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Abstract: We examine the qualitative properties of ionic flows through membrane channels
via Poisson–Nernst–Planck (PNP) type models with steric effects under relaxed electroneu-
trality boundary conditions, and more realistic setups in the study of ion channel problems.
Of particular interest are the vital roles played by some critical potentials identified for
both individual fluxes and current–voltage relations. These critical potentials split the
whole electric potential interval into different subintervals, over which distinct dynamics
of ionic flows are observed. The discussion provides an efficient way to control the bound-
ary conditions to observe distinct dynamics of ionic flows through membrane channels.
This is important for future analytical studies and critical for future numerical and even
experimental studies of ion channel problems.
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1. Introduction
Ion channels, large proteins embedding in cell membranes, play a significant role

in the exchange of ion species between cells and surroundings [1–5]. For example, a
type of calcium channel located in the fungi’s mitochondria controls the process of ATP
synthesis, the transportation of calcium and apoptosis [6]. For human beings, ion channels
are also crucial to cell functioning. For instance, sodium and potassium channels are
widely distributed in neurons and cardiac tissues. They are responsible for the sharp
switch between the action and resting potentials when the stimuli propagate through the
corresponding cells. In muscle cells, a group of ion channels cooperate to trigger muscle
contractions [7]. On the other hand, malfunctioning channels result in many intractable
diseases such as cholera and Alzheimer’s [8]. Therefore, exploring the working mechanisms
of ion channels is not only promising in theoretical studies but has many practical meanings
in disease treatment. The two main subjects related to ion channels, the structure of ion
channels and the properties of ion flow, are the primary concerns in ion channel research.
Once the structure is provided, the main research direction for open ion channels is to
analyze their electric diffusion characteristics.

Ion flow follows the basic physical laws of electric diffusion. The macroscopic charac-
teristics of ions passing through membrane channels depend on external driving forces,
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mainly boundary potential and concentration [9,10], as well as specific structural fea-
tures [11,12]. These structural features include factors such as pore shape and size. Perme-
ability and selectivity are two important biological properties of ion channels, which can be
characterized by experimentally measuring the current–voltage (I–V) relationship under
different ionic conditions.

The PNP system, as a basic macroscopic model for electrodiffusion of charges,
particularly for ionic flows through ion channels ([13–17], etc.), can be derived, under
various reasonable conditions, from the more fundamental models of the Langevin–
Poisson system ([18–21]) and the Maxwell–Boltzmann equations ([9]and the references
therein), and from variational analysis ([11,22–24]). The classical PNP system is the
simplest PNP system, which has been extensively studied both numerically ([13,25–39])
and analytically ([3,10,40–70]). Particularly, in [70], the authors employed the method of
matched asymptotic expansions to study the I–V relations and obtained the I–V relation up
to the second order in the small singular parameter ε (see (6) for definition), which is a cubic
function of the potential V that has three distinct real roots. The observation is consistent
with the cubic-like feature of the average I–V relation of a population of channels in the
FitzHugh–Nagumo simplification of the Hodgkin–Huxley model. In [42,48,65], the authors
focused on the small permanent charge effects on ionic flows. Viewing the small permanent
charge as a regular parameter, in the discussion of regular perturbation, the authors found
that to optimize the effects of (small) permanent charge, the channel neck within which
the permanent charge distributes should be “short” and “narrow”. This observation is
consistent with the typical structure of an ion channel.

However, a major weak point of the classical PNP is that it treats ions as point charges
and ignores ion-to-ion interaction, which is reasonable only in near-infinite dilute situations.
A lot of critical properties of ion channels rely heavily on ion sizes. The effects of finite ion
size on ionic flows play key roles in the study of the selectivity of ion channels. The PNP
system with finite ion size effects has been investigated computationally ([11,22–24,71–76],
etc.) and analytically ([77–86]) for ion channels.

We focus on the quasi-one-dimensional PNP system first proposed by [36],

1
A(X)

d
dX

(
εr(X)ϵ0 A(X)

dΦ
dX

)
= −e

(
n

∑
j=1

zjCj(X) + Q(X)

)
,

dJi
dX

= 0, −Ji =
1

kBT
Di(X)A(X)Ci(X)

dµi
dX

, i = 1, 2, . . . , n,

(1)

where X ∈ [0, 1] is the normalized coordinate along the channel axis, and A(X) denotes
the cross-sectional area at point X. e is the elementary charge, kB is the Boltzmann constant,
and T is the absolute temperature. The electric potential is represented by Φ, while Q(X)

denotes the permanent charge of the channel. εr(X) is the relative dielectric coefficient, and
ε0 is the vacuum permittivity. For the i-th ion species, Ci represents the concentration, zi

is the valence, µi is the electrochemical potential, Ji is the flux density, and Di(X) is the
diffusion coefficient.

The boundary conditions imposed on the system (1) are as follows ([44]):

Φ(0) = V, ck(0) = Lk > 0; Φ(1) = 0, ck(1) = Rk > 0, k = 1, 2. (2)

For a solution of the PNP system (1)–(2), the total current, I , through a cross-section is
defined as

I =
n

∑
s=1

zsJs, (3)
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which is the well-known current–voltage (I–V) relation.
We further point out that the electrochemical potential µi(X) in (1) consists of two

components: the ideal component µid
i (X) and the excess component µex

i (X):

µi(X) = µid
i (X) + µex

i (X),

where the ideal component is defined by

µid
i (X) = zieΦ(X) + kBT ln

Ci(X)

C0
, (4)

with C0 being a characteristic number density. The PNP system, considering only the ideal
component, is known as the classical PNP, and its major weak point in studying ionic flow
properties is discussed above. To better understand the mechanism of ionic flows through
membrane channels, one should consider the excess component. A strategic first step is to
include hard-sphere potentials of the excess electrochemical potential in the PNP system. In
this work, we consider the following Bikerman’s local hard-sphere model ([87]) accounting
for finite ion size effects on ionic flows

µBik
i (X) = −kBT ln

(
1 −

n

∑
j=1

νjCj(X)

)
, (5)

where νj is the volume of the j-th ion species.
The rest of this paper is organized as follows. In Section 2, we set up our problem,

briefly recall some results from [88], which is the starting point of our study, and describe
the mathematical method to be employed. Section 3 consists of four subsections. Section 3.1
provides the finite ion size effects on the individual fluxes; Section 3.2 deals with the finite
ion size effects on the I–V relations; Section 3.3 provides orders of the critical potentials
identified in Definition 1 while the boundary layer effects on ionic flows are characterized
in Section 3.4. Concluding remarks are provided in Section 4.

2. Problem Setup, Existing Results and Mathematical Methods
The current work is an extension of the one conducted in [88]. To get started, we set

up our problem and briefly introduced some existing results from [88].

2.1. Assumptions and a Rescaling of the PNP System

In our following analysis, we assume

(i) Two ion species with z1 > 0 and z2 < 0 included in the PNP system;
(ii) The permanent charge is zero over the whole interval: Q(X) = 0;
(iii) The electrochemical potential µi consists of the ideal component µid

i and the local
hard-sphere potential µBik

i in (5);
(iv) The relative dielectric coefficient and the diffusion coefficients are constants, that is,

εr(X) = εr and Di(X) = Di.

