B2, ϕ) are kept independent of u. Also, note that the warp factor
h(r) above is only valid for Region I and we are considering a region away from the
resolved/deformed base. Thus, essentially, we consider the T-dual of the warped squashed
T1,1. Solving the embedding equation for ψ(r), one finds that ψ(r) = c (constant) is a
solution [3]. For the study of the meson spectrum, one needs to study fluctuations of
embedding for which the more convenient coordinates are (Y, Z):

Y = ρ cos(θ), Z = ρ sin(θ)

ρ =
√

Y2 + Z2, θ = arctan
(

Z
Y

)
r = rceρ, ψ =

2c
π

θ (7)

In this new coordinate system, the constant embedding is described by Y = 0. Also
note that the coordinate transformation makes the IR cutoff r = rc manifest since the
new coordinate ρ ≥ 0 spans the entire cutoff geometry. Finally, if rc is bigger than the
deformation parameter that appears in Klebanov–Strassler theory (The deformed conifold
is characterized by non-zero size of S3 at base of the conifold, which in turn determines
the scale of confinement. The size corresponds to expectation values of gauge invariant
combinations of bifundamental fields and gives a length scale. If rc is bigger than this
length scale, then the cutoff geometry can be identified with r > rc regions of deformed
cone.), we effectively consider mesons heavier than the confinement scale.

3.1.1. Vector Mesons Action

The vector mesons arise by considering the gauge flux (AM) along the Minkowski
(t, x, y, z)- and Z-directions.

AM =


Aµ(xµ, Z) when M = µ ∈ {t, x, y, z}
AZ(xµ, Z) when M = Z

0 when M ∈ {θ2, ϕ2}

FMN = ∂M AN − ∂N AM (8)

Looking at the terms quadratic in FMN in the DBI action, we have:

SD6 = −T
∫

d4x dZ dθ2dϕ2 e−ϕ(r(0,Z))
√
−det(g6 + B6)

= −(2πα′)2T
∫

d4xdZ
(

v1(Z) ηµνFµZFνZ

+ v2(Z)ηµνηρσFµρFνσ + . . .
)

(9)

where B6 ≡ B6 + 2πα′; and v1(Z) and v2(Z) are even functions of Z, which also have
non-trivial dependence on u, gs and M. The algebraic expressions of these functions can be
found in [3].
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We now expand Aµ and AZ in eigenmodes using two sets of eigenfunctions
{αn(Z), n ≥ 1} and {βn(Z), n ≥ 0}

Aµ(xµ, Z) =
∞

∑
n=1

B(n)
µ (xµ)αn(Z)

AZ(xµ, Z) =
∞

∑
n=0

φ(n)(xµ)βn(Z) (10)

Focusing on terms proportional to α2
n, we obtain terms reminiscent of the vector

mesons terms of QCD.

Sα2
n
= −(2πα′)2T

∫
d4x dZ ∑

m,n

[
v2(Z) F(n)

µν Fµν(m)αnαm

+ v1(Z)B(m)
µ Bµ(n)α̇mα̇n

]
(11)

We will now impose the following conditions on αn,

− ∂Z(v1(Z) ∂Zαn) = 2 v2(Z)m2
nαn (12)

(2πα′)2T
∫

dZ v2(Z) αmαn =
1
4

δmn (13)

where m2
n ≡ λnM2 is the effective squared-mass of each vector meson and λn is the

eigenvalue of the corresponding mode. As expected, the mass scale M2 is given by r2
c

4πNα′2
.

From the last two equations, we can derive the following identity:

(2πα′)2T
∫

dZ v1(Z)α̇mα̇n =
1
2

m2
nδmn (14)

Using the above relation, the action (11) takes the form resembling QCD.

SQCD = −
∞

∑
n=1

∫
d4x
(

1
4

F(n)
µν Fµν(n) +

1
2

m2
nB(n)

µ Bµ(n)
)

(15)

and thus mn can indeed be identified with the vector meson mass.

3.1.2. Vector Mesons Spectrum

We now solve the eigenvalue Equation (12) by using simple perturbation techniques

with δ ≡ gs M2

N as the controlling parameter. We introduce some notation to write the
problem in terms of a differential operator Hv acting on its eigenfunctions αn [3].

(12) → Hv|αn⟩ = λn|αn⟩

Hv ≡ − v1(Z)
2M2v2(Z)

(
∂2

Z +
v′1(Z)
v1(Z)

∂Z

)
f (Z) ≡ 4 (2πα′)2T v2(Z)

⟨αm|αn⟩ ≡
∫

R\{0}

dZ f (Z)αmαn = δmn (16)

We can now solve Equation (16) up to the first order in δ obtaining the eigenfunctions
and eigenvalues [3]. We impose that the eigenfunctions be normalisable so that the orthog-
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onality condition in (16) is satisfied. At zeroth order in δ, the eigenfunctions are given in
terms of Bessel’s functions of the first kind.

