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1. Introduction
The intensive development of science and technology consistently drives the search

for effective control methods for various natural, economic, social, and technical processes.
Mathematical models of such processes are represented by optimal control problems for
different classes of evolutionary systems [1–5].

There are many approaches used in the investigation of control problems for differen-
tial equations and inclusions, with asymptotic methods being used fairly extensively [6].
One of the most successful among these is the averaging method, which was originally
developed and rigorously justified by Krylov and Bogolyubov for the approximate analysis
of oscillating processes in non-linear mechanics, and then further refined for control-related
problems (see, e.g., the monograph by Plotnikov [7]). Motivated by modern engineering
control applications, the averaging method has been recently applied to the solution of
optimal control problems for linear control systems with rapidly oscillating coefficients
within a finite interval [8] and on the semi-axis [9]. The approximate solutions of the opti-
mal control problems for non-linear systems of differential inclusions with fast-oscillating
parameters were investigated in [10,11] for the cases of a finite interval and on the semi-axis,
respectively. The optimal control problem on the semi-axis for the Poisson equation with
nonlocal boundary conditions was studied in [12]. The averaging method can also be
applied to the study of singularly perturbed systems [13,14] and optimal control problems
for differential equations with rapidly oscillating coefficients, both on a finite time interval
and on the half-line [15,16]. Further applications of the averaging method for parabolic
systems with fast-oscillating coefficients were considered in [17–20].

In the present paper, we use the averaging method for the investigation of the optimal
control problem for nonlinear parabolic differential inclusion with fast-oscillating coeffi-
cients (with respect to the time variable) on a semi-axis. In contrast to the generic non-linear
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case of [11], we specifically make use of parabolicity in our setup. With this, we prove
that the optimal control for the averaged problem can be considered as an “approximately”
optimal one for the original problem. It is noteworthy to say that the results of [17–19]
differ significantly from those of the current paper since only optimal control problems for
parabolic equations were considered in [17,18], and while the optimal control for parabolic
inclusions was considered in [19], it was only considered on finite intervals. The current
paper, however, addresses the optimal control for parabolic inclusions on infinite intervals,
which poses substantial challenges and requires an essentially different method of investi-
gation. In particular, differential inclusions require the proper treatment of multi-valued
functions, and the infinite interval for the corresponding optimal control problem raises an
additional challenge in estimating the “tale” in the cost functional.

2. Problem Statement
Let Ω ⊂ Rn, n ∈ N be a bounded domain. In a cylinder Q = (0,+∞)× Ω, let us

consider an initial boundary-value problem for a parabolic inclusion
∂y
∂t ∈ Ay + f

( t
ε , y(t, x)

)
+ g(y)u, (t, x) ∈ Q,

y|∂Ω = 0,
y|t=0 = y0(x).

(1)

Here, ε > 0 is a small parameter, f : R+ ×R+ → conv(R) (the space of nonempty, compact,
convex subsets of R) is a given multi-valued mapping, g : R → R, q : Ω ×R → R are given
real-valued mappings, A is a Laplacian operator, y is an unknown state function, and u is
an unknown control function, which satisfies the following constraints:

u ∈ U ⊆ L2(Q), (2)

J(y, u) =
∫
Q

e−γtq(x, y(t, x))dtdx + α
∫
Q

u2(t, x)dtdx → inf, (3)

where γ, α are positive constants. Later, in Section 3, under natural and mild conditions on
f , g, u, q, we will show that the problem of optimal control (1)–(3) has a solution {ȳε, ūε},
i.e., for every u ∈ U and for any solution yε of (1) with control u, it holds that

J(ȳε, ūε) ≤ J(yε, u).

Despite proving the existence of a solution to (1)–(3), its construction is a challenging
problem due to the presence of fast-varying coefficients. To address this issue, we consider
the problem of finding an approximate solution of (1)–(3) by transitioning to the averaged
coefficients. For this purpose, we assume there exists f̄ : R → R such that uniformly with
regard to y ∈ R

distH

 f̄ (y),
1
T

T∫
0

f (s, y)ds

→ 0, T → ∞, (4)

where distH(A, B) is a Hausdorff metric between sets A and B and the integral of the
multivalued map is considered in the sense of Aumann [21]. Having the averaged version
f̄ of multi-valued mapping f at hand, we pose the following optimal control problem:

∂y
∂t ∈ Ay + f̄ (y) + g(y)u, (t, x) ∈ Q,
y|∂Ω = 0,
y|t=0 = y0(x),

(5)
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u ∈ U ⊆ L2(Q), (6)

J(y, u) =
∫
Q

e−γtq(x, y(t, x))dtdx + α
∫
Q

u2(t, x)dtdx → inf . (7)

The primary objective of the paper is thus to prove the convergence

J(ȳε, ūε) → J(ȳ, ū), ε → 0, (8)

where {ȳε, ūε} is the solution of (1)–(3), and {ȳ, ū} is the solution of (5)–(7).