With the following further dimensionless rescaling,

ϵ2 =
εrε0kBT
e2l2c0

, x =
X
l

, h(x) =
A(x)

l2 , Di = lC0Di;

ϕ(x) =
e

kBT
Φ(X), ci(x) =

Ci(X)

C0
, Ji =

Ji
Di

;

V =
e

kBT
V, Li =

Li
C0

, Ri =
Ri
C0

,

(6)
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the boundary value problem (1)–(2) becomes

ε2

h(x)
d

dx

(
h(x)

d
dx

ϕ

)
= −z1c1 − z2c2,

dc1

dx
= −(z1 − z1ν1c1 − z2ν2c2)c1

dϕ

dx
− 1

h(x)
(

J1 − (ν1 J1 + ν2 J2)c1
)
,

dc2

dx
= −(z2 − z1ν1c1 − z2ν2c2)c2

dϕ

dx
− 1

h(x)
(

J2 − (ν1 J1 + ν2 J2)c2
)
,

dJ1

dx
=

dJ2

dx
= 0,

(7)

with the boundary conditions

ϕ(0) = V , ci(0) = Li > 0; ϕ(1) = 0, ci(1) = Ri > 0. (8)

2.2. Some Existing Results

We now introduce some existing results obtained in [88], which will be our starting
point in the current work. The authors in [88] treat the system as a regular perturbation
of the case with ν1 = ν2 = 0. With ν = ν1 and ν2 = λν for the positive parameter λ, the
approximations of the I–V relation are obtained and stated as follows

I(V; λ, ν) = z1D1 J1 + z2D2 J2 = I0(V) + I1(V; λ)ν + o(ν), (9)

where

I0(V) = z1D1 J10 + z2D2 J20,

I1(V; λ) = z1D1 J11 + z2D2 J21,

with Jk = Jk0 + νJk1 + o(ν). Here,

J10 =
cL

10 − cR
10

H(1)(ln cL
10 − ln cR

10)
(z1(ϕ

L
0 − ϕR

0 ) + ln cL
10 − ln cR

10),

J20 = − z1

z2

cL
10 − cR

10

H(1)(ln cL
10 − ln cR

10)
(z2(ϕ

L
0 − ϕR

0 ) + ln cL
10 − ln cR

10),

J11 = α10(L1, L2, R1, R2, λ) + α11(L1, L2, R1, R2, λ)
e

kBT
V,

J21 = β10(L1, L2, R1, R2, λ) + β11(L1, L2, R1, R2, λ)
e

kBT
V,

(10)

where

H(1) =
∫ 1

0

1
h(x)

dx, α10 =
ln(L1R2)− ln(L2R1)

z1 − z2
F1 +F2, α11 = H(1)F1,

β10 =− ln(L1R2)− ln(L2R1)

z1 − z2
F1 −

z1

z2
F2, β11 = −α11,

with F1 and F2 given by

F1 =
1

ln cL
10 − ln cR

10

(
F2 +

z1(cL
10 − cR

10)(R1 − L1 + λ(R2 − L2))

ln cL
10 − ln cR

10

)
,

F2 = cL
10(L1 + λL2)− cR

10(R1 + λR2) +
z1λ − z2

2z2
(cL

10 − cR
10)(c

L
10 + cR

10),
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where

ϕL
0 =

e
kBT

V − 1
z1 − z2

ln
−z2L2

z1L1
, ϕR

0 = − 1
z1 − z2

ln
−z2R2

z1R1
,

z1cL
10 = −z2cL

20 = (z1L1)
−z2

z1−z2 (−z2L2)
z1

z1−z2 , z1cR
10 = −z2cR

20 = (z1R1)
−z2

z1−z2 (−z2R2)
z1

z1−z2 .

Remark 1. In our analysis, we take h(x) = 1 over the whole interval [0, 1] since it does not affect
the qualitative properties of ionic flows (see [89] for a reasoning).

2.3. Mathematical Methods

Our main focus is on the study of the dynamics of ionic flows under relaxed elec-
troneutrality boundary concentration conditions. More specifically, we suppose

−z2L2 = σ(z1L1) and − z2R2 = ρ(z1R1), (11)

where (σ, ρ) → (1,1) are some constant parameters. Note that (σ, ρ) = (1,1) implies
electroneutrality conditions (see [49] for detailed explanation). The relaxation of the
neutral conditions immediately produces boundary layers for the PNP system, which
has important effects on the qualitative properties of ionic flows through membrane
channels ([63,69,77,86,89]). To characterize these effects from boundary layers, we em-
ploy regular perturbation analysis, more precisely, we treat (σ, ρ) as a group of regular
perturbation parameters, and expand both the individual fluxes and the I–V relations along
(σ, ρ) = (1,1) up to the first order, and ignore higher order terms. Our main interest is in
the first-order terms containing boundary layer effects.

To be specific, we expand Jk0(V; σ, ρ) and Jk1(V; σ, ρ) at (σ, ρ) = (1,1), from which
the expansions for I0(V; σ, ρ) and I1(V; σ, ρ) follows from Equation (9). To get started, we
introduce

f0(L1, R1) =
L1 − R1

ln L1 − ln R1
, f1(L1, R1) = f0(L1, R1)−

L1 + R1

2
,

a1 =z1λ − z2, a2 = (z1 − z2)λ, a3 =
z1

z2(z1 − z2)
, a4 =

2z1λ

z2
.

Then,

J10(V; σ, ρ) =J10(V; 1, 1) +
∂J10(V; 1, 1)

∂σ
(σ − 1) +

∂J10(V; 1, 1)
∂ρ

(ρ − 1),

J20(V; σ, ρ) =J20(V; 1, 1) +
∂J20(V; 1, 1)

∂σ
(σ − 1) +

∂J20(V; 1, 1)
∂ρ

(ρ − 1),

J11(V; σ, ρ) =α10(1, 1) +
∂α10(1, 1)

∂σ
(σ − 1) +

∂α10(1, 1)
∂ρ

(ρ − 1)

+
(

α11(1, 1) +
∂α11(1, 1)

∂σ
(σ − 1) +

∂α11(1, 1)
∂ρ

(ρ − 1)
) e

kBT
V,

J21(V; σ, ρ) =β10(1, 1) +
∂β10(1, 1)

∂σ
(σ − 1) +

∂β10(1, 1)
∂ρ

(ρ − 1)

+
(

β11(1, 1) +
∂β11(1, 1)

∂σ
(σ − 1) +

∂β11(1, 1)
∂ρ

(ρ − 1)
) e

kBT
V,

(12)

where

J10(V; 1, 1) =
f0(L1, R1)

H(1)

(
z1e
kBT

V + ln L1 − ln R1

)
,

∂J10(V; 1, 1)
∂σ

=
z1(L1 − f0(L1, R1))

(z1 − z2)H(1)(ln L1 − ln R1)

