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Abstract: An inverse-square probability mass function (PMF) is at the Newcomb–Benford
law (NBL)’s root and ultimately at the origin of positional notation and conformality.
Pr(Z) = (2Z)−2, where Z ∈ Z+. Under its tail, we find information as harmonic likeli-
hood L([s, t)) = Ht−1 − Hs−1, where Hn is the nth harmonic number. The global Q-NBL
is Pr(b, q) = L([q, q + 1))/L([1, b)) = (qHb−1)

−1, where b is the base and q is a quantum
(1 ≤ q < b). Under its tail, we find information as logarithmic likelihood ℓ([i, j)) = ln j/i.
The fiducial R-NBL is Pr(r, d) = ℓ([d, d + 1))/ℓ([1, r)) = logr(1 + 1/d), where r ≪ b is the radix
of a local complex system. The global Bayesian rule multiplies the correlation between two
numbers, s and t, by a likelihood ratio that is the NBL probability of bucket [s, t) relative to
b’s support. To encode the odds of quantum j against i locally, we multiply the prior odds
Pr(b, j)/Pr(b, i) by a likelihood ratio, which is the NBL probability of bin [i, j) relative to r’s
support; the local Bayesian coding rule is õ(j : i|r) = i/j logr

j/i. The Bayesian rule to recode
local data is õ(j : i|r′) = õ(j : i|r) ln r/ln r′. Global and local Bayesian data are elements of the
algebraic field of “gap ratios”, A−B

C−D . The cross-ratio, the central tool in conformal geometry,
is a subclass of gap ratio. A one-dimensional coding source reflects the global Bayesian data
of the harmonic external world, the annulus {x ∈ Q| 1 ≤ |x| < b}, into the local Bayesian
data of its logarithmic coding space, the ball {x ∈ Q| |x| < 1− 1/b}. The source’s confor-
mal encoding function is y = logr(2x− 1), where x is the observed Euclidean distance to
an object’s position. The conformal decoding function is x = 1

2 (1 + ry). Both functions,
unique under basic requirements, enable information- and granularity-invariant recursion
to model the multiscale reality.

Keywords: inverse-square law (ISL); Newcomb–Benford law (NBL); positional notation
(PN); harmt (harmonic unit of information); likelihood; global-local duality; Bayesian law;
secretary problem; gap ratio; cross-ratio; coding source; conformability; granularity
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1. Introduction
1.1. About the Newcomb–Benford Law

After Simon Newcomb’s public note [1] and Benford’s statement [2] that “small things
are more numerous than large things, and there is a tendency for the step between sizes to
be equal to a fixed fraction of the last preceding phenomenon or event”, many scientists [3]
tried to explicate the strange high frequency of the micro in nature, the rarity of the macro,
and the ebbing progression of the gaps in between.

Nature pivots on exponential powers. Benford underlined that “the geometric series
has long been recognized as a common phenomenon in factual literature and in the ordinary
affairs of life”. Nevertheless, human functions are often arithmetic-centric. Will there be a
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natural coding system to convert these realms into one another, the observable into our
inner world’s models, and vice versa? In other words, does nature count on a conformal
transformation mechanism [4]?

In modern terms, the Newcomb–Benford law (NBL) states that the first digits of ran-
domly chosen original data typically outline a logarithmic curve in an impressive diversity
of fields, regardless of their physical units. Equivalently, the law remarks that raw natural
data usually belong to nearly scale-invariant geometric series. Among its manifestations, it
is fascinating that linear coefficients represented by mathematical and physical constants [5]
(e.g., proportionality parameters or scalar potentials) adhere to the law.

Although this scenario suggests that the NBL might account for an elementary princi-
ple, we have yet to clarify its origin, realize a theoretical basis, or encounter a convincing
reason [6]. Berger [7] laments that “There is no known back-of-the-envelope argument, not
even a heuristic one, that explains the appearance of Benford’s law across the board in data
that is pure or mixed, deterministic or stochastic, discrete or continuous-time, real-valued
or multidimensional”.

We claim a primordial probability inverse-square law (ISL) is at the NBL’s root. This
“canonical” probability mass function (PMF) has a double fundamental effect, namely,
the NBL for the discrete (global and harmonic) and continuous (local and logarithmic)
domains. We prefer to anticipate these three laws’ properties and affiliated terminology
in Table 1, indicating their scope and character, baseline set, physical incarnation, scale,
formula, information function, cardinality, and how we will denominate the corresponding
item, an item list, and an item range.

Table 1. Nature and terminology of the three foundational contexts, where Z is a nonzero integer, b is
the global base, q is a quantum (1 ≤ q < b), Hn is the nth harmonic number, r is the local radix, and d
is a digit (1 ≤ d < r). The entry “Physics” poses a conjecture.

Property ↓ / Law→ Canonical PMF First NBL Second NBL

Scope Mathematical Global Local

Character Discrete Discrete Continuous

Baseline set Natural, Integer Rational Real

Physics Field Potential Entropy

Entity at origin Indeterminate Observer Coding source

Scale Linear Harmonic Logarithmic

Probability law (2Z)−2 (qHb−1)
−1 logr(1 + 1/d)

Information function Digamma Logarithm

Cardinality Infinite Base Radix

Item Number Quantum Digit

Item list < α, β, . . . > String Chain Numeral

Item range [α, β) Interval Bucket Bin

Are these laws naturally predetermined probability distributions? We champion the
view that the canonical PMF is a brute fact and therefore the global and local versions of NBL
are inescapable. For one thing, their mode is one. This number is the base case for almost all
proofs by mathematical induction, statistically the most probable cardinal of a natural set
(e.g., one cosmos, one black hole at the center of a galaxy, one star ruling an orbital planetary
system, one heart pumping a body’s blood, one nucleus regulating the cellular activity, et
cetera), and seed in the majority of recursive computational processes. We read in [8] that
numbers close to the multiplicative unit are not preferably rooted in mathematics, but a
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simple glance at the table of constants in [9] points in the opposite direction. Small leading
digits and, in general, small significands (mantissae) of coefficients and magnitudes are the
most common in sciences, albeit, of course, we can find cardinalities of all sizes.

1.2. Content

This article’s field of study is mathematical and computational physics, delving into
philosophy, theoretical physics, information theory, probability theory, and number theory.

We have organized it as follows (see Figure 1). We first examine the challenges re-
searchers historically faced in deducing NBL and the state of the art in this field. Afterward,
we present a one-parameter inverse-square PMF for the natural numbers with positive
probabilities summing to one, extensible to the integers, and diverging mean (no bias).
Next, we deduce the fiducial NBL passing through the global NBL; this two-phase deriva-
tion clarifies why the tendency for the minor numbers revealed by the natural sciences can
be regular only if we assume that an all-encompassing base exists.