3. Preliminaries and Notation
Subsequently, we assume the following assumptions for the parameters of problem (1)–(3)

are fulfilled:
( f1) Multi-valued function f : R+ × R+ → conv(R) is continuous and there exist

C, C1 > 0 such that

∀t ≥ 0 ∀y ∈ R ∥ f (t, y)∥+ := sup
ξ∈ f (t,y)

∥ξ∥R ≤ C + C1∥y∥R, (9)

where ∥ξ∥R denotes the Euclidean norm of ξ ∈ Rn;
(g1) function g : R → R is a continuous function and there exists C2 > 0 such that

∀y ∈ R ∥g(y)∥R ≤ C2; (10)

(q1) function q : Ω ×R → R is a Caratheodori function and there exists C3 > 0 and
functions K1 ∈ L2(Ω), K2 ∈ L1(Ω) such that

∥q(x, ξ)∥R ≤ C3∥ξ∥2
R + K1(x), q(x, ξ) ≥ K2(x); (11)

(U1) U ⊆ L2(Q) is closed and convex, 0 ∈ U;
(γ1) γ > 2C2

1 + 1 + C2;
(A1) uniformly with regard to y ∈ R, there exists the limit (4).
For u ∈ U and y0 ∈ L2(Ω), we understand the solution of (1) as a mild solution on ev-

ery finite time interval; i.e., y is a solution of (1). If y ∈ L2
loc(0,+∞; H1

0(Ω))
⋂

L∞
loc(0,+∞; L2(Ω))

such that ∀T > 0, ∀φ ∈ H1
0(Ω), ∀η ∈ C∞

0 (0, T) the following equality holds:

−
T∫
0
(y, φ)H · η′dt +

T∫
0
(∇y,∇φ)H · ηdt =

T∫
0
(l(t), φ)H · ηdt+

+
T∫
0
(g(y)u, φ)H · ηdt, l(t) ∈ f

( t
ε , y
) (12)

and l ∈ L2
loc(0,+∞; L2(Ω)).

Hereafter, we denote by ∥ · ∥H and (·, ·)H the classical norm and scalar product in
H = L2(Ω), by ∥ · ∥V the classical norm in V := H1

0(Ω), and by V∗ the dual space to V.
Note that due to assumptions ( f1) and (g1) and the properties of operator A for y,

from the definition of the mild solution we have

∂y
∂t

∈ L2
loc(0,+∞; V∗).

Following this, we denote by F ε (or F̄ ) a set of all pairs {y, u}, where y is a solution of
(1) (or (5)) with control u.
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The following lemma gives us result about the solvability of the optimal control
problem (1)–(3).

Lemma 1. Let the conditions ( f1), (g1), (q1), (U1), and (γ1) hold true. Then, for every ε > 0, the
problem (1)–(3) has a solution {ȳε, ūε}, that is,

J(ȳε, ūε) ≤ J(y, u) ∀{y, u} ∈ F ε. (13)

Proof. We fix arbitrary ε > 0 and drop index ε throughout the proof for readability. First
of all, note that by Theorem 3.1 from [22], the set of admissible pairs F ε is not empty. For
further investigations, let us consider some a priori estimates for solutions. Taking into
account the definition of the mild solution for parabolic inclusion, suppose that ∀φ ∈ H1

0(Ω)

d
dt (y, φ) + (∇y,∇φ) = ( f1(t), φ) + (g(y)u, φ) for almost all (a.a.) t > 0
f1(t) ∈ f (t, y(t))

(14)

Thus, we can consider the following equality:

s∫
0

(
y′(t), y(t)

)
Hdt +

s∫
0

(∇y,∇y)Hdt =
s∫

0

( f1(t), y(t))Hdt +
s∫

0

(g(y)u, y(t))dt. (15)

