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Abstract: This work aims to provide approximate solutions for singularly perturbed prob-
lems with periodic boundary conditions using quintic B-splines and collocation. The
well-known Shishkin mesh strategy is applied for mesh construction. Convergence analysis
demonstrates that the method achieves parameter-uniform convergence with fourth-order
accuracy in the maximum norm. Numerical examples are presented to validate the theoret-
ical estimates. Additionally, the standard hybrid finite difference scheme, a cubic spline
scheme, and the proposed method are compared to demonstrate the effectiveness of the
present approach.
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1. Introduction
The presence of a small parameter ε in the highest derivative term of a differential

equation is referred to as a singularly perturbed problem. When ε is small, boundary
or interior layers typically occur in the solution of a singularly perturbed problem. In
these layer regions, the solution changes rapidly, causing classical numerical methods to
fail in most cases, particularly for very small values of the parameter. Over the past four
decades, the study of singularly perturbed problems has become a significant field, as
these problems frequently arise in the mathematical modeling of physical and engineering
phenomena, including quantum physics, solid mechanics, aerodynamics, and chemical
reactions. A review of the literature [1–7] shows that numerous numerical approaches have
been developed for singularly perturbed problems, including the finite difference method,
fitted operator method, finite element method, Galerkin method, and collocation methods.

The main purpose of this work was to achieve higher-order convergence in approxi-
mating the solution of the singularly perturbed periodic boundary value problem (SPPBVP)
discussed in [8–10]:

Lu(x) ≡ −ε2u′′(x)− εp(x)u′(x) + q(x)u(x) = r(x), x ∈ Ω = (0, 1), (1)

BC1 u ≡ u(0)− u(1) = 0, BC2 u ≡ ε(u′(1)− u′(0)) = A1, (2)

Axioms 2025, 14, 73 https://doi.org/10.3390/axioms14010073

https://doi.org/10.3390/axioms14010073
https://doi.org/10.3390/axioms14010073
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-0882-9249
https://orcid.org/0000-0003-0162-2760
https://orcid.org/0000-0002-2228-0969
https://orcid.org/0000-0003-2791-6230
https://doi.org/10.3390/axioms14010073
https://www.mdpi.com/article/10.3390/axioms14010073?type=check_update&version=1


Axioms 2025, 14, 73 2 of 12

where ε (0 < ε ≪ 1) is a perturbation parameter. Here, p(x), q(x), and r(x) are given
functions satisfying ζ∗ ≥ p(x) ≥ ζ > 0 and η∗ ≥ q(x) ≥ η > 0 and are assumed to be
sufficiently smooth with p(0) = p(1), q(0) = q(1), and r(0) = r(1). Under these conditions,
the solution u(x) exhibits boundary layers at both endpoints x = 0 and x = 1. A1 is a
given constant, and Ω̄ = [0, 1]. In [8], to solve this problem numerically, a uniform mesh
was used with an exponentially fitted difference scheme, achieving first-order uniform
convergence in the discrete maximum norm. In [9], Zhongdi Cen used a hybrid finite
difference technique to obtain an approximate solution to the given SPPBVP using Shishkin
meshes, resulting in almost second-order convergence. On the other hand, Puvaneswari et
al. employed a cubic spline scheme in [10], obtaining second-order convergence. This type
of SPPBVP commonly arises in applications such as oceanic–atmospheric circulation and
geophysical fluid dynamics.

A detailed review of recent studies on singular perturbation problems and spline
approximation methods was conducted, with particular attention to discussions by various
researchers [11–17]. After examining the cited literature and their references, the quintic
spline approximation technique emerged as a promising method for solving singular per-
turbation problems, offering higher-order convergence. It is noted that spline collocation
methods are simpler to implement and more cost-effective than other approaches. Addi-
tionally, unlike the finite element method or the Galerkin approximation method, they do
not require numerical integrations. The matrix representation produced by the proposed
scheme results in banded matrices with few bands, rather than the full matrices typically
obtained when using polynomials, trigonometric functions, or other non-piecewise func-
tions [18], which facilitates its implementation. Motivated by studies [12,19–21], this work
aimed to develop a higher-order accurate method for solving (1)–(2). This paper proposes
a quintic B-spline collocation method (QBSCM), which achieves fourth-order convergence
within a piecewise uniform Shishkin mesh.