Information theory [10] comes into play when we discover that information is prior to
probability in the context of NBL. Likewise, a unit fraction is the harmonic likelihood of
an elemental quantum gap, and a digit of a numeral written in PN is a bin that covers a
proportion of the available logarithmic likelihood.

Canonical PMF

Constructability

Global (harmonic) NBL

Local (logarithmic) NBL

Positional Notation

Local Bayes Law

Gap-ratio and cross-ratio Jump odds

Stability

Bipartition odds

Optimal stopping

Global Bayes Law

Positive probabilities summing to 1 
Central symmetry
No bias
Space divisibility
Randomness

Coding source, coding space
• 1-ball conformal model
• Conformal metric (relativity)
• Conformal coding and computability
• Recursive granularity

o Information invariance
o Coarse-graining and Multi-scaling

Universal coding system
• Incrementality
• Recurrent structure

Figure 1. The road to conformal coding. We find information under the canonical PMF’s tail as harmonic
likelihood L([s, t)) = Ht−1 − Hs−1. The global Q-NBL is Pr(b, q) = L([q, q + 1))/L([1, b)) = (qHb−1)

−1,
where b is the base, and q is a quantum (1 ≤ q < b). We find information under the Q-NBL’s tail as
logarithmic likelihood ℓ([i, j)) = ln j/i. The fiducial R-NBL is Pr(r, d) = ℓ([d, d + 1))/ℓ([1, r)) = logr(1+ 1/d),
where r < b is the radix of a local complex system. The global Bayesian rule multiplies the prior
correlation between numbers s and t, Pr(b, t)/Pr(b, s) = (s/t)2, by a likelihood ratio that is the NBL
probability of bucket [s, t) relative to b’s support. The local Bayesian rule multiplies the prior odds
of quantum n2 against n1, Pr(r, n2)/Pr(r, n1) = n1/n2, by a likelihood ratio that is the NBL probability
of bin [n1, n2) relative to r’s support. Jump and bipartition odds are problems where the synergy
between Benford’s and Bayes’ rules manifests. However, we appreciate its full potential when a coding
source, typically a complex system, conformally encodes the information perceived from the external
(harmonic) world.

The odds between two events is a correlation measure whose entropic contribution
to a positional scale ushers in Bayes’ rule [11], namely, the product of two factors, a
rational prior and a rational likelihood; precisely, the NBL probability of the numeric range
involved. The structure of Bayesian data is recurrent under arithmetic operations and
gives place to the algebraic field of “gap ratios”. A subclass of gap ratio, the cross-ratio,
is the central instrument of conformality and the ground for Lorentz covariance. Then,
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we determine the conformal metric and iterative coding functions that preserve the local
Bayesian information and are compatible with a multiscale complex system [12].

1.3. Motivation and Method

Whereas the uniform distribution of probabilities is, in principle, fair and provides
maximum entropy, it does not fit well into an open (infinite) domain. Contrariwise, it is
noteworthy that [13] “the frequency with which objects occur in ’nature’ is an inverse func-
tion of their size”, indicating that oddity and magnitude usually correlate and conform to
NBL. The cosmos displays a progressive aversion to larger and larger numbers, somewhat
implementing the “parsimonae lex” [14], a principle of frugality that stimulates economy
and effectiveness as universal prime movers, drivers of nascent physics.

That the universe is prone to favor slightness is particularly blatant in physics and
chemistry. For instance, following the standard cosmological model [15], the abundance
of hydrogen and helium is roughly 75% and 23% of all baryonic matter, respectively [16].
Higher atomic numbers than 26 (iron) are progressively more and more infrequent. Never-
theless, the universe’s heaviest elements can comparatively produce the most remarkable
galactic phenomena despite their shortage [17] (e.g., the necessary metals to form the Milky
Way represent only about 2% of the galaxy’s disk mass). Why do accessibility and reactivity
maintain a hyperbolic relationship?

Consequently, the primary motivation of this work is seeking a reason for NBL and
explaining its consequences rather than describing how it works [18] or elucidating its
pervasiveness. If a genuine inverse-square PMF exists, we should arrive at it from just
a few essentials. We confirmed that three preconditions, namely, positive probabilities
summing to one, no bias, and central symmetry, unambiguously define a PMF, except for
a proportionality constant. Moreover, requiring the average compartmentalization of the
probability mass fixes such a constant and completely specifies the canonical PMF for the
natural and integer numbers.

Because the resulting probability for counting numbers is a unit fraction, a rational
version of NBL should accompany the logarithmic counterpart. Q fits into a pragmatic
relational world ruled by proportions and approximations, contrasting with the physically
unfeasible continuum’s absolute density and ultra-accuracy of R. Another motivation is
disclosing how a coding source manipulates information in PN since NBL says nothing
about the coding process that results in a digit’s probability of occurrence. PN is the natural
representation of a numeral on a coding source’s logarithmic scale, enabling conformal
transformations under certain constraints to exchange information between a system and
its environment. The existing literature needs a theory that integrates Benford’s and Bayes’
laws at a fundamental level, not least leading to the concept of conformality.

1.4. Main Accomplishments

We have encountered that information has a relational character primally conveyed
by the likelihood concept, either harmonic (L([s, t)) = Ht−1 − Hs−1harmt, i.e., “harmonic
unit” of information) or logarithmic (ℓ([i, j)) = ln j/inat). Likelihood is not the information
obtained by picking an item from a range but the space allocated to encode an item between
the range’s ends. An NBL probability is a proportion of the information total (likelihood
density), and an NBL entropy is the weighted mean of the information total (average
likelihood). Moreso, odds, gap ratios, and cross-ratios measure likelihood correlations.
Because algebra grows on these rational data, geometry embodies algebraic structures, and
physics reflects geometrical rules, information turns out to be physical.

Another high-level achievement is finding a hidden connection between NBL and
Bayes’ law. This rudimentary rule codes the strength of the relationship between a pair of
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items normalized in a particular base b or radix r. The global Bayes rule, in odds form and
b-ary harmonic information units, is the product of a prior, the ratio between the probability
of two numbers t and s according to the canonical PMF, by a likelihood factor, the global
NBL probability of the bucket [s, t) in base b. The local Bayes rule, in odds form and r-ary
logarithmic information units, is the product of the prior, a ratio between the global NBL
probability of two quanta j and i on b’s harmonic scale, by a likelihood factor, the local
NBL probability of the bin [i, j) in radix r. Further, Bayesian data conformally encoded
constitute normalized likelihood information exhibiting as entropy. Bayes’ rule also recodes
information after a change of base or radix, a foundation for incremental computation.
Lastly, we learned how a source recursively encodes the observable as Bayesian data and
decodes these back into the information of the external world. This Bayesian outlook
unifies the frequentist, subjective, likelihoodist, and information-theory interpretations.