Integrating by parts, and taking into account Young’s inequality and the assumption (g1),
we obtain

∥y(s)∥2
H + 2Ĉ

s∫
0
∥y(t)∥2

Vdt ≤ ∥y0∥2
H +

s∫
0

(
∥ f1(t)∥2

H + ∥y(t)∥2
H
)
dt+

+C2

(
s∫

0
∥u(t)∥2

Hdt +
s∫

0
∥y(t)∥2dt

)
,

(16)

where Ĉ is the constant from the inequality ∥∇y∥2
H ≥ Ĉ∥y∥2

V for an arbitrary y ∈ H1
0(Ω).

Using (9), we have
∥ f1(t)∥2

H ≤ 2
(

C2|Ω|+ C2
1∥y(t)∥2

H

)
.

Then, from (16) we obtain

∥y(s)∥2
H + 2Ĉ

s∫
0
∥y(t)∥2

Vdt ≤ ∥y0∥2
H +

s∫
0

2C2|Ω|dt +
s∫

0
2C2

1∥y(t)∥2
Hdt+

+
s∫

0
∥y(t)∥2

Hdt + C2

s∫
0
∥u(t)∥2

Hdt + C2

s∫
0
∥y(t)∥2

Hdt =

= ∥y0∥2
H + 2C2|Ω|s + C2

s∫
0
∥u(t)∥2

Hdt + (2C2
1 + 1 + C2)

s∫
0
∥y(t)∥2

Hdt

and using Gronwall’s inequality, we arrive at

∥y(t)∥2
H ≤

(
∥y0∥2

H + 2C2|Ω|t + C2∥u∥L2(0,+∞;H)

)
e(2C2

1+1+C2)t. (17)

Note that from (16) and (17), we can conclude that ∃M > 0:

∥y∥2
L2(0,T;V) ≤ M ∀T > 0. (18)

Due to the inclusion from (1), (9), and (17), we obtain

∥ f1(t)∥H ≤
√

2(C2|Ω|+ C2
1 M1)

1/2 for a.a. t > 0 (19)

∥y′(t)∥V∗ ≤ ˆ̂C∥y(t)∥V + C|Ω|+ C1
√

M1 + C2∥u(t)∥H for a.a. t > 0, (20)
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where M1 =
(
∥y0∥2

H + 2C2|Ω|T + C2∥u∥2
L2(0,+∞;H)

)
e(2C2

1+1+C2)T , and as a consequence,

there exist M2 :=
(
2(C2|Ω|+ C2

1 M1)T
)1/2 and M3 > 0 such that

∥ f1∥L2(0,T;H) ≤ M2, ∥y′∥L2(0,T;V∗) ≤ M3 ∀T > 0. (21)

Taking into account (q1), we obtain

J(y, u) ≤
∫
Q

e−γt(C3∥y∥R + K1(x))dtdx + α
∫
Q

u2(t, x)dtdx. (22)

In view of (17), we have∫
Q

C3e−γt∥y∥2
Rdtdx ≤

≤ C3

+∞∫
0

e−γt
(
∥y0∥2

H + 2C2|Ω|t + C2∥u∥2
L2(0,+∞;H)

)
e(2C2

1+1+C2)tdt =: I1 + I2 + I3.

Due to (γ1) and (q1), we obtain

I1 := C3

+∞∫
0

e(−γ+2C2
1+1+C2)t∥y0∥2

Hdt =

=
C3∥y0∥2

H
−γ+2C2

1+1+C2
e(−γ+2C2

1+1+C2)t
∣∣+∞
0 =

= − C3∥y0∥2
H

−γ+2C2
1+1+C2

=
C3∥y0∥2

H
γ−(2C2

1+1+C2)
,

(23)

I2 = C3

+∞∫
0

2C2|Ω|te(−γ+2C2
1+1+C2)tdt =

= C32C2|Ω|te(−γ+2C2
1+1+C2)t

−γ+2C2
1+1+C2

∣∣+∞
0 − C32C2|Ω|

+∞∫
0

e(−γ+2C2
1+1+C2)t

−γ+2C2
1+1+C2

dt =

= −C32C2|Ω|e(−γ+2C2
1+1+C2)t

(−γ+2C2
1+1+C2)2

∣∣+∞
0 = C32C2|Ω|

(−γ+2C2
1+1+C2)2 ,

(24)