α
(0)
n (Z) = C e−|Z| J1

(√
λne−|Z|

)
(17)

C is determined by using the zeroth-order normalisation condition. The eigenvalues
are obtained by solving the following equations, which we expect for odd and even
functions. These conditions also guarantee perfect orthonormality of the eigenfunctions:

α
(0)
n (0, λn) = 0 (Odd functions) (18)

∂Zα
(0)
n (0, λn) = 0 (Even functions) (19)

For odd functions, we also add an extra sign(Z) to make them truly odd. Using the
same indexing as Sakai and Sugimoto, the eigenfunctions are summarised as follows:

α
(0)
2n+1(Z) = C e−|Z| J1

(√
λ2n+1e−|Z|

)
(20)

α
(0)
2n (Z) = C sgn(Z) e−|Z| J1

(√
λ2ne−|Z|

)
(21)

Now, the first-order correction to the eigenvalues of Equation (16) is given by the
well-known formula in perturbation theory and is expressed here as [3]:

λ
(1)
n = ⟨α(0)n |H(1)

v |α(0)n ⟩(0)

H(1)
v =

3 e2|Z|

2π

[
|Z|∂2

Z − 2 ZG(u) ∂Z

]
G(u) ≡ 7 − 4

1 + u
− 192u

24(1 + u)− π2 (22)

Thus, the first-order Hamiltonian and the zeroth-order eigenfunctions are sufficient to
determine the eigenvalue and hence the mass up to the first order in δ.

Note that the determination of mass requires us to solve (14) for which we need to
perform an integral over all Z. However, due to normalisability of the eigenfunctons,
the integrand contributes insignificantly for large Z. On the other hand, by taking rc small,
Z integration will be dominated by Region I. Thus, we conclude that choosing IR cutoff rc

arbitrarily small, the meson spectrum can be made independent of Region II and Region III
and thus insensitive to UV modes of the gauge theory. Now, of course, we cannot choose
rc arbitrarily small, since then we need to consider a deformed, resolved cone and our
analysis does not apply. However, the normalisability of eigenmodes suggests that even
for reasonably large rc, the mass computation will be dominated by Region I. This is not
surprising since meson physics is a low-energy affair and UV effects can leave the IR intact.

3.1.3. Mesons Identification

We would like to verify if this effective model of large N QCD shares even more
similarities with the experiments by comparing the ratios of m2

n of well-known vector
mesons. In order to do so, we must first identify which kind of mesons are present in this
effective theory by looking at their behaviour under charge conjugation (C) and parity
(P). The parity operator is a Lorentz transformation flipping the space-like coordinates
while charge conjugation corresponds to a flip of the Z coordinate [13]. Looking at the
expansion of the four-dimensional gauge potential (10), we conclude that B(n)

µ must be odd
(resp. even) under parity/charge conjugation when αn is even (resp. odd) in order for Aµ

to behave as a 4-vector and acquire an overall sign under charge conjugation.
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Knowing the eigenvalues of each vector mesons under P and C, we can identify them
using the Particle Data Group (PDG) database [15], where we use their mass measurements
MPDG for comparison. Also, we concentrate on fields that are vectors of the approximate
isospin SU(2) symmetry as was clarified in [16]. In Table 1, we summarise our knowledge
of each of the vector mesons B(n)

µ both at the zeroth and first order in δ = gs M2/N.

Table 1. Mass ratio predictions with 0 < δ < 0.4 and a maximal correction of 70%; δ = 0.4000 and
u = 0.0528 minimise χ2/2 to 1.4200. The results are compared with both the Sakai–Sugimoto [13] and
PDG values [15].