This paper is organized as follows: Section 2 presents some preliminary results and
derivative bounds for the exact solution of problem (1)–(2). Meanwhile, the mesh con-
struction strategy and the derivation of the difference scheme are described in Section 3.
An error estimate for the proposed scheme is derived in Section 4 (Theorem 3), which
constitutes the main result of our study. In Section 5, numerical examples are presented to
validate our theoretical estimate. This paper concludes with a final discussion.

Remark 1. Throughout this paper, C and Cj denote generic constants, which can take different
values at different places and are independent of N and the perturbation parameter ε. For a
given continuous function u(x) on Ω = [0, 1], the maximum norm is considered [22], ||u|| =
max
x∈Ω̄

|u(x)|.

2. Maximum Principle and Stability Result
This section presents the theoretical results documented in the literature, providing

analytical properties of the SPPBVP (1)–(2), including existence, uniqueness, stability
estimates, and derivative bounds. To establish the parameter-uniform error estimate in
Section 4, the solution is decomposed into regular and singular components, which describe
the solution’s behavior within the boundary layers.

Lemma 1 ((Maximum Principle) [8]). Let L, BC1 and BC2 be the differential operators in (1)–(2)
and u(x) ∈ C2(Ω̄). If BC1 u = 0, BC2 u ≥ 0 and Lu(x) ≥ 0, ∀ x ∈ Ω, then u(x) ≥ 0, ∀ x ∈ Ω̄.
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Lemma 2 ((Stability Result) [8]). If p(x), q(x) and r(x) ∈ C([0, 1]), the following holds:

||u|| ≤ β−1|| f ||+ β̄|A1|,

where u(x) is the solution of (1)–(2), and β̄ = c−1
0 coth(c0/4), c0 = −ζ∗ +

√
ζ∗2 + 4η.

Lemma 3 ([9]). Let u(x) be the exact solution of (1)–(2). Then, we have

|u(i)(x)| ≤ Cε−i for i = 1(1)6.

To analyze the behavior of the exact solution, we need stronger bounds, which are
obtained by splitting the exact solution into regular and singular components in the form of

u(x) = v(x) + w(x), x ∈ Ω.

The following result gives some bounds for the regular component v(x) and the singular
component w(x).

Theorem 1 ([9]). Let p(x), q(x), and r(x) be in Cm([0, 1]), m > 0. Then, for x ∈ Ω̄ and
0 ≤ i ≤ m, it holds that

|vi(x)| ≤ C,

|wi(x)| ≤ Cε−i
(

exp
(
−c0x

ε

)
+ exp

(
−c0(1 − x)

ε

))
.

3. Discretization of the Problem
This section introduces a piecewise-uniform mesh of the Shishkin type and derives a

collocation method using quintic B-splines for discretizing the SPPBVP (1)–(2).

3.1. Shishkin Mesh

We note that the SPPBVP (1)–(2) exhibits boundary layers at the two end points, x = 0
and x = 1. Therefore, Ω̄ is divided into three subdomains Ω1 = [0, σ], Ω2 = [σ, 1 − σ] and
Ω3 = [1 − σ, 1], where Ω1 and Ω3 each contain N/4 mesh intervals, and Ω2 contains N/2
mesh intervals. The transition parameter σ is given by [22]

σ = min
{

1
4

,
σ0ε ln N

c0

}
, σ0 ≥ 2.