This paper presents a theory of universal information coding that links mathematics
with physics. It provides various instances of how a law, PMF, concept, or formula supports
our theory that the cosmos is a hyperbolic, thrifty, and relational information system at a
fundamental level. The notion of conformality implemented into a source’s coding space
subsumes these hallmarks. It employs the NBL invariance of scale and base in Bayes’ rule
to calculate the entropic contribution of a range of items. This synergy reinforces the thesis
that mathematics begets physics and that information is a form of energy. The universe
fosters a natural positional system that rules how a body’s local quantum-mechanical
degrees of freedom carve the information of its consubstantial properties, backing the
Computable Universe Hypothesis [19].

1.5. Specific Achievements

We have found a roundabout but intuitive argument to explain the appearance of
NBL in the vast array of contexts in which its effect manifests; NBL issues from an ISL
of probability.

When choosing a natural number at random, nature follows a particular PMF, where
zero is possible and interpretable as “indeterminate”, e.g., not-a-number or inaction. We
require zero’s probability to be 1− ϵS, where ϵ is a proportionality constant, and ϵS is
the probability of picking a counting number, i.e., {1, 2, 3, · · · }. We also need this one-
parameter PMF to have no bias so that no number is prominent (up to its probability), i.e.,
any number can appear. Moreover, the mass of a counting number N is necessarily ϵ/N2 if
we want the probability function to be extensible to integer numbers, i.e., a number with
the same probability regardless of the sign. Thus, the universe weighs the cost of choosing
±N as growing quadratically with N.

We have obtained the “global” and “local” NBL from this predetermined PMF. Under
ϵ/N2’s tail, the probability that a natural number exceeds N is proportional to the trigamma
function at N. Likewise, the probability of a natural variable’s second-order cumulative
function falling into [s, t) is a harmonic likelihood ratio that cancels out the constant ϵ,
namely, the bucket’s width ψ(t)− ψ(s) = Ht−1 − Hs−1 relative to the base’s support width
ψ(b) − ψ(1) = Hb−1, where 1 ≤ s < t < b and {s, t, b} ∈ N+. The base b is a global
referent that changes the status of a number to a computable elemental entity we call a
“quantum”. When the bucket is [q, q + 1), we obtain the global NBL of a generic quantum q,
Pr(b, q) = 1

qHb−1
, an exact and separable function where q, b ∈ N, 1 ≤ q < b, and Hn is the

nth harmonic number. The global NBL represents, in information theory, the likelihood q
encloses concerning the likelihood total; geometrically, a share of the surface area swept by
q; and physically, a scalar potential harmonically diminishing as q moves away from the
origin. The odds version of this PMF (16), also exact and separable, defines the stability of
a quantum jump.
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We can handle quanta as real variable values when the global base b is giant. Because
a coding source does not know the value of b, it must establish a local referent r ≪ b
to normalize its information separated from the surrounding environment, changing the
status of a quantum to a locally computable elemental entity we call a “digit”. This scenario
involves the canonical PMF’s third-order cumulative distribution; the probability of a
quantum falling into [i, j) is a logarithmic likelihood ratio that cancels out Hb−1, precisely
the bin’s width ln j/i relative to the radix support’s width ln r. When the bin is [d, d + 1), we
arrive at the fiducial NBL, i.e., logr(1 + 1/d), where d ∈ N is a digit such that 1 ≤ d < r. This
PMF represents, in information theory, the likelihood d encloses regarding the likelihood r
embraces. It is geometrically a hyperbolic sector equivalent to the surface area swept by d
relative to that swept by r and physically a scalar potential r-logarithmically diminishing
as d moves away from the origin.

In general, NBL probabilities consider the cutoffs PN imposes as a proportion of the
total information. The global and local versions of NBL give probability masses similar
to a degree. For comparison purposes, 1 in standard ternary occupies 2/3 ≈ 66.7% (Q)
and ln 2/ln 3 ≈ 63.1% (R), while 2 occupies 1/3 ≈ 33.3% and ln 1.5/ln 3 ≈ 36.9%, respectively.
Likewise, 1 in standard decimal occupies 35.3% (Q) and 30.1% (R), while 9 occupies 3.9%
and 4.6%, respectively.

NBL, a synonym of PN, a subsidiary of the canonical PMF, describes an information
field where probability correlates with accessibility, whence with concentration and dura-
bility. Smaller significands occupy more room and furnish less information than greater
significands. In other words, the space is denser and more stable near the coding source,
while numerals dilute the space and become more reactive as we move away from the origin.

The analysis of NBL from the odds angle drives us to a rudimentary Bayesian frame-
work. Bayesian encoding, recoding, and decoding are elemental computing routines that
handle odds. The Bayesian encoding of the relation between two numbers is the entropic
allocation of their correlation for a harmonic scale, i.e., their ratio squared multiplied by
the probability of the associated interval in the chosen base (see Figure 2 in green). The
Bayesian encoding of the relation between two quanta is the entropic contribution of their
correlation for a logarithmic scale, i.e., their ratio multiplied by the probability of the associ-
ated bucket in the chosen radix (see Figure 2 in blue). This pattern allows us to interpret a
Bayesian rule as the formula to encode the rational point n/d or the corresponding range
[n, d) of integers; this duality principle asserting that points and lines are interchangeable
is endemic to the cosmos.

The global Bayes law bridges numbers with information. We measure global Bayesian
data in harmonic units of information that depend on the base. The natural harmonic scale
uses bucket [1, 2) as a reference. We measure local global Bayesian data in logarithmic units
of information that depend on the radix. The natural logarithmic scale uses bin [1, e) as a
reference, where e is Euler’s number.

The global Bayesian rule allows for calculating a quantum jump improbability, with
masses decaying similarly to the global NBL as we move away from the source. Likewise,
the local version of Bayesian coding drives us to the PMF of a domain’s bipartition, an
information function applicable to stopping problems. Specifically, we deduce the informa-
tion gained from splitting a radix’s digit set. If we take these digits as generic elements to
be processed sequentially, our bipartite odds formula reaches a pair of information maxima
involving e. The square root of the radix gives a minimum between the two maxima. We fix
ideas by focusing on a variation of the “secretary problem” pursuing “a good” instead of
“the optimal” solution. This problem’s representativeness joins the overwhelming evidence
supporting the overarching character of the NBL.
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Figure 2. Example with b = 101 and r = e of how the three scales interact using Bayes’ rules. q2/q1 is
a global Bayesian datum corresponding to the local Bayesian datum Q = 1− q1/q2; both represent
the Euclidean distance to the origin. Within the logarithmic space of a coding source, the hyperbolic
distance and the differential entropy from the origin to Q are 2 artanh(Q) and artanh2(Q) ≈ 0.036913,
respectively. The decoding function returns the latter value to q2/q1. Alternatively, the coding source
can directly encode q2/q1 as logr(2q2/q1 − 1) ≈ 0.384255 and decode it as 1

2
(
1 + r0.384255...).