λn/λm Sa-Su R(0)
n/m R(1)

n/m RPDG
n/m

m2
a1(1260)/m2

ρ(770) λ2/λ1 2.32 2.54 2.34 2.52

m2
ρ(1450)/m2

ρ(770) λ3/λ1 4.22 5.27 4.19 3.57

m2
a1(1640)/m2

ρ(770) λ4/λ1 6.62 8.51 6.14 4.51

m2
ρ(1700)/m2

ρ(770) λ5/λ1 9.53 12.95 8.46 4.92

Although the results to the first order in δ presented in Table 1 are slightly better
than the ones of Sakai–Sugimoto [13] and others [17–19], so far the discussions have been
confined to the massive KK modes of the massless open string sector of the theory. However,
open strings also have massive modes, and in principle, these modes can also be identified
as mesons. As an example, in Table 1, the 1−− states ρ(1450) and ρ(1700) could also
appear from the massive stringy sector of the model. For the AdS space, an analysis
has been performed in [20], where it was shown that the vector meson spectra do get
contributions from the massive stringy modes. A similar analysis for our case is rather hard
to perform because RR states do not decouple in the simple way as in [20], rendering the
quantisation procedure highly non-trivial. This means definite predictions cannot be made
at this stage. Thus, for our case, we will continue to use the massless open string sector to
study the vector mesons. The other three states appearing in Table 1, namely, 1−−[ρ(770)],
1++[a1(1260)] and 1++[a1(1640)], are only from the massless open string sector. In addition
to that, the massless open string sector cannot be identified with scalar mesons of QCD,
since a certain Z2 symmetry is not shared by the theories, as pointed out in [20]. Thus,
our analysis is limited to the study of vector mesons. More details on the scalar meson
including its spectrum have appeared in [3].

4. Conclusions
In this note, we have summarised a proposal for a brane configuration and the dual ge-

ometry that can mimic several features of large N QCD. For the first time, using a top-down
model, where classical description is sufficient, we are able to reproduce some aspects
of the RG flow and vector meson spectrum that are consistent with QCD. Our study of
normalisable modes on probe branes suggests that vector mesons heavier than the decon-
finement scale but lighter than Λ0 (above which the theory is almost CFT) are independent
of UV (Λ > Λ0) physics. By choosing two parameters, we can predict four mass ratios and
the results show considerable improvement over previous similar approaches in reaching
agreement with experimental data. Although there are many similarities, the brane theory
cannot be identified with QCD. The UV is a different, but conformal, theory so is not in
the line of an asymptotically free theory. Additionally, the massive string modes start
contributing at this energy scale and change the masses of the vector mesons. Such changes
could, in principle, improve the analysis presented here but are harder to study because
of technical challenges. In [21–23], new progress has been made which further elaborates
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on the analysis presented here. In fact, refs [21–23] have been able to argue how the holo-
graphic model presented here and in [24] can resolve many subtle issues associated with
mesonic interactions in large N QCD. The interference from the massive modes appears
to not change the result in any significant way, although more work needs to be done to
confirm what happens when going to very heavy mesonic modes. Therefore to conclude,
the holographic techniques presented here should be best utilised as tools to gain analytic
understanding of the non-perturbative regimes of QCD.

Author Contributions: Conceptualization, M.M., K.D., C.G. and O.T.; Methodology, M.R. All authors
have read and agreed to the published version of the manuscript.

Funding: Natural Sciences and Engineering Research Council of Canada (NSERC), Grant Number
210381; and Department of Energy (DOE), Grant Number DE-SC0007884.

Data Availability Statement: The original contributions presented in this study are included in
the article.

Acknowledgments: It is a great pleasure to thank Shigeki Sugimoto, Peter Ouyang and Martin
Kruczenski for helpful discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Maldacena, J.M. The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252.

[CrossRef]
2. Klebanov, I.R.; Strassler, M.J. Supergravity and a Confining Gauge Theory: Duality Cascades and χSB-Resolution of Naked

Singularities. J. High Energy Phys. 2000, 2000, 052. [CrossRef]
3. Dasgupta, K.; Gale, C.; Mia, M.; Richard, M.; Trottier, O. Infrared Dynamics of Large N QCD, Massless Stringy Sector, and

Mesonic Spectra. J. High Energy Phys. 2015, 2015, 122. [CrossRef]
4. Klebanov, I.R.; Witten, E. Superconformal field theory on three-branes at a Calabi-Yau singularity. Nucl. Phys. B 1998, 536, 199–218.

[CrossRef]
5. Mia, M. Thermodynamics of large N gauge theory from top down holography. Phys. Rev. D 2014, 89, 043010. [CrossRef]
6. Mia, M.; Dasgupta, K.; Gale, C.; Jeon, S. Five Easy Pieces: The Dynamics of Quarks in Strongly Coupled Plasmas. Nucl. Phys. B

2010, 839, 187–293. [CrossRef]
7. Mia, M.; Dasgupta, K.; Gale, C.; Jeon, S. Toward Large N Thermal QCD from Dual Gravity: The Heavy Quarkonium Potential.