I3 = C3C2

+∞∫
0

∥u∥2
L2(0,+∞;H)

e(−γ+2C2
1+1+C2)tdt =

=
C3C2∥u∥2

L2(0,+∞;H)

−γ+2C2
1+1+C2

e(−γ+2C2
1+1+C2)t

∣∣+∞
0 =

C3C2∥u∥2
L2(0,+∞;H)

γ−(2C2
1+1+C2)

.
(25)

Further we have that

∫
Q e−γtK1(x)dtdx =

+∞∫
0

e−γtdt ·
∫
Ω

K1(x)dx =

= e−γt

−γ

∣∣+∞
0 ·

∫
Ω

K1(x)dx = 1
γ

∫
Ω

K1(x)dx ≤

= 1
γ

(∫
Ω

dx

)1/2

·
(∫

Ω
K2

1(x)dx

)1/2

= |Ω|1/2

γ · ∥K1∥L2(Ω).

(26)

Taking into account (23)–(26), we have

J(y, u) ≤ C3∥y0∥2
H

γ−(2C2
1+1+C2)

+ C32C2|Ω|
(−γ+2C2

1+1+C2)2 +
C3C2∥u∥2

L2(0,+∞;H)

γ−(2C2
1+1+C2)

+

+ |Ω|1/2
γ · ∥K1∥L2(Ω) + α∥u∥2

L2(0,+∞;H)
≤

≤ L
(
∥y0∥2

H + ∥u∥2
L2(0,+∞;H)

+ ∥K1∥L2(Ω) + 1
)
< ∞,

(27)

where L = max{ C3
γ−(2C2

1+1+C2)
; C3C2

γ−(2C2
1+1+C2)

+ α; |Ω|1/2

γ ; C32C2

(−γ+2C2
1+1+C2|Ω|)2 }.
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Now, let {yn, un} be a minimizing sequence, that is,

lim
n→∞

J(yn, un) = inf
{y,u}∈F ε

J(y, u) =: J̄ε. (28)

Note that in view of (q1) ∀{y, u} ∈ F ε, it holds that

J(y, u) ≥ −
∥K2∥L1(Ω)

γ
⇒ J̄ε ≥ −

∥K2∥L1(Ω)

γ
> −∞.

From (28), for rather large n
J(yn, un) ≤ J̄ε + 1. (29)

On the other hand,

J(yn, un) ≥ −
∥K2∥L1(Ω)

γ
+ α∥un∥2

L2(0,+∞;H). (30)

Inequalities (29), (30) imply that {un} is bounded in L2(0,+∞; H) and thus for subsequence

un → u weakly in L2(0,+∞; H) (31)

In view of the convexity of U, we have that u ∈ U. From (17), (18) we obtain that ∀T > 0
{yn} is bounded in L2(0, T; V)

⋂
L∞(0, T; H), from (21) we have that

{
∂yn
∂t

}
is bounded in

L2(0, T; V∗). Due to the Compactness Lemma from [23], we conclude that up to subse-
quence ∀T > 0

yn → y weakly in L2(0, T; V),
yn → y in L2(0, T; H),
∀t ≥ 0 yn(t) → y(t)weakly in H,
yn(t, x) → y(t, x) a.e. in Q.

(32)

Let us consider yn to be a mild solution of the problem
∂yn
∂t = Ayn + f1n(t) + g(yn)un

yn|∂Ω = 0
yn|t=0 = y0(x)

(33)

with f1n(t) ∈ f (t, yn(t)).
From (21), (32), and Lemma 3.2 from [24], we have that f1n → f1 weakly in L2(0, T; H),

yn → y in C(0, T; H) ∀T > 0, where y is the solution of (1) and f1(t) ∈ f (t, y(t)). Thus,
from (32) and Lebesgue’s Dominated Convergence Theorem, we can pass to the limit in the
equality (12), which we can apply to {yn, un} and receive that {y, u} ∈ F ε. In view of to
the pointwise convergence,

e−γt · q(x, yn(t, x)) → e−γtq(x, y(t, x)) a.e. in Q,

Given Fatou’s lemma and the weak convergence in (31), we obtain

J̄ε = lim
n→∞

J(yn, un) ≥ lim
n→∞

∫
Q

e−γtq(x, yn(t, x))dtdx+

+ lim
n→∞

α
∫
Q

u2(t, x)dtdx ≥ J(y, u).