An exciting discovery is that the structure of Bayesian data is recurrent under arith-
metic operations, giving rise to the algebraic field of gap ratios A−B

C−D . This set contains
the cross-ratio, the linear fractional transformation’s invariant over rings via the action
of the modular group upon the real projective plane [20]. The logarithm of a cross-ratio
locally provides us with the metric of a conformal space reflecting the observable world and
consolidating the universal proclivity towards littleness, lightness, brevity, or shortness.

Restricted to one dimension, the cross-ratio’s logarithm in radix r determines the cod-
ing space’s metric with curvature − ln r. The canonical encoding function y = logr(2x− 1)
and the canonical decoding function x = 1

2 (1 + ry) are the unique conformal transforma-
tions (i.e., preserving orientation and angles) that, if applied iteratively, map x > 0 to the
coding space’s positive side in accord with the minimal information principle. For the same
reason, the hyperbolic distance dr(A, B) = 2/ln r(artanh(B)− artanh(A)) between points
A and B inside the local coding space is also unique. We conclude that Poincaré invariance
ultimately stems from the algebraic field of cross-ratios (with an infinite point).

The coding source expressly calculates the conformal distance from the origin as
2 artanh(Q)/ln r, where artanh(Q) = ∑

∞

i=1
Q2i−1

2i−1 , Q = sgn(P)− 1/P, sgn() is the sign function,
and P is the observed Euclidean distance to the point where an external object is. The coding
space is the ball {Q ∈ Q| |Q| < 1− 1/b}, with constant curvature of − ln r, where r is the
radix used to normalize the information; the harmonic (outside) and logarithmic (inside)
scales have a common origin and are separated by the boundary ±1 when b → ∞. The
“conformal encoding function” using the logarithm is C = sgn(P) logr(2 sgn(P) P− 1),

with inverse “conformal decoding function” 1
2 sgn(C)

(
1 + rsgn(C)C

)
. Since the metric

ranges between −∞ and ∞, the source can repeat the encoding process inwards until
the external object’s hyperbolic distance falls within the local coding space, halting the
recursion. In the opposite direction, every 1-ball with a radius given by the iterated
decoding of C = 0 outwards corresponds to a granularity level.

The results of this research all stem from the canonical PMF for the integer numbers,
whose characteristics are fundamental and generative, imaging the essence of the cosmos.
Physically, positive probabilities summing to one translates into unitarity, central reflection
symmetry into parity invariance, fair mean and variance into uncertainty, holistic rationality
into discreteness and relationalism, and utmost randomness in picking the number one into
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the principle of maximum entropy. Likewise, the global NBL (hence Zipf’s law [21] with
exponent 1), as well as the local NBL (supported by the logarithmic scale), has a tangible
presence. More generally, our descriptions and derivations introduce diverse examples of
how mathematical functions, rules, or algebraic structures emerge as observable dynamics.

2. The Whole Story of NBL
We comment on the aspects of the fiducial NBL that are most relevant to our research.

Then, we introduce an inverse-square law as the origin of NBL. This PMF subsumes a
probability law of rational masses, giving place to the harmonic scale, which employs a
global base as a fundamental referent. When the global base is immense, the harmonic
scale’s rational setting approaches a domain of real variables and functions ruled by small
radices in local environments. In other words, we prove that the local NBL, as everybody
knows it, assumes that a prior all-encompassing base exists. Eventually, the interplay
between the global base and the local radix will enable us to determine the canonical metric
ascribed to a coding source’s conformal space containing an image of the world.

2.1. The Road to the Fiducial NBL

The first digits of the numerals found in data series of the most varied sources of
natural phenomena do not display a uniform distribution but rather we see that the minor
ones are more likely (see [22] for a detailed bibliography and [23,24] for a general overview).
Specifically, this “law of anomalous numbers” claims that the universe obeys an exponential
distribution to a greater or lesser extent.

Newcomb’s insight was: “The law of probability of the occurrence of numbers is such
that all mantissae of their logarithms are equally probable”. (What Newcomb refers to as
a “mantissa” is what we will call a “significand”.) More than half a century later, Benford
defined the exact formula of every random variable satisfying the first-digit (and other
digits) law [2]. He could not derive it formally because mathematical difficulties arise in
the transition from N to logN; when the baseline set is unlimited, it implies tackling the
problem of “picking an integer at random” [25].

To commence, numerals beginning with a specific digit do not have a natural density.
The decimal sequence {1, 11, 12, 13, . . . , 100, 101, 102, 103 . . .} that groups the first digits
does not converge (e.g., it oscillates). Moreover, suppose each natural occurs with equal
probability. In that case, the whole space must have probability zero or infinity, violating
countable additivity (by which the measure of a set must be nonzero, finite, and equal to the
sum of the measures of the disjoint subsets); hence, we cannot construct a viable discrete
probability distribution. The attempt to choose P(N) = 1/N fails because it diverges in the
limit and is not scale-invariant.

Hill [26] resumed Newcomb’s idea; logarithm’s significands of sequences conformant
to NBL trace a uniform distribution. He identified an appropriate domain for the “natural
probability space” and, based on the decimal mantissa σ-algebra (where countable unions
and intersections of subsets can be assigned a gauge), formally deduced the law for the
first digit and joint distribution of the leading digits. He also provided a new statistical
log-limit central-limit-like significant-digit law theorem that stated the scale-invariance,
base-invariance, sum-invariance, and uniqueness of NBL; for instance, mining data about
the lifetime of mesons or antimesons in microseconds in decimal or seconds in binary
results in strict observance of the law. Since Hill’s publication in 1995, more derivations
have come to light, one of the subtlest appearing in [27] (section 14.2). Nonetheless, they all
ignore foundational causes.