(
z1e
kBT

V + ln L1 − ln R1

)
,
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∂J10(V; 1, 1)
∂ρ

=− z1(R1 − f0(L1, R1))

(z1 − z2)H(1)(ln L1 − ln R1)

(
z1e
kBT

V + ln L1 − ln R1

)
,

J20(V; 1, 1) =− z1 f0(L1, R1)

z2H(1)

(
z2e
kBT

V + ln L1 − ln R1

)
,

∂J20(V; 1, 1)
∂σ

=
−z1

z2H(1)

[
f0(L1, R1) +

z1(L1 − f0(L1, R1))
( z2e

kBT V + ln L1 − ln R1
)

(z1 − z2)(ln L1 − ln R1)

]
,

∂J20(V; 1, 1)
∂ρ

=
z1

z2H(1)

[
f0(L1, R1)−

z1( f0(L1, R1)− R1)
( z2e

kBT V + ln L1 − ln R1
)

(z1 − z2)(ln L1 − ln R1)

]
,

α10(1, 1) =
(z2 − z1λ)(L2

1 − R2
1)

2z2
, α11(1, 1) =

a1z1

z2
f0(L1, R1) f1(L1, R1),

β10(1, 1) =−
z1(z2 − z1λ)(L2

1 − R2
1)

2z2
2

, β11(1, 1) = −α11(1, 1),

∂α10

∂σ
(1, 1) =

a1 f0(L1, R1)(L1 + R1)

2z2(z1 − z2)
− a4

2
L2

1 − a2a3 f 2
0 (L1, R1),

∂α10

∂ρ
(1, 1) =

a1 f0(L1, R1)(L1 + R1)

2z2(z1 − z2)
+

a4

2
R2

1 + a2a3 f 2
0 (L1, R1),

∂β10

∂σ
(1, 1) =− a1 f0(L1, R1)(L1 + R1)

2z2(z1 − z2)
+

z1a4

2z2
L2

1 + a2a3 f 2
0 (L1, R1),

∂β10

∂ρ
(1, 1) =− a1 f0(L1, R1)(L1 + R1)

2z2(z1 − z2)
− z1a4

2z2
R2

1 − a2a3 f 2
0 (L1, R1),

∂β11

∂σ
(1, 1) =− ∂α11

∂σ
(1, 1),

∂β11

∂ρ
(1, 1) =

∂α11

∂ρ
(1, 1),

∂α11

∂σ
(1, 1) =

a3 f0(L1, R1)

ln L1 − ln R1

(
(a1 + a2)L1 −

a1

2
(L1 + R1)

)
−

a4L2
1

2(ln L1 − ln R1)
,

∂α11

∂ρ
(1, 1) =− a3 f0(L1, R1)

ln L1 − ln R1

(
(a1 + a2)R1 −

a1

2
(L1 + R1)

)
+

a4R2
1

2(ln L1 − ln R1)
.

To end this section, we point out that in our analysis detailed in Section 3, we further
assume that L1 < R1.

3. Results
To get started, we define six critical potentials that play significant roles in examining

the impacts of boundary layers on ionic flows.

Definition 1. We introduce six critical potentials V1c, V1c, V2c, V2c, Vc and Vc by

J11(V1c; λ) = 0,
∂J11

∂λ
(V1c; λ) = 0, J21(V2c; λ) = 0,

∂J21

∂λ
(V2c; λ) = 0, I1(Vc; λ) = 0,

∂I1

∂λ
(Vc; λ) = 0.

Particularly,

V1c = − kBT
e

α10(L1, R1; σ, ρ)

α11(L1, R1; σ, ρ)
, V1c = − kBT

e
∂λα10(L1, R1; σ, ρ)

∂λα11(L1, R1; σ, ρ)
,

V2c =
kBT

e
β10(L1, R1; σ, ρ)

α11(L1, R1; σ, ρ)
, V2c =

kBT
e

∂λβ10(L1, R1; σ, ρ)

∂λα11(L1, R1; σ, ρ)

Vc = − kBT
e

z1D1α10(L1, R1; σ, ρ) + z2D2β10(L1, R1; σ, ρ)

z1D1α11(L1, R1; σ, ρ) + z2D2β11(L1, R1; σ, ρ)
,

Vc = − kBT
e

z1D1∂λα10(L1, R1; σ, ρ) + z2D2∂λβ10(L1, R1; σ, ρ)

z1D1∂λα11(L1, R1; σ, ρ) + z2D2∂λβ11(L1, R1; σ, ρ)
.
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3.1. Finite Ion Size Effects on the Individual Fluxes

We focus on the analysis of the effects on the individual fluxes from finite ion sizes,
which consists of two directions: the sign of Jk1 and relative ion size effects.

3.1.1. Signs of Jk1

As a linear function in the potential V, the sign of ∂V Jk1, where k = 1, 2, plays a
crucial role in characterizing the impact of finite ion size on individual fluxes. From the
Equation (10), one has

∂V J11(V; σ, ρ) =− ∂V J21(V; σ, ρ)

=
e

kBT

(
α11(1, 1) +

∂α11(1, 1)
∂σ

(σ − 1) +
∂α11(1, 1)

∂ρ
(ρ − 1)

)
.

With x = L1/R1, from (12), we have the following:

∂J11

∂V
(x; σ, ρ) =

e
kBT

R2
1

2 ln2 x
F(x; σ, ρ).

Here, F(x; σ, ρ) = A1(x) +A2(x; σ, ρ), where

A1(x) =
a1

z2
(x − 1)(2(x − 1)− (x + 1) ln x),

A2(x; σ, ρ) =
(

a3(x − 1)(−a1(x + 1) + 2x(a1 + a2))− a4x2 ln x
)
(σ − 1)

+ (a3(x − 1)(a1(x + 1)− 2(a1 + a2)) + a4 ln x)(ρ − 1).

(13)

We point out that A1(x) corresponds to α11(1, 1) and A2(x; σ, ρ) corresponds
∂α11(1,1)

∂σ (σ − 1) + ∂α11(1,1)
∂ρ (ρ − 1).

Note that 0 < x < 1. We have the following results:

Lemma 1. For A2(x), we have

(i) For ρ > max{1, σ}:

(i1) If (λ − 1)(σ + ρ − 2) > 0, then A2(x) > 0 for 0 < x < 1.
(i2) If (λ − 1)(σ + ρ − 2) < 0, there is a unique point x1∗ ∈ (0, 1) so that A2(x) > 0 for

x ∈ (0, x1∗) and A2(x) < 0 for x ∈ (x1∗, 1).

(ii) For ρ < min{1, σ}:

(ii1) If (λ − 1)(σ + ρ − 2) < 0, then A2(x) is negative for all x ∈ (0, 1).
(ii2) If (λ − 1)(σ + ρ − 2) > 0, there is a unique x2∗ ∈ (0, 1) so that A2(x) < 0 for

x ∈ (0, x2∗) and A2(x) > 0 for x ∈ (x2∗, 1).

(iii) For 1 < ρ < σ and λ < 1, there exists a unique point x3∗ ∈ (0, 1) such that A2(x) > 0 for
x ∈ (0, x3∗) and A2(x) < 0 for x ∈ (x3∗, 1).