Therefore, {y, u} is a solution of (1)–(3).
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Remark 1. In view of the properties of the Hausdorff metric, we have that Condition ( f1) is satisfied
for the averaged function f̄ (y) with the same constants as for f (t, y). Indeed,

∀ξ ∈ f (t, y) : ∥ξ∥R ≤ C + C1∥y∥R.

Due to the condition distH

(
f̄ , 1

T

T∫
0

f (s, y)ds

)
→ 0, T → ∞, we obtain that ∀ε > 0 ∃T0 :

∀T ≥ T0 we have f̄ (y) ∈ Oε

(
1
T

T∫
0

f (s, y)ds

)
. Furthermore, we obtain

∥ f̄ (y)∥R ≤

∥∥∥∥∥∥ 1
T

T∫
0

f (s, y)ds

∥∥∥∥∥∥
+

+ ε ≤ 1
T

T∫
0

∥ f (s, y)∥+ds + ε ≤ C + C1∥y∥R + ε.

The existence of a solution {ȳ, ū} to (5)–(7) can be proved following similar arguments to the proof
of the existence of {ȳε, ūε} for problem (1)–(3). Note, however, that the construction of {ȳ, ū} is
much simpler than that of {ȳε, ūε} due to the averaged nature of the coefficients involved.

4. Main Result
Theorem 1. Suppose that the assumptions ( f1), (g1), (q1), (u1), (γ1), and (A1) are fulfilled and,
moreover, that for every u ∈ U there exists a unique solution of the problem (5). We additionally
assume that ∀η > 0 ∃δ > 0 ∀t ≥ 0 ∀y, z ∈ R

∥y − z∥R < δ ⇒ dist( f (t, y), f (t, z)) < η. (34)

Let {ȳε, ūε} be a solution of (1)–(3). Then,

J(ȳε, ūε) → J(ȳ, ū), ε → 0 (35)

and up to subsequence
ȳε → ȳ in L2(0,+∞; H), (36)

ūε → ū weakly in L2(0,+∞; H). (37)

Here, {ȳ, ū} is a solution of (5)–(7).

Proof. Let εn → 0 and {ȳn, ūn} be a solution of (1)–(3) for ε = εn. Since {ȳn, ūn} is an
optimal pair, we obtain

J(ȳn, ūn) ≤ J(yn, 0),

where yn is a solution of (1) with ε = εn and u ≡ 0. Therefore, from (27) and (30), we obtain

−
∥K2∥L1(Ω)

γ
+ α∥ūn∥L2(0,+∞;H) ≤ L(∥y0∥2

H + ∥K1∥L2(Ω) + 1). (38)

Applying similar reasoning as in the proof of Lemma 1, we conclude that on subsequence
for some ŷ, û:

ūn → û weakly in L2(0,+∞; H), n → ∞, (39)

ȳn → ŷ in the sense of (32), n → ∞. (40)

Let us show that {ŷ, û} ∈ F̄ , i.e., ŷ is a solution of the corresponding averaged problem
(5) with control û. In order to achieve this goal, we have to make a limit transition in
the equality
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(ȳn(T), φ)H − (y0, φ)H +
T∫
0
(∇ȳn,∇φ)Hdt =

=
T∫
0

(
f εn
1 (t), φ

)
Hdt +

T∫
0
(g(ȳn)ūn, φ)Hdt

(41)

for arbitrary φ ∈ V and T > 0, where f εn
1 (t) ∈ f

( t
εn , ȳn).

As for the left-hand side of the equality (41), the limit transition is a direct consequence
of (40). From the Dominated Convergence Theorem, we have that

g(ȳn) → g(ŷ) in L2(0, T; H), n → ∞∫
Ω

T∫
0

f εn
1 (t)φdtdx −

∫
Ω

T∫
0

f̄ (ŷ)φdtdx =

distH

(∫
Ω

T∫
0

f εn
1 (t)φdtdx,

∫
Ω

T∫
0

f̄ (ŷ)φdtdx

)
≤

≤ distH

(∫
Ω

T∫
0

f
(

t
εn

, ȳn(t, x)
)

φdtdx,
∫
Ω

T∫
0

f̄ (ŷ)φdtdx

)
.