The grid points in the piecewise uniform mesh are defined by

xk =


kh̄, k = 0, 1, 2, . . . , N/4,

xN/4 + (k − N/4)h̄, k = N/4 + 1, . . . , 3N/4,

x3N/4 + (k − 3N/4)h̄, k = 3N/4 + 1, . . . , N,

where

h̄ =


h1 = 4σ/N, k = 1, 2, . . . , N/4,

h2 = 2(1 − 2σ)/N, k = N/4 + 1, . . . , 3N/4,

h3 = 4σ/N, k = 3N/4 + 1, . . . , N,

which are denoted by Ω̄N = {xk}N
k=0.
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3.2. Derivation of the Difference Scheme

We use quintic B-splines to obtain an approximate solution to (1)–(2). Let π ≡ {0 =

x0 < x1 < x2 < . . . < xN−1 < xN = 1} be the partition of Ω̄, and let h̄ the piecewise-
uniform mesh width defined above. By introducing ten more fictitious points [16] such
as x−5 < x−4 < x−3 < x−2 < x−1 < x0 and xN+5 > xN+4 > xN+3 > xN+2 > xN+1 > xN ,
the quintic B-splines Bk(x) at nodes for k = −2,−1, . . . , N + 2, are described as follows:

Bk(x) =
1

120h̄5



(x − xk−3)
5, xk−3 ≤ x ≤ xk−2,

(x − xk−3)
5 − 6(x − xk−2)

5, xk−2 ≤ x ≤ xk−1,

(x − xk−3)
5 − 6(x − xk−2)

5 + 15(x − xk−1)
5, xk−1 ≤ x ≤ xk,

(xk+3 − x)5 − 6(xk+2 − x)5 + 15(xk+1 − x)5, xk ≤ x ≤ xk+1,

(xk+3 − x)5 − 6(xk+2 − x)5, xk+1 ≤ x ≤ xk+2,

(xk+3 − x)5, xk+2 ≤ x ≤ xk+3,

0, otherwise.

Each Bk(x) is a piecewise quintic polynomial and is continuously differentiable up to the
fourth order. Let denote B = {B−2(x), B−1(x), B0(x), . . . , BN(x), BN+1(x), BN+2(x)} and
Φ5(Ω̄N) = Span(B). The quintic spline functions B are linearly independent on [0, 1],
and thus Φ5(Ω̄N) is an (N + 5)-dimensional subspace of L2(Ω̄), the space of all square
integrable functions in Ω̄.

Suppose that the approximate solution of (1)–(2) can be expressed as

S(x) =
N+2

∑
k=−2

δkBk(x), (3)

where δks are real coefficients to be determined through the collocation method. The values
of (3) at the nodal points are given below:

S(xj) =
1

120
(
δj−2 + 26δj−1 + 66δj + 26δj+1 + δj+2

)
,

S′(xj) =
1

24h̄
(
−δj−2 − 10δj−1 + 10δj+1 + δj+2

)
,

S′′(xj) =
1

6h̄2

(
δj−2 + 2δj−1 − 6δj + 2δj+1 + δj+2

)
, and

S′′′(xj) =
1

2h̄3

(
−δj−2 + 2δj−1 − 2δj+1 + δj+2

)
. (4)

Assuming (3), the given SPPBVP (1)–(2) takes the form

LS(xk) = r(xk), 0 ≤ k ≤ N, (5)

S(x0) = S(xN), ε(S′(xN)− S′(x0)) = A1. (6)

Using the values of the quintic B-splines Bk(x) and their derivatives at the collocation
points, we obtain a linear system of N + 5 equations with N + 5 unknowns given by

δk−2(−20ε2 + 5εh̄k pk + h̄2
kqk) + δk−1(−40ε2 + 50εh̄k pk + 26h̄2

kqk) + δk(120ε2 + 66h̄2
kqk)

+ δk+1(−40ε2 − 50εh̄k pk + 26h̄2
kqk) + δk+2(−20ε2 − 5εh̄k pk + h̄2

kqk) = 120h̄2
krk , k = 1 (1) N − 1, (7)