(iv) For σ < ρ < 1 and λ < 1, there exists a unique x4∗ ∈ (0, 1) such that A2(x) < 0 for
x ∈ (0, x4∗) and A2(x) > 0 for x ∈ (x4∗, 1).
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Proof. We will just focus on the proof of the first statement. Others can be discussed in a
similar way. For convenience, we further assume that σ > 1, then, ρ > σ. The case with
σ < 1, which implies that ρ > 1 > σ can be discussed similarly. Direct calculation gives

A′
2(x; σ, ρ) = (2a3(x(2a2 + a1)− (a1 + a2))− a4(2x ln x + x))(σ − 1)

+ (2a3x(xa1 − (a1 + a2)) + a4)(ρ − 1)
1
x

,

A′′
2 (x; σ, ρ) = (2a3(2a2 + a1)− a4(3 + 2 ln x))(σ − 1) +

1
x2

(
2a3a1x2 − a4

)
(ρ − 1),

A′′′
2 (x; σ, ρ) = 2a4

(
ρ − 1 − x2(σ − 1)

) 1
x3 ,

A(4)
2 (x; σ, ρ) = −2a4

x2

(
5x2(σ − 1) + 3(ρ − 1)

)
.

(14)

Note that A′
2(1) = A2(1) = 0, A′′

2 (1) =
2z1(λ−1)

z1−z2
(σ + ρ − 2), A′′′

2 (1) = 2a4(ρ − σ) and

A(4)(x) > 0 for all 0 < x < 1, which indicates that A′′′(x) is increasing in x for 0 < x < 1.
Notice that a4 = 2z1λ

z2
< 0. One has A′′′

2 (1) = 2a4(ρ− σ) < 0. It follows that A′′′(x) < 0
for 0 < x < 1. Hence, one has A′′

2 (x) decreasing in x for 0 < x < 1.

(i1) If (λ − 1)(σ + ρ − 1) > 0, one has A′′
2 (1) > 0, and hence, A′′(x) > 0 for 0 < x < 1.

Taking into account A′
2(1) = A2(1) = 0, one has A′

2(x) < 0 and A(x) > 0 for x > 1.
(i2) If (λ − 1)(σ + ρ − 1) < 0, one has A′′

2 (1) < 0. Therefore, the function A′′
2 (x) has a

unique zero x0 ∈ (0, 1). Furthermore, A′′
2 (x) > 0 on (0, x0) and A′′

2 (x) < 0 on (x0, 1).
Together with A′(1) = 0, there is a unique zero, x1, of A′

2(x) = 0 such that A′
2(x) < 0

for 0 < x < x1 and A′
2(x) > 0 for x1 < x < 1. Hence, A2(x) decreases for 0 < x < x1

and increases for x1 < x < 1, recall that A2(1) = 0 and lim
x→0+

A2(x) = +∞. There

exists a unique root x1∗ such that A2(x) > 0 for 0 < x < x1∗ and A2(x) < 0 for
x1∗ < x < 1.

This completes the proof.

We now turn to the discussion of the sign of F(x; σ, ρ) = A1(x) +A2(X; σ, ρ).

Lemma 2. Assume that 0 < x < 1 and (σ, ρ) → (1, 1). One has

(i) For ρ > σ,

(i1) If (λ − 1)(σ + ρ − 2) > 0, then F(x; σ, ρ) > 0.
(i2) If (λ − 1)(σ + ρ − 2) < 0, then the equation F(x; σ, ρ) = 0 has a unique root x∗ such

that F(x; σ, ρ) > 0 for 0 < x < x∗ and F(x; σ, ρ) < 0 for x∗ < x < 1.

(ii) For ρ < σ and (λ − 1)(σ + ρ − 2) < 0, then equation F(x; σ, ρ) = 0 has a unique root x∗∗

such that F(x; σ, ρ) > 0 for 0 < x < x∗∗ and F(x; σ, ρ) < 0 for x∗∗ < x < 1.

Proof. We will provide a proof for the cases with ρ > σ. The case with ρ < σ can be argued
similarly. From (13), direct calculation gives

F′′′(x) =
2

z2x3

[
(z1λ(2ρ − 1)− z2)− x2(z1λ(2σ − 1)− z2)

]
,

F(4)(x) = − 2
z2x4

[
5x2(z1λ(2σ − 1)− z2)− 3(z1λ(2ρ − 1)− z2)

]
.

Note that (σ, ρ) → (1, 1). One has z1λ(2σ − 1)− z2 > 0 and z1λ(2σ − 1)− z2 > 0. It
is easy to check that F′′′(x) = 0 has a unique positive root, say x given by

x =

√
z1λ(2ρ − 1)− z2

z1λ(2σ − 1)− z2
.
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For ρ > σ, one has x > 1. Therefore, F′′′(x) < 0 for 0 < x < 1, which implies that
F′′(x) is decreasing for x ∈ (0, 1). Note that

F′′(1) =
2z1(λ − 1)

z1 − z2
(σ + ρ − 2).

(i1) For (λ − 1)(σ + ρ − 2) > 0, one has F′′(1) > 0. Therefore, F′′(x) > 0 for 0 < x < 1.
Together with the fact that F′(1) = F(1) = 0, one has F′(x) < 0 and F(x) < 0 for
0 < x < 1.

(i2) For (λ − 1)(σ + ρ − 1) < 0, there exists a unique root x1 of F′′(x) = 0, such that
F′′(x) > 0 for 0 < x < x1 and F′′(x) < 0 for x1 < x < 1. This implies that F′(x) is
decreasing for 0 < x < x1 and increasing for x < x < 1. Note that F′(1) = 0. There
is a unique root, x2, of F′(x) = 0, such that F′(x) > 0 for 0 < x < x2 and F′(x) < 0
for x2 < x < 1. Note also that F(1) = 0. A similar argument leads to the conclusion
that there exists a unique root, x∗, of F(x) = 0, such that F(x) < 0 for 0 < x < x∗ and
F(x) > 0 for x∗ < x < 1.

From Definition 1 and Lemma 2, one has

Theorem 1. Suppose (σ, ρ) → (1, 1), 0 < x = L1/R1 < 1 and ν > 0 small. Then,

(i) For (λ − 1)(σ + ρ − 2) < 0, ρ < σ and 0 < x < x∗∗, one has ∂J11
∂V

> 0 while ∂J21
∂V

< 0.
Moreover,

(i1) J1(V; λ, d) < J1(V; 0, 0) if V < V1c (resp. J1(V; λ, d) > J1(V; 0, 0) if V > V1c),
that is, the ion size reduces (resp. enhances) the individual flux J1 if V < V1c (resp.
V > V1c).

(i2) J2(V; λ, d) > J2(V; 0, 0) if V < V2c (resp. J2(V; λ, d) < J2(V; 0, 0) if V > V2c),
that is, the ion size enhances (resp. reduces) the individual flux J2 if V < V2c (resp.
V > V2c).