Phys. Rev. D 2010, 82, 026004. [CrossRef]
8. Mia, M.; Chen, F.; Dasgupta, K.; Franche, P.; Vaidya, S. Non-Extremality, Chemical Potential and the Infrared limit of Large N

Thermal QCD. Phys. Rev. D 2012, 86, 086002. [CrossRef]
9. Hawking, S.W.; Page, D.N. Thermodynamics Of Black Holes In Anti-De Sitter Space. Commun. Math. Phys. 1983, 87, 577.

[CrossRef]
10. Witten, E. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 1998, 2,

505–532. [CrossRef]
11. Mia, M.; Chen, F. Non extremal geometries and holographic phase transitions. J. High Energy Phys. 2013, 2013, 83. [CrossRef]
12. Kuperstein, S. Meson spectroscopy from holomorphic probes on the warped deformed conifold. J. High Energy Phys. 2005, 2005,

014. [CrossRef]
13. Sakai, T.; Sugimoto, S. Low energy hadron physics in holographic QCD. Prog. Theor. Phys. 2005, 113, 843–882. [CrossRef]
14. Sakai, T.; Sugimoto, S. More on a holographic dual of QCD. Prog. Theor. Phys. 2005, 114, 1083—1118. [CrossRef]
15. Berenger, J. Particle Data Group Collaboration. Review of particle physics. Particle Data Group. Phys. Rev. D 2012, 86, 010001.
16. Son, D.T.; Stephanov, M.A. QCD and dimensional deconstruction. Phys. Rev. D 2004, 69, 065020. [CrossRef]
17. Kruczenski, M.; Mateos, D.; Myers, R.C.; Winters, D.J. Meson spectroscopy in AdS / CFT with flavor. J. High Energy Phys. 2003,

2003, 049. [CrossRef]
18. Ihl, M.; Torres, M.A.C.; Boschi-Filho, H.; Bayona, C.A.B. Scalar and vector mesons of flavor chiral symmetry breaking in the

Klebanov-Strassler background. J. High Energy Phys. 2011, 2011, 026. [CrossRef]
19. Cotrone, A.L.; Dymarsky, A.; Kuperstein, S. On Vector Meson Masses in a Holographic SQCD. J. High Energy Phys. 2011, 2011,

005. [CrossRef]

http://doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.1088/1126-6708/2000/08/052
http://dx.doi.org/10.1007/J. High Energy Phys.07(2015)122
http://dx.doi.org/10.1016/S0550-3213(98)00654-3
http://dx.doi.org/10.1103/PhysRevD.89.043010
http://dx.doi.org/10.1016/j.nuclphysb.2010.06.014
http://dx.doi.org/10.1103/PhysRevD.82.026004
http://dx.doi.org/10.1103/PhysRevD.86.086002
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.4310/ATMP.1998.v2.n3.a3
http://dx.doi.org/10.1007/J. High Energy Phys.01(2013)083
http://dx.doi.org/10.1088/1126-6708/2005/03/014
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1103/PhysRevD.69.065020
http://dx.doi.org/10.1088/1126-6708/2003/07/049
http://dx.doi.org/10.1007/J. High Energy Phys.09(2011)026
http://dx.doi.org/10.1007/J. High Energy Phys.03(2011)005


Axioms 2025, 14, 66 11 of 11

20. Imoto, T.; Sakai, T.; Sugimoto, S. Mesons as Open Strings in a Holographic Dual of QCD. Prog. Theor. Phys. 2010, 124, 263–284.
[CrossRef]

21. Yadav, V.; Misra, A. M-Theory Exotic Scalar Glueball Decays to Mesons at Finite Coupling. J. High Energy Phys. 2018, 2018, 133.
[CrossRef]

22. Sil, K.; Yadav, V.; Misra, A. Top–down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling. Eur.
Phys. J. C 2017, 77, 381. [CrossRef]

23. Misra, A.; Yadav, G. QCD-compatible supermassive inert top-down holographic mesinos at intermediate coupling. Phys. Rev. D
2023, 108, 106013. [CrossRef]

24. Dhuria, M.; Misra, A. Towards MQGP. J. High Energy Phys. 2013, 2013, 1. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1143/PTP.124.263
http://dx.doi.org/10.1007/J. High Energy Phys.09(2018)133
http://dx.doi.org/10.1140/epjc/s10052-017-4921-7
http://dx.doi.org/10.1103/PhysRevD.108.106013
http://dx.doi.org/10.1007/J. High Energy Phys.11(2013)001

	Introduction
	Brane Configuration
	Gravity Description
	Confinement and Meson Spectrum
	Vector Mesons Action
	Vector Mesons Spectrum
	Mesons Identification


	Conclusions
	References