δ−2(−20ε2 + 5εh̄p0 + h̄2q0) + δ−1(−40ε2 + 50εh̄p0 + 26h̄2q0) + δ0(120ε2 + 66h̄2q0)

+ δ1(−40ε2 − 50εh̄p0 + 26h̄2q0) + δ2(−20ε2 − 5εh̄p0 + h̄2q0) = 120h̄2r0, when k = 0, (8)
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and

δN−2(−20ε2 + 5εh̄pN + h̄2qN) + δN−1(−40ε2 + 50εh̄pN + 26h̄2qN) + δN(120ε2 + 66h̄2qN)

+ δN+1(−40ε2 − 50εh̄pN + 26h̄2qN) + δN+2(−20ε2 − 5εh̄pN + h̄2qN) = 120h̄2rN , when k = N. (9)

Now, using the quintic B-splines, the boundary conditions (6) become

δ−2 + 26δ−1 + 66δ0 + 26δ1 + δ2 = δN−2 + 26δN−1 + 66δN + 26δN+1 + δN+2, (10)
ε

24h̄
(δ−2 + 10δ−1 − 10δ1 − δ2 − δN−2 − 10δN−1 + 10δN+1 + δN+2) = A1. (11)

Equations (7)–(11) form a linear system of N + 3 equations with N + 5 unknowns. So, we
need two more equations to solve the above system, which are derived as follows [19]:
After differentiating (1), we have

− ε2u′′′(x)− εp(x)u′′(x)− εp′(x)u′(x) + q(x)u′(x) + q′(x)u(x) = r′(x).

Replacing u′′(x) by − 1
ε2

(
r(x) + εp(x)u′(x)− q(x)u(x)

)
in the above equation, we obtain

−ε2u′′′(x) + α(x)u′(x) + β(x)u(x) = γ(x), (12)

where α(x) = p2(x) − εp′(x) + q(x), β(x) =
−p(x)q(x)

ε
+ q′(x) and γ(x) = r′(x) −

p(x)r(x)
ε

. After substituting the approximate values in (4) into (12) for j = 0, N, we arrive,
respectively, at

(60ε2 − 5h̄2α0 + h̄3β0)δ−2 + (−120ε2 − 50α0h̄2 + 26β0h̄3)δ−1 + 66h̄3β0δ0

+ (120ε2 + 50α0h̄2 + 26β0h̄3)δ1 + (−60ε2 + 5α0h̄2 + β0h̄3)δ2 = 120h̄3γ0, (13)

and

(60ε2 − 5h̄2αN + h̄3βN)δN−2 + (−120ε2 − 50αN h̄2 + 26βN h̄3)δN−1 + 66h̄3βNδN

+ (120ε2 + 50αN h̄2 + 26βN h̄3)δN+1 + (−60ε2 + 5αN h̄2 + βN h̄3)δN+2 = 120h̄3γN . (14)

From Equations (7)–(11), together with Equations (13) and (14), we obtain a linear system
of N + 5 equations with N + 5 unknowns, δ−2, δ−1, . . . , δN+1, δN+2. This linear system of
N + 5 equations can be reduced to a linear system of N + 1 equations with N + 1 unknowns,
δ0, δ1, δ2, . . . , δN , which can be represented by a pentadiagonal matrix as Aδ = B, which is
diagonally dominant even for small values of h̄, and hence we can obtain unique values
of δ0, δ1, δ2, . . . , δN . After solving this system, we can find the values of δ−1, δN+1 and
then δ−2, δN+2. Hence, the collocation method based on quintic B-splines for solving the
problem (1)–(2) provides a unique solution S(x), as given in (3).

4. Error Estimate
This section shows that the QBSCM described in the previous section is parameter-

uniform convergent on a Shishkin mesh and of fourth-order accuracy. The last theorem
provides an error estimate.