(ii) For (λ − 1)(σ + ρ − 2) < 0, ρ < σ and x∗∗ < x < 1, one has ∂J11
∂V

< 0 whlie ∂J21
∂V

> 0.
Furthermore,

(ii1) J1(V; λ, d) > J1(V; 0, 0) if V < V1c (resp. J1(V; λ, d) < J1(V; 0, 0) if V > V1c),
that is, the ion size enhances (resp. reduces) the individual flux J1 if V < V1c (resp.
V > V1c).

(ii2) J2(V; λ, d) < J2(V; 0, 0) if V < V2c (resp. J2(V; λ, d) > J2(V; 0, 0) if V > V2c),
that is, the ion size reduces (resp. enhances) the individual flux J2 if V < V2c (resp.
V > V2c).

(iii) For (λ − 1)(σ + ρ − 2) > 0, ρ > σ, one has ∂J11
∂V

> 0 whlie ∂J21
∂V

< 0. Furthermore,

(iii1)J1(V; λ, d) < J1(V; 0, 0) if V < V1c (resp. J1(V; λ, d) > J1(V; 0, 0) if V > V1c),
that is, the ion size reduces (resp. enhances) the individual flux J1 if V < V1c (resp.
V > V1c).

(iii2)J2(V; λ, d) > J2(V; 0, 0) if V < V2c (resp. J2(V; λ, d) < J2(V; 0, 0) if V > V2c),
that is, the ion size enhances (resp. reduces) the individual flux J2 if V < V2c (resp.
V > V2c).

(iv) For (λ − 1)(σ + ρ − 2) < 0, ρ > σ and 0 < x < x∗, one has ∂J11
∂V

< 0 while ∂J21
∂V

> 0.
Furthermore,

(iv1)J1(V; λ, d) > J1(V; 0, 0) (resp. J1(V; λ, d) < J1(V; 0, 0)) if V < V1c (resp. V >

V1c), that is, the ion size enhances (resp. reduces) the individual flux J1(V; σ, ρ, λ, d) if
V < V1c (resp. V > V1c).
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(iv2)J2(V; λ, d) < J2(V; 0, 0) (resp. J2(V; λ, d) > J2(V; 0, 0)) if V < V2c (resp. V >

V2c), that is, the ion size reduces (resp. enhances) the individual flux J2(V; λ, d) if
V < V2c (resp. V > V2c).

(v) For (λ − 1)(σ + ρ − 2) < 0, ρ > σ and x∗ < x < 1, one has ∂J11
∂V

> 0 while ∂J21
∂V

< 0.
Furthermore,

(v1) J1(V; λ, d) > J1(V; 0, 0) (resp. J1(V; λ, d) < J1(V; 0, 0)) if V < V1c (resp. V >

V1c), that is, the ion size enhances (resp. reduces) the individual flux J1(V; λ, d) if
V < V1c (resp. V > V1c).

(v2) J2(V; λ, d) < J2(V; 0, 0) (resp. J2(V; λ, d) > J2(V; 0, 0)) if V < V2c (resp. V >

V2c), that is, the ion size reduces (resp. enhances) the individual flux J2(V; λ, d) if
V < V2c (resp. V > V2c).

3.1.2. Relative Ion Sizes Effects

We now characterize the relative ion size effects in terms of λ = ν2/ν, on Jk. Specifically,

We study the sign of ∂2 J11
∂λ∂V , which is given by, with x = L1/R1,

∂J11

∂λ∂V
= − ∂J11

∂λ∂V
=

e
kBT

R2
1

ln3 x
f (x; σ, ρ), (15)

where

f (x; σ, ρ) =
z1

z2
(x − 1)(2(x − 1)− (x + 1) ln x) +

(
a3(x − 1)(−z1(x + 1) + 2x(2z1 − z2))

− 2
z1

z2
x2 ln x

)
(σ − 1) +

(
a3(x − 1)(z1(x + 1)− 2(2z1 − z2)) + 2

z1

z2
ln x

)
(ρ − 1).

For f (x), one has

Lemma 3. Suppose (σ, ρ) → (1, 1).

(1) For ρ > σ with σ + ρ > 2, one has f (x) > 0 if 0 < x < 1.
(2) For σ + ρ < 2, f (x) = 0 has a unique root x∗, such that f (x) < 0 (resp. f (x) > 0) if

0 < x < x∗ (resp. x∗ < x < 1).

It follows that

Theorem 2. Assume that (σ, ρ) → (1, 1) and 0 < x < 1. One has

(i) If ρ > σ with σ + ρ > 2, one has ∂2 J11
∂V∂λ > 0, and ∂2 J21

∂V∂λ < 0. Moreover,

(i1) J1 decreases (resp. increases) in λ for V < V1c (resp. V > V1c).
(i2) J2 increases (resp. decreases) in λ for V < V2c (resp. V > V2c).

(ii) If ρ > σ with σ + ρ < 2, and 0 < x < x∗ , one has ∂2 J11
∂V∂λ > 0 and ∂2 J21

∂V∂λ < 0. Moreover,

(ii1) J1 decreases (resp. increases) in λ for V < V1c (resp. V > V1c).
(ii2) J2 increases (resp. decreases) in λ for V < V2c (resp. V > V2c).

(iii) If ρ < σ with σ + ρ < 2, and x∗ < x < 1, one has ∂2 J11
∂V∂λ < 0, and ∂2 J21

∂V∂λ > 0. Moreover,

(iii1)J1 increases (resp. decreases) in λ for V < V1c (resp. V > V1c).
(iii2)J2 decreases (resp. increases) in λ for V < V2c (resp. V > V2c).

Remark 2. From [88], under electroneutrality boundary conditions, one always has

• ∂J11
∂V > 0 while ∂J21

∂V < 0;

• ∂2 J11
∂V∂λ > 0 while ∂2 J21

∂V∂λ < 0.
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However, with relaxed neutral boundary conditions, as stated in Theorems 1 and 2, ∂J11
∂V and ∂2 J11

∂V∂λ

can be negative while ∂J21
∂V and ∂2 J21

∂V∂λ can be positive. Clearly, richer dynamics of ionic flows under
relaxed neutral conditions are observed. This also demonstrates the key role played by the boundary
layers in the study.

3.2. Finite Ion Size Effects on the I–V Relations

The effects on the I–V relations from finite ion sizes follow directly from Lemmas 2
and 3, and Equation (9).

Theorem 3. Assume (σ, ρ) → (1, 1) and 0 < x = L1/R1 < 1 and ν > 0 small.

(i) For (λ − 1)(σ + ρ − 2) < 0 and ρ < σ,

(i1) If 0 < x < x∗∗, then, ∂I1
∂V

> 0. Furthermore, I(V; λ, d) < I(V; 0, 0) if V < Vc (resp.
I(V; λ, d) > I(V; 0, 0) if V > Vc), that is, the ion size reduces (resp. enhances) the
current I if V < Vc (resp. V > Vc).

(i2) If x∗∗ < x < 1, then ∂I1
∂V

< 0. Furthermore, I(V; λ, d) > I(V; 0, 0) if V < Vc (resp.
I(V; λ, d) < I(V; 0, 0) if V > Vc), that is, the ion size enhances (resp. reduces) the
current I if V < Vc (resp. V > Vc).