A vehicle of NBL is how different measurement records spread and repositories
aggregate data. For one thing, the significant-digit frequencies of random samples from
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random distributions converge to conform to NBL, even though some of the individual
distributions selected may not [28]. Rarely does a distribution of distributions disagree
with NBL [29]. The ratio distribution of two uniform, two exponential, and two half-
normal distributions approximately stick to NBL. The Pareto distribution enjoys the scale-
invariance property as long as we move from discrete to continuous variables, and Zipf’s
law (∝ 1/zα with α ≈ 1) satisfies the above-mentioned absorptive property if one stays over
the median number of digits [30]. More generally, right-tailed distributions putting most
mass on small values of the random variable (i.e., survival or monotonically decreasing
like the log-logistic distribution) are just about compliant with NBL [13] (e.g., the tail of the
Yule–Simon distribution [31]). The log-normal distribution fits NBL, and the Weibull and
inverse-gamma distributions are close to NBL under certain conditions [32]. Almost every
exponentially increasing positive sequence is Benford (e.g., sequences of power an, where
a > 1), and every super-exponentially increasing or decreasing positive sequence (e.g., the
factorial) is Benford for almost every starting point [33]. In short, NBL embraces an ample
range of statistical models and mixtures of probability distributions.

These mathematical circumstances explain why NBL is so widespread but not its
reason. Failure to comprehend this distinction has generated confusion and is a typical
scientific misunderstanding [34]. In other cases, authors have deemed specific remarks
about NBL its cause when they are in fact consequences [35].

2.2. A Fundamental Probability Law

We seek a well-defined PMF, i.e., positive probabilities summing to 1. Not all Zip-
fian distributions [36] can do the job, for Pr(N) ∝ N−a eludes divergence only if a > 1.
In general, linear forms for the denominator of a natural’s probability cannot fulfill
countable additivity.

We assume that N is an inductively constructible set from which all physical phenom-
ena can crop up from the source outward, a basis of reductionism and weak emergency [37].
By including “nil”, we also ponder “infinity” as its reciprocal. However, both projective
concepts are only potential and limiting numbers in the offing; employing the successor
and predecessor as symmetric constructors, we must be able to unrestrictedly choose any
number strictly between 0 and ∞, so that no counting number is extraordinary. Again,
many Zipfian distributions cannot do the job, for Pr(N) ∝ N−a has a diverging mean only
if a ≤ 2. For instance, cubic or higher polynomials lead to convergent expected values.

Additionally, we require a sound and dependable extension to the integers. Zipfian
distributions where a is an even natural do the job, but in the range a ∈ (1, 2] defined by the
two previous requirements, a = 2 is the fitting choice, the only value assuring central reflec-
tion symmetry. To cap it all, Pr(N) ∝ N−2 agrees with the minimal information principle
[38]; considering other quadratic polynomials for the denominator of a natural’s probability
does not yield a better law because it would introduce unwarranted assumptions in vain.
For instance, the Zipf–Mandelbrot law [39] Pr(N) = 1/(N2 − 5N + 7

) deals with unexplained
coefficients and is not centrally symmetric.

Therefore, the PMF of a random variable X taking natural numbers is

Pr(X = N) =

N ∈ N− {0} : ϵ
N2

else : 1− ϵζ(2)
(1)

We will suppose the proportionality parameter ϵ ∈ Q+ to comply again with the
minimal information principle. ζ(2) = π2/6 is the value of the Riemann zeta function at 2,
brewing gently as a factor of endless aggregation of occurrence probabilities. Because the
“else” (null) case is possible, this PMF is not a pure zeta distribution [40].

Countable additivity holds; the probabilities sum to 1 owing to
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∞

∑
N=1

ϵ

N2 = ϵζ(2)

The picking event X is fair owing to the indeterminacy of the expected value of a
natural number, i.e.,

Ê(X) = 0(1− ϵζ(s)) +
∞

∑
N=1

N
ϵ

N2 = ϵ
∞

∑
N=1

1
N

= ∞

Indeed, the nth-order moment diverges for all nonzero n ∈ N.
This PMF does not presume the law of large numbers or the law of rare events. On

the contrary, it works under the statistical assumption of independence of occurrences and
no bias. Outcomes of the picking event are unpredictable, even considering an indefinite
trail of repetitions. No predetermined constant mean exists in space or time, nor is there an
absolute measure of “rarity”; the relative frequency between two events solely depends on
their probability mass. We can regard it as a brute law.

Let us leave the rational ϵ unfixed for the time being, given that it is unimportant for
the derivation of NBL. Remember that ϵ ∈ (0, 6/π2) holds the constraint Pr(N ∈ N) > 0
(i.e., ϵ/N2 > 0 and ϵζ(2) < 1), and we will return to it in Section 5.1.

2.3. The Rational (Global) Version of NBL

In analytic number theory, the mesmerizing Euler–Mascheroni constant γ ([41], section
1.5) is the limiting difference between the harmonic series and the logarithm, i.e.,

lim
N→∞

HN − ln N ∼ γ

where HN ≡ ∑N
k=1

1
k is the Nth harmonic number. If our universe is as harmonic as

logarithmic [27], the discrete version of the NBL must exist connected to but separated
from the continuous (fiducial) one “at a distance of γ”.

The cumulative distribution function of a random variable X obeying (1) is

Pr(1 ≤ X < N) = ϵ
N−1

∑
k=1

1
k2

which tells us how often the random variable X is below N. We call its complementary
function the “natural exceedance probability”, quantifying how often X is on level N or
above. This dwindling distribution function is

Pr(X ≥ N) = Pr(X ≥ 1)− Pr(1 ≤ X < N) = ϵ(ζ(2)− HN−1,2)

where HN,2 ≡ ∑N
k=1

1/k2 is the generalized Nth harmonic number in power 2.
We can express this probability in terms of the second derivative of the gamma function

Γ(x)’s logarithm, i.e., the digamma function’s first normal derivative, defined as

ψ′(x) =
[

d
dx

ln(Γ(x))
]′

=
d

dx
Γ′(x)
Γ(x)

Since ζ(2) = ψ′(1) and ψ′(N + 1) = ψ′(N) − 1/N2 = ψ′(1) − HN,2, the natural ex-
ceedance of N is

Pr(X ≥ N) = ϵψ′(N)
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If numbers had physicality, the natural exceedance would represent a probability
fractal signal with a probability density (per frequency range) that decays proportionally
with the signal’s frequency.

Regardless of the scale, let us divide the natural line into concatenated strings of
numbers of the same length, which we name “quanta”. Then, the second-order cumulative
function arrives on the scene for global computability. The plot of ϵψ(q) + constant, the
natural exceedance’s antiderivative, has an informational flavor. A significant value of the
quantum q is more unpredictable and influential than a minor one; the only measure of its
harmonic surprise is the extent of the event occurrence’s log note ψ(q).