Let define h̃ = max{h1, h2, h3}, with hi being the mesh widths of the Shishkin mesh.
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Lemma 4 ([19]). The set of B-splines {B−2, B−1, . . . , BN+1, BN+2} satisfies the inequality

N+2

∑
k=−2

|Bk(x)| ≤ 186, x ∈ Ω̄N .

Theorem 2 ([19]). Let S(x) be the quintic B-spline from S5(Ω̄N) that approximates the solution
u(x) of (4)–(8). Then, |S(x)| ≤ C, x ∈ Ω̄N for sufficiently small values of h̄ and ε.

Theorem 3. Let S(x) be the quintic B-spline from S5(Ω̄N) that approximates the solution u(x)
of (1)–(2). If r ∈ C4([0, 1]), the parameter-uniform error estimate holds:

sup
0<ε≤1

max
0≤k≤N

|u(xk)− S(xk)| ≤ CN−4(ln N)4.

Proof. Let U(x) be the unique spline from S5(Ω̄N) that interpolates the solution u(x)
of (1)–(2), which is given by

U(x) =
N+2

∑
k=−2

δ̄kBk(x). (15)

If r(x) ∈ C4([0, 1]), then u(x) ∈ C6([0, 1]), and, from [23,24], it follows that

||Dj(u − U)||∞ ≤ Cj|u6(x)|h̃6−j, j = 0 (1) 5.

We have

|Lu(xk)− LU(xk)| ≤ C(ε2 h̃4 + ε∥p∥∞ h̃5 + ∥q∥∞ h̃6)||u6||

≤ C(ε2 h̃4 + ε∥p∥∞ h̃5 + ∥q∥∞ h̃6)


C(1 + ε−6 exp(−c0xk

ε )), xk ∈ [0, σ],

C, xk ∈ [σ, 1 − σ],

C(1 + ε−6 exp(−c0(1−xk)
ε )), xk ∈ [1 − σ, 1].

(16)

There are two cases to be discussed:
Case (i): When σ = 1/4, the mesh is uniform, and we have ε−1 ≤ C ln N and h̃ = 1/N.

Now, from (16), using the lemma discussed in [25], we obtain

|Lu(xk)− LU(xk)| ≤ CN−4(ln N)4, 0 ≤ k ≤ N. (17)

Case (ii): When σ =
σ0ε ln N

c0
, we have a piecewise- uniform mesh of width 4σ/N in

the intervals [0, σ] and [1−σ, 1], while the width of the interval [σ, 1−σ] is h̃ = 2(1− 2σ)/N.
For 1 ≤ k ≤ N/4 and 3N/4 ≤ k ≤ N, h̃ = 4σ/N = CεN−1 ln N, which gives h̃/ε =

CN−1 ln N. From (16), it follows that

|Lu(xk)− LU(xk)| ≤ CN−4(ln N)4, 0 ≤ k ≤ N. (18)

For N/4 ≤ k ≤ 3N/4, using Lemma 3, since |ui(x)| ≤ C, we have the following using (16):

|Lu(xk)− LU(xk)| ≤ CN−4, 0 ≤ k ≤ N. (19)

From (17)–(19), we have

|Lu(xk)− LU(xk)| ≤ CN−4(ln N)4, 0 ≤ k ≤ N.
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Hence,

|LS(xk)− LU(xk)| = |r(xk)− LU(xk)| = |Lu(xk)− LU(xk)| ≤ CN−4(ln N)4.

As discussed in [19], we obtain

∥d − d̄∥∞ ≤ CN−4(ln N)4

and

|δk − δ̄k| ≤ CN−4(ln N)4, − 2 ≤ k ≤ N + 2.

Thus, we have

max
−2≤k≤N+2

|δk − δ̄k| ≤ CN−4(ln N)4.

Finally, using the above inequality combined with Lemma 4, we obtain the expected error
estimate

sup
0<ε≤1

max
0≤k≤N

|u(xk)− S(xk)| ≤ CN−4(ln N)4.