(ii) For (λ − 1)(σ + ρ − 2) > 0, ρ > σ, one has ∂I1
∂V

> 0. Furthermore, I(V; λ, d) < I(V; 0, 0)
if V < Vc (resp. I(V; λ, d) > I(V; 0, 0) if V > Vc), that is, the ion size reduces (resp.
enhances) the current I if V < Vc (resp. V > Vc).

(iii) For (λ − 1)(σ + ρ − 2) < 0 and ρ > σ,

(iii1) If 0 < x < x∗, then ∂I1
∂V

> 0. Furthermore, I(V; λ, d) < I(V; 0, 0) (resp. I(V; λ, d) >
I(V; 0, 0)) if V < V1c (resp. V > V1c), that is, the ion size reduces (resp. enhances) the
current I if V < Vc (resp. V > Vc).

(iii2)If x∗ < x < 1, one has ∂I1
∂V

< 0. Furthermore, I(V; λ, d) > I(V; 0, 0) (resp.
I(V; λ, d) < I(V; 0, 0)) if V < Vc (resp. V > Vc), that is, the ion size enhances
(resp. reduces) the current I if V < Vc (resp. V > Vc).

Theorem 4. Assume that (σ, ρ) → (1, 1) and 0 < x = L1/R1 < 1. Then,

(i) If ρ > σ with σ + ρ > 2, one has ∂2 I1
∂V∂λ > 0. Moreover, the current I decreases (resp.

increases) in λ if V < Vc (resp. V > Vc).
(ii) If σ + ρ < 2, one has

(ii1) For either ρ > σ and 0 < x < x∗, or ρ < σ and 0 < x < x∗, one has ∂2 I1
∂V∂λ > 0.

Furthermore, the current I decreases (resp. increases) in λ if V < Vc (resp. V > Vc).
(ii2) For either ρ > σ and x∗ < x < 1, or ρ < σ and x∗ < x < 1, one has ∂2 I1

∂V∂λ < 0.
Furthermore, the current I increases (resp. decreases) in λ if V < Vc (resp. V > Vc).

3.3. Orders of Critical Potentials

Our main concern is the order of the critical potentials identified in Definition 1 under
different setups of boundary conditions. For convenience, in the subsequent analysis, we
use VEN

kc , k = 1, 2 to represent the critical potentials identified under electroneutrality
conditions.

3.3.1. A Total Order of Vc, V1c and V2c

From Definition 1, one has

V1c − V2c = − kBT
e

β10 + α10

α11
, Vc − V1c = −z2D2

kBT
e

α10 + β10

(z1D1 − z2D2)α11
,



Axioms 2025, 14, 69 12 of 20

Vc − V2c = −z1D1
kBT

e
α10 + β10

(z1D1 − z2D2)α11
,

where β10 + α10 = z2−z1
2z2

(
−L2

1

(
a4(σ − 1) + a1

z2

)
+ R2

1

(
a4(ρ − 1) + a1

z2

))
.

Letting L1/R1 = x, one has β10 + α10 = z2−z1
2z2

R2
1 p(x), where

p(x) = −x2
(

a4(σ − 1) +
a1

z2

)
+

(
a4(ρ − 1) +

a1

z2

)
.

For p(x), one has

Lemma 4. For 0 < x < 1, one has

(i) If ρ > σ, then p(x) < 0 for 0 < x < 1. Furthermore, one has β10 + α10 < 0.
(ii) If ρ < σ, there is a unique root xc of p(x) = 0, such that β10 + α10 < 0 for 0 < x < xc and

β10 + α10 > 0 for xc < x < 1.

From Lemmas 2 and 4, we have

Theorem 5. Assume that (σ, ρ) → (1, 1) and 0 < x < 1. One has

(i) For ρ > σ,

(i1) V1c > Vc > V2c when (λ − 1)(σ + ρ − 2) > 0.
(i2) V1c > Vc > V2c when (λ − 1)(σ + ρ − 2) < 0 and 0 < x < x∗.
(i3) V1c < Vc < V2c when (λ − 1)(σ + ρ − 2) < 0 and x∗ < x < 1.

(ii) For ρ < σ and (λ − 1)(σ + ρ − 2) < 0,

(ii1) V1c > Vc > V2c when either 0 < x < min{x∗∗, xc} or max{x∗∗, xc} < x < 1.
(ii2) V1c < Vc < V2c when either min{x∗∗, xc} < x < max{x∗∗, xc}.

Remark 3. V1c, V2c and Vc splits the potential interval into four subintervals, over which the
dynamics of ionic flows are different. Take the case (i1) in Theorem 5, for example, the four
subregions are (−∞, V2c), (V2c, Vc), (Vc, V1c) and (V1c, ∞). From Theorems 1 and 3, one has
Jk(λ, d) < Jk(0, 0) over both the subregions (V2c, Vc) and (Vc, V1c), while I(λ, d) < I(0, 0) over
(V2c, Vc) and I(λ, d) > I(0, 0) over (Vc, V1c). This indicates rich dynamics of ionic flows that
further depend on ion valences and diffusion coefficients.

3.3.2. A Total Order of Vc, V1c and V2c

From Definition 1, together with β11 = −α11, one has

V1c − V2c =
kBT

e
∂λ(β10 + α10)

∂λα11
,

Vc − V1c =
kBT

e
−z2D2

z1D1 − z2D2

∂λ(α10 + β10)

∂λα11
,

Vc − V2c =
kBT

e
−z1D2

z1D1 − z2D2

∂λ(α10 + β10)

∂λα11
,

(16)

where ∂λ(β10 + α10) =
z1(z1−z2)R2

1
z2

2
q(x) with q(x) given by q(x) = x2

(
σ − 1

2

)
−
(

ρ − 1
2

)
.

Lemma 5. Assume 0 < x < 1. For the function q(x), one has

(i) For ρ > σ, q(x) < 0;
(ii) For ρ < σ, there is a unique zero 0 < xc < 1 s0 that q(x) < 0 for 0 < x < xc, and q(x) > 0

for xc < x < 1.
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From Lemmas 3 and 5, one has

Theorem 6. Assume that (σ, ρ) → (1, 1) and 0 < x < 1. Then,

(i) For ρ > σ,

(i1) V1c > Vc > V2c when (λ − 1)(σ + ρ − 2) > 0.
(i2) V1c > Vc > V2c when (λ − 1)(σ + ρ − 2) < 0 and 0 < x < x∗.
(i3) V1c < Vc < V2c when (λ − 1)(σ + ρ − 2) < 0 and x∗ < x < 1.

(ii) For ρ < σ and (λ − 1)(σ + ρ − 2) < 0,

(ii1) V1c > Vc > V2c when 0 < x < min{x∗, xc} and 1 > x > max{x∗, xc}.
(ii2) V1c < Vc < V2c when min{x∗, xc} < x < max{x∗, xc}.

3.4. Boundary Layer Effects on Ionic Flows

We illustrate boundary layer impacts on ionic flows from two directions.