So, how likely is the event X = q to fall into bucket [s, t), assuming a harmonic scale
underneath? The “natural harmonic likelihood” L depends on the bucket’s extent, namely,

[LX(q)]
t
s ≡

[ϵψ(q) + constant]ts
[ϵψ(q) + constant]21

=
[ψ(q)]ts
[ψ(q)]21

= Ht−1 − Hs−1 = L([s, t)) ∈ Q (2)

in natural harmonic units of (global) information, where we have considered the gener-
alized recurrence relation ψ(t + 1)− ψ(s + 1) = Ht − Hs. Note that (2) is a proportion,
canceling the constant ϵ. The natural harmonic likelihood is neither the probability of a
quantum falling into [s, t) nor the probability that [s, t) is true given the observation X = q.
It is the information attributable to the event X = q when s ≤ q < t, i.e., the space allocated
to encode a quantum between the bucket’s ends, which is why it does not refer to q.

The harmonic number function (interpolated to cope with rational arguments) parallels
the continuous world’s logarithmic function in information theory, like in analytic number
theory. The “harmt” (a portmanteau of “harmonic unit”), defined as

L([1, 2)) ≡ H1 − H0 = 1harmt

is the global unit of information, just as the natural local information unit, the “nat”,
corresponds to [1, e) by [ln x]e1 = 1. Thus, natural harmonic and logarithmic likelihoods
are analogous. In particular, L[q, q + 1) = ψ(q + 1)− ψ(q) = Hq − Hq−1 = 1/q implies
that q’s reciprocal denotes information, precisely the natural likelihood of an elemental
quantum gap.

A global base b marks the boundary between the mathematical and physical world. We
define the probability mass of bucket [s, t) regarding b’s support as the harmonic likelihood
ratio

Pr(b, [s, t)) =
L([s, t))
L([1, b))

=
Ht−1 − Hs−1

Hb−1
∈ Q (3)

where 1 ≤ s < t < b and s, t, b ∈ N. This probability is separable as a product of [s, t)’s and
b’s functions, expressing a part of the information total that is the b-normalized rational
quantum t/s’s length or bucket [s, t)’s width.

The reader can object that the concept of likelihood is unnecessary to define (3) since
we can directly define the probability of a bucket as [ψ(q)]ts/[ψ(q)]b1. However, we aim to stress
that we obtain information, regardless of the base, only relative to the natural harmonic
bucket [ψ(q)]21. Because [1, b) gives the maximum likelihood estimate, Pr(b, [s, t)) is [42]
the relative likelihood function of the bucket [s, t) given 1 ≤ s < t < b.

When s = q and t = q + 1, we obtain

Pr(b, q) =
L([q, q + 1))
L([1, b))

=
Hq − Hq−1

Hb−1
=

1
Hb−1

1
q
∈ Q (1 ≤ q < b) (4)
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We measure this PMF in b-ary harmonic information units. It is the simplest case
of Zipf’s law, geometrically an embryonic form of progressive one-dimensional circle
inversion. Further, if q represented a frequency, we could understand the probability of a
quantum with a given base as a (physical) potential diminishing hyperbolically with the
distance from the source, i.e., a flicker [43] or pink [44] noise.

We have described how the harmonic series bridges Equations (1) and (4). Both
laws point to minor numerical values as the most frequent significands, amassing more
probability around the source to increase accessibility. However, we find three main
differences between them:

1. Equation (1)’s probability masses are rational numbers. Instead, a quantum’s prob-
ability represents an area ratio measured through the digamma function; hence, a
quantum’s probability is a quota of information.

2. The global NBL outlines a hyperbola instead of an ISL. Thus, while the probability of
a number is inversely proportional to its norm (the number’s square), the probabil-
ity assigned to a quantum is inversely proportional to its modulus (the quantum’s
absolute value).

3. Equation (4) gives us the thing-as-it-appears (perceived potential) stemming from the
thing-in-itself (field per se) [45] expressed by (1), two sides of the same property or
object, the dual essence of the world.

2.4. Analysis of the Global NBL

The mean value for the quanta 1 to 9 following the global NBL is q ≈ 3.18 (from
Pr(10, q) = 1/9), whereas it is d ≈ 3.43 (from log(1 + 1/d) = 1/9) for the local NBL. The
harmonic mean value for the quanta 1 to 9 following the global NBL is q = (9 + 1)/2 = 5.

As expected, Equation (4) brings Pr(2, 1) = 1, i.e., 1 occupies 100% of the space
in binary. In base 3, the appearance probabilities of 1 and 2 as the first quantum are
Pr(3, 1) = 2/3 and Pr(3, 2) = 1/3, respectively, a 2/1 sharing out. We deem this Pareto rule so
rudimentary that it might be fundamental in physics. The corresponding Pareto rule is 63/37

if we utilize the local NBL. Quantum 1 in decimal occupies Pr(10, 1) = 2520/7129 ≈ 35.3%,
while it is 30.1% using the local NBL. Figure 3 compares the probability of a decimal
datum’s first position value between the global, discrete, rational, countable, harmonic NBL
and the local, continuous, real, uncountable, logarithmic one. Regardless of the cardinality,
the former is always steeper.

The unit bucket a quantum represents can be of any size, so we can recursively perform
the integration and normalization process that gave rise to (4) “within” every quantum
attributed to base b, obtaining a chain of nested quanta. The probability of obtaining the
leading chain c of quanta with any length in b-ary is simply

Pr(b, c) =
Hc

Hb−1
− Hc−1

Hb−1
=

1
cHb−1

∈ Q

This represents c’s likelihood in b-ary harmonic units and becomes (4) when c is a base’s
quantum. For example, the probability masses that a decimal chain starts with "10” (e.g., 0.1071)
and “99” (e.g., 992) are Pr(10, 10) = (10H9)

−1 ≈ 0.03535 and Pr(10, 99) = (99H9)
−1 ≈ 0.00357.
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Figure 3. A comparison of the global with the local (fiducial) NBL, where “b” stands for “global base”
and “r” for “local radix”. Vertical axes represent the occurrence probability of the horizontal axes’
quanta or digits. The plot on the top left shows the PMFs of the global and local standard ternary
numeral system along with the PMFs of the global and local standard quaternary numeral system.
The plot on the top right shows the PMFs of the global and local standard decimal numeral system.
The plot on the bottom right shows the PMFs of the global and local standard undecimal numeral
system. The plot on the bottom left shows the PMFs of the global and local standard undecimal
numeral system divided into the partitions [1, 6) and [6, 11) and the PMFs of standard decimal
divided into the partitions [1, 4), [4, 7), and [7, 10).

2.5. The Fiducial (Local) NBL

The global NBL furnishes the frame for constructing a sheer logarithmic system that
conserves base and scale. To achieve such a pursuit, we must turn to the local context of a
coding source and analyze how it represents a numeral in PN.