5. Numerical Experiments
To demonstrate the performance of the collocation method based on quintic B-splines

in the previous section, we compared it with some existing methods: the hybrid finite
difference scheme in [9] and the cubic spline scheme in [10]. Here, we apply the proposed
numerical scheme to the test problems stated below:

Example 1.

− ε2u′′(x)− ε(1 + x)u′(x) + 3u(x) = f (x), x ∈ (0, 1),

u(0) = u(1), ε(u′(1)− u′(0)) = 1 − 2ε,

where f (x) is chosen such that the exact solution is given by

u(x) =
e−

x
ε + e−

(1−x)
ε

2(1 − e−
1
ε )

+ x(1 − x) + 1.

Example 2.

− ε2u′′(x)− 2ε(2 + sin(2πx))u′(x) + (1 + cos(2πx))u(x) = f (x), x ∈ (0, 1),

u(0) = u(1), ε(u′(1)− u′(0)) = 3,

where f (x) is chosen such that the exact solution is given by

u(x) =
e−

3x
2ε + e−

3(1−x)
2ε

(1 − e−
3
2ε )

+ cos(2πx).
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Example 3.

−ε2u′′(x)− 2εu′(x) + 5u(x) = 2, x ∈ (0, 1),

u(0) = u(1), ε(u′(1)− u′(0)) = 3.

whose exact solution is given by

u(x) =− 3
(

em1x

ε(1 − em1)(m1 − m2)

)
+ 3

(
em2x

ε(1 − em2)(m1 − m2)

)
+

2
5

,

m1 =
−1 −

√
6

ε
; m2 =

−1 +
√

6
ε

.

Example 4.

− ε2u′′(x)− ε(1 + x − x2)u′(x) + (2 + x − x2)u(x) = f (x), x ∈ (0, 1),

u(0) = u(1), ε(u′(1)− u′(0)) = 2.

where f (x) is chosen such that the exact solution is given by

u(x) =
exp(−x/ε) + exp(−(1 − x)/ε)

(1 − exp(−1/ε))
.

Let uN be a numerical approximation of the exact solution u on the mesh ΩN where N
is the number of mesh subintervals. For a finite set of values ε ∈ Rε = {2−1, 2−2, . . . , 2−20},
we compute the maximum pointwise errors [26] by

EN
ε = max

xk∈Ω̄N
ε

|(uN − u)(xk)|,

and
EN = max

ε
EN

ε .

From these quantities, the orders of convergence [26] are computed as

pN = log2

(
EN

E2N

)
.

The computed errors EN and orders of convergence pN for the above examples using
QBSCM are displayed in Tables 1–4. The results are compared with those obtained using the
hybrid finite difference scheme in [9] and the cubic spline scheme in [10]. Figures 1 and 2
display the exact and approximate solutions for the four problems, illustrating the boundary
layers of the solutions. Additionally, Figures 3 and 4 include log–log plots of the maximum
absolute errors, confirming the convergent behavior of the proposed numerical method
regardless of the perturbation values.
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Table 1. Values of EN and pN for Example 1 using various methods.

Number of mesh points N

32 64 128 256 512 1024

Hybrid difference scheme in [9]

EN 1.994 × 10−2 7.425 × 10−3 2.613 × 10−3 8.774 × 10−4 2.833 × 10−4 8.862 × 10−5

pN 1.4252 1.5069 1.5742 1.6308 1.6768 —

Cubic spline scheme [10]

EN 5.953 × 10−2 1.886 × 10−2 4.492 × 10−3 9.801 × 10−4 2.162 × 10−4 4.957 × 10−5

pN 1.6586 2.0695 2.1964 2.1806 2.1247 —

QBSCM

EN 1.569 × 10−2 2.176 ×−3 2.539 × 10−4 2.742 × 10−5 2.823 × 10−6 2.688 × 10−7

pN 2.8496 3.0996 3.2110 3.5799 3.8775 —

Table 2. Values of EN and pN for Example 2 using various methods.