3.4.1. Direct Interplays

For convenience, in our following discussion, we use JEN
k1 (V; λ) to denote the fluxes

under electroneutrality conditions, while Jk1(V; λ, σ, ρ) presents the flux with boundary
layers. We further introduce J d

k1 = Jk1(V; λ, σ, ρ)− JEN
k1 (V; λ), which directly characterizes

the boundary layer effects on the individual fluxes. One then has

J d
11 =

∂α10(1, 1)
∂σ

(σ − 1) +
∂α10(1, 1)

∂ρ
(ρ − 1) +

(∂α11(1, 1)
∂σ

(σ − 1)

+
∂α11(1, 1)

∂ρ
(ρ − 1)

) e
kBT

V,

J d
21 =

∂β10(1, 1)
∂σ

(σ − 1) +
∂β10(1, 1)

∂ρ
(ρ − 1)−

(∂α11(1, 1)
∂σ

(σ − 1)

+
∂α11(1, 1)

∂ρ
(ρ − 1)

) e
kBT

V.

It follows that

∂J d
11(V; λ, σ, ρ)

∂V
= −

∂J d
21(V; λ, σ, ρ)

∂V
=

eR2
1

2kBT ln2 x
A2(x, σ, ρ). (17)

From Lemma 1, J d
11(V; λ, σ, ρ) = 0 has a unique root V1∗, and J d

21(V; λ, σ, ρ) = 0 has
a unique root V2∗. Moreover,

V1∗ =−
∂α10(1,1)

∂σ (σ − 1) + ∂α10(1,1)
∂ρ (ρ − 1)

∂α11(1,1)
∂σ (σ − 1) + ∂α11(1,1)

∂ρ (ρ − 1)

kBT
e

,

V2∗ =

∂β10(1,1)
∂σ (σ − 1) + ∂β10(1,1)

∂ρ (ρ − 1)
∂α11(1,1)

∂σ (σ − 1) + ∂α11(1,1)
∂ρ (ρ − 1)

kBT
e

.

Together with Lemma 1, the following result can be established.

Theorem 7. Assume that 0 < x = L1
R1

< 1 and (σ, ρ) → (1, 1). Then,

(i) For A2(x) > 0, one has ∂J d
11(V;λ,σ,ρ)

∂V > 0 and ∂J d
21(V;λ,σ,ρ)

∂V < 0. Furthermore,

(i1) J11(V; λ, σ, ρ) < JEN
11 (V, λ) (resp. J11(V; λ, σ, ρ) > JEN

11 (V, λ)) if V < V1∗ (resp.
V > V1∗), that is, the boundary layer reduces (resp. enhances) the individual flux J1 if
V < V1∗ (resp. V > V1∗).
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(i2) J21(V; λ, σ, ρ) > JEN
21 (V, λ) (resp. J21(V; λ, σ, ρ) < JEN

21 (V, λ)) if V < V2∗ (resp.
V > V2∗), that is, the boundary layer enhances (resp. reduces) the individual flux J2 if
V < V2∗ (resp. V > V2∗).

(ii) For A2(x) < 0, one has ∂J d
11(V;λ,σ,ρ)

∂V < 0 while ∂J d
21(V;λ,σ,ρ)

∂V > 0. Furthermore,

(ii1) J11(V; λ, σ, ρ) > JEN
11 (V, λ) (resp. J11(V; λ, σ, ρ) < JEN

11 (V, λ)) if V < V1∗ (resp.
V > V1∗), that is, the boundary layer enhances (resp. reduces) the individual flux J1 if
V < V1∗ (resp. V > V1∗).

(ii2) J21(V; λ, σ, ρ) < JEN
21 (V, λ) (resp. J21(V; λ, σ, ρ) > JEN

21 (V, λ)) if V < V2∗ (resp.
V > V2∗), that is, the boundary layer reduces (resp. enhances) the individual flux J2 if
V < V2∗ (resp. V > V2∗).

3.4.2. Further Analysis

We further analyze the impacts on ionic flows from boundary layers in terms of a total
order of V1c, V2c, Vc, VEN

1c , VEN
2c and VEN

c , where the critical potentials VEN
1c , VEN

2c and VEN
c

are identified under electroneutrality conditions, and from Definition 1, they are given by

VEN
1c = −α10(1, 1)

α11(1, 1)
kBT

e
, VEN

2c = − β10(1, 1)
β11(1, 1)

kBT
e

,

VEN
c = − z1D1α10(1, 1) + z2D2β10(1, 1)

z1D1α11(1, 1) + z2D2β11(1, 1)
kBT

e
.

It is easy to check that

Lemma 6. For L1 < R1, one has VEN
1c < VEN

c < VEN
2c .

To provide a total order of the six critical potentials, we treat the critical potential
V1c, V2c and Vc as functions of (σ, ρ) and expand them along (σ, ρ) = (1, 1) up to the first
order and ignore higher order terms. For example, we write V1c(σ, ρ) as

V1c(σ, ρ) = V1c(1, 1) +
∂V1c
∂σ

∣∣∣∣
(σ=1,ρ=1)

(σ − 1) +
∂V1c
∂ρ

∣∣∣∣
(σ=1,ρ=1)

(ρ − 1). (18)

Note that V1c is linear in σ and ρ. We first consider V1c − VEN
1c = 0. Note also that

VEN
1c = V1c(1, 1). We have

ρ

σ
:= θ1(x) =

∂σα10(1, 1)− V1c(1, 1)∂σα11(1, 1)
∂ρα10(1, 1)− V1c(1, 1)∂ρα11(1, 1)

,

where

∂σα10(1, 1)− V1c(1, 1)∂σα11(1, 1)

=
a1(x2 − 1)

2z2(z1 − z2) ln x
− a4

2
x2 − a2a3

(
x − 1
ln x

)2

+
kBT
z1e

(x + 1) ln2 x
2(x − 1)− (x + 1) ln x

(
a3(x − 1)

ln2 x

(
x(a1 + a2)−

a1

2
(x + 1)

)
− a4x2

2 ln x

)
,

∂ρα10(1, 1)− V1c(1, 1)∂ρα11(1, 1)

=
a1(x2 − 1)

2z2(z1 − z2) ln x
+

a4

2
+

(
x − 1
ln x

)2
a2a3

+
kBT
z1e

(x + 1) ln2 x
2(x − 1)− (x + 1) ln x

(
− a3(x − 1)

ln2 x

(
(a1 + a2)−

a1

2
(x + 1)

)
+

a4

2(ln x)

)
.
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Correspondingly, for a given L1 and R1, x and θ1 are fixed. Note that σ = ρ = 1
satisfies the equation V1c − VEN

1c = 0, and we obtain the linear equation

ρ = σθ1 − θ1 + 1,

which indicates that any pair of (σ, ρ) that satisfies the linear equation also satisfies V1c −
VEN

1c = 0.
It follows that

Proposition 1. Assume that (σ, ρ) → (1, 1). V1c(σ, ρ) > VEN
1c (resp. V1c(σ, ρ) < VEN

1c ) for
ρ − 1 > (σ − 1)θ1 (resp. ρ − 1 < (σ − 1)θ1).