We still have to prove that

distH

∫
Ω

T∫
0

f
(

t
εn

, ȳn(t, x)
)

φdtdx,
∫
Ω

T∫
0

f̄ (ŷ)φdtdx

→ 0, n → ∞. (42)

First of all, let us note that due to (A1) and [25] ∀0 < a < b ∀φ ∈ H, it holds that

distH

∫
Ω

b∫
a

f
(

t
εn

, ψ(x)
)

φdtdx,
∫
Ω

b∫
a

f̄ (ψ(x))φdtdx

→ 0, n → ∞ (43)

In view of Egorov’s theorem [26] ∀δ > 0 ∃Qδ
1 ⊂ QT such that µ(Qδ

1) < δ and

ȳn → ŷ uniformly on QT \ Qδ
1, as n → ∞. (44)

Here, µ is Lebesgue’s measure on R2.
On the other hand, there exists a sequence of step functions

ym(t, x) =
m

∑
k=1

ym
k (x)χAm

k
(t), {ym

k } ⊂ H

with {Am
k = (am

k , bm
k )} being a covering of (0, T) such that

ym → ŷ in L2(0, T; H) and almost everywhere in QT .

Moreover, ∀δ > 0 ∃Qδ
2 ⊂ QT such that µ(Qδ

2) < δ and

ym → ŷ uniformly on QT \ Qδ
2 as m → ∞. (45)
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Furthermore, we have that

distH

( ∫
QT

f
(

t
εn

, ȳn(t, x)
)

φdtdx,
∫

QT

f̄ (ŷ(t, x))φdtdx

)
≤

≤ distH

( ∫
QT

f
(

t
εn

, ȳn(t, x)
)

φdtdx,
∫

QT

f
(

t
εn

, ŷ(t, x)
)

φdtdx

)
+

+distH

( ∫
QT

f
(

t
εn

, ŷ(t, x)
)

φdtdx,
∫

QT

f̄ (ŷ(t, x))φdtdx

)
=: I(n)1 + I(n)2 .

Due to (44), Hölder’s inequality, (9), and (17), we have

I(n)1 ≤
∫

QT

distH

[
f
(

t
εn

, ȳn(t, x)
)

, f
(

t
εn

, ŷ(t, x)
)]

φdtdx ≤

≤
∫

QT\Qδ
1

distH

[
f
(

t
εn

, ȳn(t, x)
)

, f
(

t
εn

, ŷ(t, x)
)]

φdtdx+

+
∫

Qδ
1

distH

[
f
(

t
εn

, ȳn(t, x)
)

, f
(

t
εn

, ŷ(t, x)
)]

φdtdx ≤

≤
∫

QT\Qδ
1

distH

[
f
(

t
εn

, ȳn(t, x)
)

, f
(

t
εn

, ŷ(t, x)
)]

∥φ∥Rdtdx+

+2C
∫

Qδ
1

φdtdx + 2C1
∫

Qδ
1

∥y∥Rφdtdx ≤

≤
∫

QT\Qδ
1

dist
[

f
(

t
εn

, ȳn(t, x)
)

, f
(

t
εn

, ŷ(t, x)
)]

∥φ∥Rdtdx+

+2C∥φ∥H · δ1/2T1/2 + 2C1
√

M1∥φ∥H · δ1/2 · T.

(46)

Due to (34), for a given δ > 0 ∃λ ∀n ≥ 1 ∀t ≥ 0

∥y − z∥R < λ ⇒ dist
(

f
(

t
εn

, y
)

, f
(

t
εn

, z
))

≤ δ1/2.

Therefore, choosing n1 such that ∀n ≥ n1

sup
(t,x)∈QT\Qδ

1

∥ȳn(t, x)− ŷ(t, x)∥ < λ,

we have from (46) that ∀n ≥ n1

I(n)1 ≤ δ1/2µ1/2(QT)∥φ∥H
√

T + 2C∥φ∥Hδ1/2
√

T+
+2C1

√
M1∥φ∥Hδ1/2T ≤ C̃(T)δ1/2.