Number of mesh points N

32 64 128 256 512 1024

Hybrid difference scheme in [9]

EN 8.158 × 10−1 3.238 × 10−1 1.153 × 10−1 3.626 × 10−2 1.117 × 10−2 3.421 × 10−3

pN 1.3332 1.4901 1.6686 1.6986 1.7072 —

Cubic spline scheme [10]

EN 4.276 × 10−1 8.577 × 10−2 2.270 × 10−2 5.793 × 10−3 1.447 × 10−3 3.571 × 10−4

pN 2.3179 1.9180 1.9701 2.0010 2.0189 —

QBSCM

EN 7.471 × 10−3 1.004 × 10−3 1.162 × 10−4 1.278 × 10−5 1.293 × 10−6 5.589 × 10−7

pN 2.8963 3.1109 3.3837 3.5052 3.7471 —

Table 3. Values of EN and pN for Example 3 using various methods.

Number of mesh points N

32 64 128 256 512 1024

Hybrid difference scheme in [9]

EN 9.743 × 10−2 4.136 × 10−2 1.597 × 10−2 5.694 × 10−3 1.906 × 10−3 6.089 × 10−4

pN 1.2360 1.3729 1.4880 1.5787 1.6465 —

Cubic spline scheme [10]

EN 2.488 × 10−1 1.067 × 10−1 4.826 × 10−2 1.483 × 10−2 3.820 × 10−3 9.403 × 10−4

pN 1.2220 1.1442 1.7025 1.9565 2.0224 —

QBSCM

EN 3.135 × 10−1 3.397 × 10−2 2.431 × 10−3 1.532 × 10−4 1.532 × 10−4 9.908 × 10−6

pN 3.2060 3.8047 3.9884 3.9504 3.9955 —
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Table 4. Values of EN and pN for Example 4 using various methods.

Number of mesh points N

32 64 128 256 512 1024

Hybrid difference scheme in [9]

EN 6.629 × 10−1 2.262 × 10−1 7.397 × 10−2 2.342 × 10−2 2.188 × 10−3 6.511 × 10−4

pN 1.5505 1.6096 1.6551 1.7222 1.7478 —

Cubic spline scheme [10]

EN 3.503 × 10−1 1.036 × 10−1 2.724 × 10−2 7.113 × 10−3 1.816 × 10−3 4.538 × 10−4

pN 1.7577 1.9269 1.9372 1.9700 2.0005 —

QBSCM

EN 3.974 × 10−2 3.456 × 10−3 2.266 × 10−4 1.390 × 10−5 8.703 × 10−7 5.642 × 10−8

pN 3.5234 3.9308 4.0274 3.9971 3.9471 —
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Figure 1. Exact and numerical solutions of Example 1 (left) and Example 2 (right) obtained using
QBSCM for ε = 2−6 with N = 256.
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Figure 2. Exact and numerical solutions of Example 3 (left) and Example 4 (right) obtained with
QBSCM for ε = 2−6 with N = 256.
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Figure 3. Log−log plot of the max error of Example 1 (left) and Example 2 (right) obtained using
QBSCM for different ε values with N = 32, 64, 128, 256, 512, 1024.
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Figure 4. Log−log plot of the max error of Example 3 (left) and Example 4 (right) obtained with
QBSCM for different ε values with N = 32, 64, 128, 256, 512, 1024.

6. Conclusions
This work presented a numerical scheme based on a quintic B-spline collocation

method for solving singularly perturbed convection–diffusion problems with periodic
boundary conditions. Notably, the solutions to this type of problem exhibit boundary
layers at both endpoints, x = 0 and x = 1. The Shishkin mesh was considered to carefully
select the transition parameter, which plays a significant role in the scheme in accurately
resolving the sharpness of the layers. The method was demonstrated to achieve fourth-
order accuracy and was validated by solving four examples in which the errors were
measured using the discrete maximum norm.
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