We call a “bin” of “digits” to a bucket of quanta in the source’s proximity. The third-
order cumulative function of (1) arrives on the scene to facilitate local computability. When
the base b is enormous, we can handle digits like real values to calculate the antiderivative
of (4), ln d/Hb−1 + constant, which outlines how unexpected and momentous digit d is. Large
values locally transmit more information than small ones; for whom? Logarithmic surprise
needs an observer to reify the event occurrence. The harmonic information perceived
by a receiving system, a coding source, becomes local information with extension ln d.
Consequently, broad bins are more likely than narrow ones as supporting evidence.

Assuming a logarithmic scale underneath, we define the “natural logarithmic likeli-
hood” ℓY of the event Y = d < b to fall into bin [i, j) as the ratio

[ℓY(d)]
j
i ≡

[
ln d

Hb−1
+ constant

]j

i[
ln d

Hb−1
+ constant

]e

1

=
[ln d]ji
[ln d]e1

= ln
j
i
= ℓ([i, j)) ∈ R (5)

Note that this proportion no longer refers to base b; a coding source is unaware of
the global setting for calculation purposes. The natural logarithmic likelihood is neither
the probability of a digit falling into [i, j) nor the probability that [i, j) is true given the
observation Y = d. It is the information attributable to the event Y = d when i ≤ d < j, i.e.,
the space allocated to encode a digit between the bin’s ends, which is why it does not refer
to d. However, it has nothing to do with surprisal [46]; ℓ denotes informative space rather
than information content. Indeed, we can take it as the natural logarithmic length of j/i or
width of [i, j). We can also take (5) as the differential entropy of the uniform probability



Axioms 2025, 14, 106 14 of 48

density function Pr(x) = i/j, where 0 < x < j/i. We measure the natural logarithmic
likelihood in natural units (“nats”) because of [ln d]e1 = 1.

The domain of a digit d spans from the unit to r− 1, where r ≪ b is the cardinality of
the local coding space, precisely the source’s “radix“. We define the r-ary probability mass
of bin [d1, d2) relative to the radix’s support as the logarithmic likelihood ratio

Pr(r, [d1, d2)) =
ℓ([d1, d2))

ℓ([1, r))
=

ln d2
d1

ln r
= logr

d2

d1
∈ R (1 ≤ d1 < d2 < r) (6)

with d1, d2, and r ∈ N. We can take it as the representation length of d2/d1 or the width of [d1, d2)

in r-ary logarithmic information units, in correspondence with Equation (3), reckoning the
probability of a bucket as a normalized harmonic likelihood. Therefore, in PN, the probability
is a quota of the available space, a view we will develop in Sections 3.1 and 3.2.

Geometrically, the probability of event d1 ≤ d < d2 conditioned to r is the ratio
between the areas under the hyperbola delimited by bins [d1, d2) and [1, r), equivalent
to the area enclosed by the rays 1/d1 and 1/d2 relative to the span of the hyperbolic angle
r. Because the hyperbola preserves scale changes, the logarithm uniformly distributes
the significant digits of a geometrical sequence, as Newcomb underlined in his note;
k ln x = ln xk implies that, for example, x must drop to 3

√
x to divide the natural likelihood

by three (k = 1⁄3).
By setting in (6) d1 = d and d2 = d + 1, we fit Y’s occurrences into the digits of a

standard PN system with radix r, obtaining

Pr(r, d) = logr

(
1 +

1
d

)
∈ R (7)

The original natural random variable Y ∈ N and the underlying global base b are
absent. This expression is the local (fiducial) NBL, which tells us the PMF of an r-ary
numeral’s first digit.

A coding system (observer or source) that uses standard PN handles the unit
range as a concatenation of the sub-bins [logr 1, logr 2) = [0, logr 2), [logr 2, logr 3), ...
[logr(r− 1), logr r) = [logr(r− 1), 1), covering intervals of logr

2/1, logr
3/2, ... logr

r/(r− 1)

units of space, and corresponding to the symbols 1, 2, ... and r− 1, respectively; the addition
of these areas is the unit.

More fundamentally, common digits are near the coding source, i.e., the probability
of a digit correlates with its accessibility and declines logarithmically. If we liken proba-
bility mass to space, smaller digits induce more density than significant digits. In other
words, accessibility concentrated around the origin progressively dilutes as we move away,
contrasting with the linear scale that distributes the space evenly.

We can generalize (6) to cope with bins outside the radix. The resulting expression is
not generally a probability anymore, given that we can have bins of any size, but it is again
an r-normalized likelihood that retains the geometric interpretation. In other words,

ℓ([n1, n2)|r) =
ℓ([n1, n2))

ℓ([1, r))
= logr

n2

n1
∈ R (1 ≤ n1 < n2) (8)

is the r-normalized n2/n1’s length or [n1, n2)’s width. We can regard it as a fractal dimension
where r is the scaling factor, n2 is the number of measurement units, and n1 is the number of
fractal copies. For instance, (8) might explain the Weber–Fechner law [47] in psychophysics,
where ℓ([n1, n2)|r) is the intensity of human sensation, 1/ln r is a perception- and stimulus-
dependent proportionality constant, n2 is the strength of the stimulus, and n1 is the zeroing
strength threshold.
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When n1 = n and n2 = n + 1, we can again interpret this likelihood as the probability
of obtaining a leading r-ary numeral n ∈ N+ of any length, i.e.,

Pr(r, n) = ℓ([n, n + 1)|r) = logr(n + 1)− logr n = logr

(
1 +

1
n

)
∈ R

The efficiency of an r-ary numeral system worsens as r → 1+ or r → b → ∞ [48]
because r diverges from the optimal radix economy, namely, Euler’s number e, destroying
the information. In the former case, we encounter the unary system, which boils down
to a linear frequency. In the latter case, the numerals n < r that only use the first position
increase limitlessly. Both are non-coding cases.

3. Odds
Although odds typically appear in gambling and statistics, this section illustrates how

they are central to the computational processes of a coding source, including an application
to physics and another to decision theory.

We usually define the odds of an outcome as the ratio of the number of events that
generate that particular result to those that do not. In this sense, odds constitute another
measure of the chance of a result that highlights its rational character. The ratio between
the probabilities of two events determines their relative odds; the higher the odds of an
outcome compared with another, the more informative the latter’s occurrence is.

In Bayesian coding, odds between propensities or degrees of belief become information
correlations representing entropic contributions to a system’s hyperbolic scale. This stance
embraces the objectivistic [49] and subjectivistic [50] interpretations.