A similar discussion for V2c(σ, ρ) leads to the following result.

Proposition 2. Assume that (σ, ρ) → (1, 1). One has V2c(σ, ρ) > VEN
2c (resp. V2c(σ, ρ) < VEN

2c )
for (ρ − 1) > (σ − 1)θ2 (resp. (ρ − 1) < (σ − 1)θ2). Here, θ2 = ∂σ β10(1,1)−V2c(1,1)∂σ β11(1,1)

∂ρ β10(1,1)−V2c(1,1)∂ρ β11(1,1) ,
where

∂σβ10(1, 1)− V2c(1, 1)∂σβ11(1, 1)

= − a1(x2 − 1)
2z2(z1 − z2) ln x

+
z1a4

2z2
x2 + a2a3

(
x − 1
ln x

)2

+
kBT
z2e

(x + 1) ln2 x
2(x − 1)− (x + 1) ln x

(
a3(x − 1)

ln2 x

(
x(a1 + a2)−

a1

2
(x + 1)

)
− a4x2

2(ln x)

)
,

and

∂ρβ10(1, 1)− V2c(1, 1)∂ρβ11(1, 1)

= − a1(x2 − 1)
2z2(z1 − z2) ln x

− z1a4

2z2
− a2a3

(
x − 1
ln x

)2

+
kBT
z2e

(x + 1) ln2 x
2(x − 1)− (x + 1) ln x

(
− a3(x − 1)

ln2 x

(
(a1 + a2)−

a1

2
(x + 1)

)
+

a4

2(ln x)

)
.

As for Vc(σ, ρ), one has

Proposition 3. Assume that (σ, ρ) → (1, 1). Vc(σ, ρ) > VEN
c (resp. Vc(σ, ρ) < VEN

c ) for
ρ > σθ3 − θ3 + 1 (resp. ρ < σθ3 − θ3 + 1). Here,

θ3 =
z1D1∂σα10(1, 1) + z2D2∂σβ10(1, 1)− Vc(1, 1)(z1D1 − z2D2)∂σα11(1, 1)
z1D1∂ρα10(1, 1) + z2D2∂ρβ10(1, 1)− Vc(1, 1)(z1D1 − z2D2)∂ρα11(1, 1)

,

where

z1D1∂σα10(1, 1) + z2D2∂σβ10(1, 1)− Vc(1, 1)(z1D1 − z2D2)∂σα11(1, 1)

= (z1D1 − z2D2)
x − 1
ln x

(
a1(x + 1)

2z2(z1 − z2)
− a2a3

x − 1
ln x

)
− z1(D1 − D2)a4

2
x2

+
(D1 − D2)(x + 1) ln2 x
2(x − 1)− (x + 1) ln x

(
a3(x − 1)

ln2 x

(
x(a1 + a2)−

a1

2
(x + 1)

)
− a4x2

2 ln x

)
,

z1D1∂ρα10(1, 1) + z2D2∂ρβ10(1, 1)− Vc(1, 1)(z1D1 − z2D2)∂ρα11(1, 1)

= (z1D1 − z2D2)
x − 1
ln x

(
a1(x + 1)

2z2(z1 − z2)
+ a2a3

x − 1
ln x

)
+

z1(D1 − D2)a4

2

+
(D1 − D2)(x + 1) ln2 x
2(x − 1)− (x + 1) ln x

(
− a3(x − 1)

ln2 x

(
x(a1 + a2)−

a1

2
(x + 1)

)
− a4

2 ln x

)
.
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Together with Lemma 6, one has

Theorem 8. For (σ, ρ) → (1, 1) and θ1 < θ2 < θ3, one has

(i) For σ → 1+,

(i1) If +∞ > ρ−1
σ−1 > θ3, then, VEN

1c < V1c < VEN
c < Vc < VEN

2c < V2c.

(i2) If θ3 > ρ−1
σ−1 > θ2, then, VEN

1c < V1c < Vc < VEN
c < VEN

2c < V2c.

(i3) If θ2 > ρ−1
σ−1 > θ1, then, VEN

1c < V1c < Vc < VEN
c < V2c < VEN

2c .

(i4) If θ1 > ρ−1
σ−1 > −∞, then, V1c < VEN

1c < Vc < VEN
c < V2c < VEN

2c .

(ii) For σ → 1−,

(ii1) If +∞ > ρ−1
σ−1 > θ3, then, V1c < VEN

1c < Vc < VEN
c < V2c < VEN

2c .

(ii2) If θ3 > ρ−1
σ−1 > θ2, then, VEN

1c < V1c < Vc < VEN
c < V2c < VEN

2c .

(ii3) If θ2 > ρ−1
σ−1 > θ1, then, VEN

1c < V1c < Vc < VEN
c < VEN

2c < V2c.

(ii4) If θ1 > ρ−1
σ−1 > −∞, then, VEN

1c < V1c < VEN
c < Vc < VEN

2c < V2c.

Remark 4. The qualitative properties of ionic flows depend on the boundary layers as shown
in both Theorems 7 and 8. Particularly, in Theorem 8, a total order of the critical potentials
V1c, V2c, Vc, VEN

1c , VEN
2c and VEN

c under different conditions is provided, and they split the whole
potential region into seven subregions, from which the distinct dynamics of ionic flows can be
observed. This further indicates the effects on ionic flows from boundary layers. More importantly,
these critical potentials can be experimentally estimated. Take the potential Vc, for example, one is
able to take an experimental I–V relation as I(V; λ, ν) and numerically compute I0(V) for the ideal
case that allows one to obtain an estimate of Vc.

4. Concluding Remarks
We study the finite ion size impacts on ionic flows under relaxed boundary conditions

to better understand the dynamics of ionic flows via a one-dimensional PNP model. Ion
sizes play vital roles in the characterization of the selectivity phenomena of ion channels.
The detailed discussion, particularly, the argument of the relative ion size effects, could
provide important insights into the selectivity phenomena of ion channels. Our study is
under more realistic setups of the boundary conditions, a state that is not neutral but close
to, and not surprisingly, the richer dynamics of ionic flows which are observed compared to
the work conducted in [88] under the assumption of electroneutrality boundary conditions,
that is, σ = ρ = 1 in current setup. The boundary layer effects on ionic flows due to the
relaxation of the electroneutrality conditions are further characterized. Critical potentials
are identified under different setups, which play crucial roles in our discussion of the
ionic flow properties. Most importantly, those critical potentials can be experimentally
identified as stated in Remark 4. The study provides an efficient way to control/adjust
the boundary conditions to observe distinct dynamics of ionic flows through membrane
channels. This is important for future analytical studies and critical for future numerical
and even experimental studies of ion channel problems.

To end this section, we point out that the setup in this work is relatively simple, it
only consisted of two oppositely charged particles and did not include nonzero permanent
charges. The study in the current work is the first step for the analysis of more realistic
models, such as those including multiple cations and nonzero permanent charges. The
method developed in this work can be directly applied to those more realistic models and
will be our future research topics.
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