(47)

On the other hand, for every step function ym(t, x), we have, using (43), that ∀m ≥ 1

distH

( ∫
QT

f
(

t
εn

, ym(t, x)
)

φdtdx,
∫

QT

f̄ (ym(t, x))φdtdx

)
=

= distH

 m
∑

k=1

∫
Ω

∫
Am

k

f
(

t
εn

, ym
k (t, x)

)
φdtdx,

m
∑

k=1

∫
Ω

∫
Am

k

f̄ (ym
k (x))φdtdx

 ≤

≤
m
∑

k=1
distH

∫
Ω

∫
Am

k

f
(

t
εn

, ym
k (t, x)

)
φdtdx,

∫
Ω

∫
Am

k

f̄ (ym
k (x))φdtdx

→ 0, n → ∞.

(48)
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Thus, ∀m ≥ 1 ∃n2 = n2(m) ∀n ≥ n2

distH

∫
QT

f
(

t
εn

, ym(t, x)
)

φdtdx,
∫

QT

f̄ (ym(t, x))φdtdx

 < δ. (49)

Furthermore, ∃m0 ∀m ≥ m0 ∀n ≥ 1

distH

 ∫
QT\Qδ

2

f
(

t
εn

, ŷ(t, x)
)

φdtdx,
∫

QT\Qδ
2

f
(

t
εn

, ym(t, x)
)

φdtdx

 ≤∫
QT\Qδ

2

distH

(
f
(

t
εn

, ŷ(t, x)
)

, f
(

t
εn

, ym(t, x)
))

∥φ∥Rdtdx ≤

≤ δ1/2µ1/2(QT)∥φ∥H
√

T,

(50)

distH

 ∫
QT\Qδ

2

f̄ (ŷ(t, x))φdtdx,
∫

QT\Qδ
2

f̄ (ym(t, x))φdtdx

 ≤∫
QT\Qδ

2

distH
(

f̄ (ŷ(t, x))φ, f̄ (ym(t, x))
)
∥φ∥Rdtdx ≤

≤ δ1/2µ1/2(QT)∥φ∥H
√

T.

(51)

Combining (48)–(51), we obtain ∀m ≥ m0 ∀n ≥ n2(m)

I(n)2 ≤ 2δ1/2µ1/2(QT)∥φ∥H
√

T + δ ≤ ˜̃C(T)δ1/2. (52)

Inequalities (47), (52) imply (42). Thus, we can pass to the limit in (41) and obtain that
(ŷ, û) ∈ F̄ .

Let us now show that {ŷ, û} is an optimal process in (5)–(7).
Due to Fatou’s lemma, we have

lim
n→∞

J(ȳn, ūn) ≥ J(ŷ, û). (53)

On the other hand, for every u ∈ U and any yn—a solution of (1) with control u and
ε = εn—we obtain

J(ȳn, ūn) ≤ J(yn, u).

Applying similar reasoning as in proof of the Lemma 1 for {yn}, we obtain that yn → y in
the sense of (32), where y is a unique solution of (5) with control u.

Let us show that∫
Q

e−γtq(x, yn(t, x))dtdx →
∫
Q

e−γtq(x, y(t, x))dtdx. (54)

Indeed, due to (q1), we have∣∣e−γtq(x, yn(t, x))
∣∣ ≤ C3e−γt∥yn(t, x)∥2

R + e−γtK1(x). (55)

Since yn → y in L2(0, T; H) and a.e. in Q, in view of (γ1), (17), (23)–(26), we deduce from
Lebesgue’s Dominated Convergence Theorem:

∀T > 0
∫

QT

e−γtq(x, yn(t, x))dtdx →
∫

QT

e−γtq(x, y(t, x))dtdx, n → ∞. (56)
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On the other hand, from (17) and (55),

+∞∫
T

∫
Ω

e−γt|q(x, yn(t, x))|dtdx ≤

≤
+∞∫
T

e−γt
(

C3∥yn(t)∥2
H + |Ω|1/2∥K1∥L2(Ω)

)
dt ≤

≤
+∞∫
T

e−γt((C3∥y0∥2
H + 2C2C3|Ω|t + C3C2∥u∥2

L2(0,+∞;H)
)e(2C2

1+1+C2)t+

+|Ω|1/2∥K1∥L2(Ω))dt =: J1 + J2 + J3 + J4.

(57)

Let us consider each term of the right hand side of (57) separately:

J1 :=
+∞∫
T

C3∥y0∥2
He(−γ+2C2

1+1+C2)tdt =

=
C3∥y0∥2

H
−γ+2C2

1+1+C2
e(−γ+2C2

1+1+C2)t
∣∣+∞
T =

=
C3∥y0∥2

H
γ−(2C2

1+1+C2)
e(−γ+2C2

1+1+C2)T ;

(58)

J2 :=
+∞∫
T

2C2C3|Ω|te(−γ+2C2
1+1+C2)tdt = 2C2C3|Ω|te(−γ+2C2

1+1+C2)t

−γ+2C2
1+1+C2

∣∣+∞
T −

−2C2C3|Ω|
+∞∫
T

e(−γ+2C2
1+1+C2)t

−γ+2C2
1+1+C2

dt =

= 2C2C3T|Ω|e(−γ+2C2
1+1+C2)T

γ−(2C2
1+1+C2)

− 2C2C3|Ω| e(−γ+2C2
1+1+C2)t

(−γ+2C2
1+1+C2)2

∣∣+∞
T =

= 2C2C3T|Ω|e(−γ+2C2
1+1+C2)T

γ−(2C2
1+1+C2)

+ 2C2C3|Ω|e(−γ+2C2
1+1+C2)T

(−γ+2C2
1+1+C2)2 ;

(59)

J3 :=
+∞∫
T

C3C2∥u∥2
L2(0,+∞;H)

e(−γ+2C2
1+1+C2)tdt =

=
C3C2∥u∥2

L2(0,+∞;H)

−γ+2C2
1+1+C2

e(−γ+2C2
1+1+C2)t

∣∣+∞
T =

=
C3C2∥u∥2

L2(0,+∞;H)

γ−(2C2
1+1+C2)

e(−γ+2C2
1+1+C2)T ;

(60)

J4 :=
+∞∫
T

e−γt|Ω|1/2∥K1∥L2(Ω)dt = |Ω|1/2∥K1∥L2(Ω)
e−γt

−γ

∣∣+∞
T =

=
|Ω|1/2∥K1∥L2(Ω)

e−γT

γ .

(61)

Combining (58)–(61), we obtain (54).
From (54) we obtain the following inequality: ∀{y, u} ∈ F̄

J(ŷ, û) ≤ lim
n→∞

J(ȳn, ūn) ≤ lim
n→∞

J(yn, u) = J(y, u). (62)

This means that {ŷ, û} is a solution of (5)–(7).
Let us substitute u = û in previous arguments. Then, y = ŷ in view of uniqueness.

Thus, from (62), we obtain

J(ŷ, û) ≤ lim
n→∞

J(ȳn, ūn) ≤ J(ŷ, û). (63)

These inequalities imply that up to subsequence

J(ȳn, ūn) → J(ŷ, û), n → ∞. (64)
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Since J(ŷ, û) = inf
{y,u}∈F̄

J(y, u), then the convergence in (64) holds for the whole sequence.

Therefore, (35) is proved.

Let us consider an example of an investigated problem. Let Ω = (0, l), Ay = ∂2y
∂x2 and

consider the following problem:

∂y
∂t − Ay ∈

[
e−y2 · sin2(2 t

ε

)
, e−y2 · sin2( t

ε

)]
+ u, (t, x) ∈ Q,

y|x=0 = y|x=l = 0,
y|t=0 = y0(x),
J(y, u) =

∫
Q

e−γty2(t, x)dtdx + α
∫
Q

u2(t, x)dtdx → inf .

(65)

The corresponding averaged problem is

∂y
∂t − Ay = 1

2 + u, (t, x) ∈ Q,
y|x=0 = y|x=l = 0,
y|t=0 = y0(x),
J(y, u) =

∫
Q

e−γty2(t, x)dtdx + α
∫
Q

u2(t, x)dtdx → inf .

(66)

We consider a control u ∈ L2(Q) such that ∥u(t, x)∥R ≤ 1 a.e. We can see that Lemma 1
(Remark 1) and Theorem 1 can be applied to problems (65) and (66).

5. Discussion
Our aim was to establish a theoretical result illustrating the effectiveness of the av-

eraging method in finding approximate solutions for the optimal control problem of a
nonlinear parabolic differential inclusion with rapidly oscillating parameters. Specifically,
we demonstrated that the optimal control of the averaged problem can be regarded as
“approximately” optimal for the original perturbed system. Importantly, this was achieved
under fairly mild and natural assumptions regarding the system’s parameters. To fur-
ther highlight the significance and utility of the averaging method in such contexts, we
intend to extend our research to its application in control problems involving hyperbolic
differential inclusions.
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