3.1. Global Bayesian Coding

The probability ratio between two numerical events diverges from the unit as their
correlation weakens. It fits into the base’s harmonic scale of a global system multiplied by a
likelihood factor that depends on the two events and the base. This operation is rigorously
Bayes’ theorem. Specifically, the formula

Õ(t : s|X = b) = Õ(t : s) ΛÕ(t : s|X = b) ∈ Q (1 ≤ s < t < b) (9)

encodes the relative odds between two numbers.

• Õ(t : s|X = b) represents the global (encoded or posterior) odds of obtaining quan-
tum t against s in base b. We can consider it the rational quantum s/t on a b-ary
harmonic scale.

• Õ(t : s) is the ratio between the probabilities of the two events according to (1), namely,

Õ(t : s) = Õ(t : s|1) = Pr(t)
Pr(s)

=
( s

t

)2

straightforwardly measuring the (decoded or prior) odds of picking the number t against
s on a linear scale. If we fix the center of the range, the narrower the interval, the higher
the odds, whereas if we fix the interval width, the minor s (or t), the lower the odds. Note
that the odds of two concatenated intervals calculated separately are the product of the
interval’s odds:

Õ(z : x|1) =
(

x
y

)2(y
z

)2
=
( x

z

)2

• ΛÕ(t : s|X = b) is the global coding (Bayes) factor, which measures the degree to
which the outcome b of the random variable X supports “hypothesis” t against s,
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assuming they are independent. Because interval [s, t) is not yet encoded, the coding
law establishes a likelihood difference instead of a likelihood ratio, namely,

ΛÕ(t : s|X = b) = L(t|X = b)−L(s|X = b) =
Ht−1 − Hs−1

Hb−1
= Pr(b, [s, t))

where

L(q|X = b) =
Hq−1

Hb−1
(1 ≤ q < b) (10)

is the likelihood function of q with b fixed; since L(1|X = b) vanishes and L(b|X = b) = 1, we
can understand this function as a measure, normalized to one, of the nearness between q and
b. The coding factor is precisely Equation (3), measured in b-ary harmonic information units.

Compiling, PN calculates (9) as

Õ(t : s|b) =
( s

t

)2 Ht−1 − Hs−1

Hb−1
∈ Q (1 ≤ s < t < b) (11)

This is the cost of computing the bucket’s harmonic width, i.e., the entropic contribu-
tion of bucket [s, t) to b’s harmonic scale. Õ(2 : 1|b) is maximally informative, irrespective
of the base. The global odds of a quantum against itself vanish, having no representation
on a harmonic scale. The reciprocal

Õ(s : t|b) = 1
Õ(t : s|b)

=

(
t
s

)2 Hb−1
Ht−1 − Hs−1

∈ Q (1 ≤ s < t < b)

measures the odds of quantum s against t, with a maximum approaching b2 as b climbs to
infinity.

A global coding system must employ (9)’s variation

Õ
(
t : s|b′

)
= Õ(t : s|b) ΛÕ

(
b′ : b|q ∈ [s, t)

)
∈ Q

to recode, where 1 ≤ s ≤ q < t < b and t < b′. The coding (Bayes) factor is a likelihood
ratio when it deals with previously encoded data, as usual in statistics; using (10),

ΛÕ
(
b′ : b|q ∈ [s, t)

)
=
L(b|q)
L(b′|q) =

Hb−1/Hq−1

Hb′−1/Hq−1
=

Hb−1
Hb′−1

measures the degree to which a given quantum supports “hypothesis" b′ against b, assum-
ing they are independent. This is the classical Bayes factor, replacing probabilities with
global likelihoods. Hence, the global coding system can change to base b′ utilizing the rule

Õ
(
t : s|b′

)
= Õ(t : s|b) Hb−1

Hb′−1
∈ Q (12)

which coincides with the odds of [s, t) in base b′ for the first time because of

Õ
(
t : s|b′

)
=

(( s
t

)2
(

Ht−1 − Hs−1

Hb−1

))
Hb−1
Hb′−1

=
( s

t

)2
Pr
(
b′, [s, t)

)
The transformation b → b′ constitutes a primal memory (incremental) process that

decreases the global odds if b < b′, and vice versa increases the global odds if b > b′.
Imagine that a given universe region is a global coding system with an autonomous clock;
then, b growing every tick would mean an unstoppable progressive information loss for
that region. This connection between time and entropy is crucial to theoretical physics and
cosmology [51].

Let us see some examples. Suppose a global coding system encodes bucket [4, 13) to
base b = 100 as
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Õ(13 : 4|100) =
(

4
13

)2 H13−1 − H4−1

H100−1
≈ 0.0232

This value is the entropic contribution of bucket [4, 13) to 100’s harmonic scale. When
the system changes the base to b′ = 110, using (12), it delivers

Õ(13 : 4|110) = Õ(13 : 4|100)
H100−1

H110−1
≈ 0.0228

meaning that the bucket’s entropic contribution decreases. Then, changing to base b′ = 90
yields

Õ(13 : 4|90) = Õ(13 : 4|110)
H110−1

H90−1
≈ 0.0237

i.e., the bucket’s entropic contribution increases. Finally, the system decodes the odds with
base 90 by solving the prior from (11), i.e.,

Õ(13 : 4) =
Õ(13 : 4|90)

Pr(90, [4, 13))
= Õ(13 : 4|90)

H90−1

H13−1 − H4−1
=

(
4

13

)2

3.2. Local Bayesian Coding

Local Bayesian coding assumes that (9), the global Bayesian law, governs the uni-
verse’s information. We express the informational correlation between two numerals by
multiplying their harmonic correlation by a coding factor, obtaining a point on a logarith-
mic scale. This operation is rigorously the Bayes theorem that settles down the basis of a
conformal metric space. Specifically, local Bayesian coding employs the formula

õ(n2 : n1|Y = r) = õ(n2 : n1|b) Λõ(n2 : n1|Y = r) ∈ R (13)

to encode the probability ratio between n1 and n2, where (1 ≤ n1 < n2 < b) ∧ (r < b).

• õ(n2 : n1|Y = r) represents the local (encoded or posterior) odds of obtaining n2

against n1 with radix r.
• õ(n2 : n1|b) is the (prior) probability ratio between the two events only assuming that

a global base exists; using (4),

õ(n2 : n1|b) =
Pr(b, n2)

Pr(b, n1)
=

1
n2 Hb−1

1
n1 Hb−1

=
n1

n2

This measures the strength of the association between n1 and n2 on the harmonic scale
provided by b.

• Λõ(n2 : n1|Y = r) is the local coding (Bayes) factor, which measures the degree to
which the outcome r of the random variable Y supports “hypothesis” n2 against n1,
assuming they are independent. Because the bucket [n1, n2) is not locally encoded yet,
the coding law establishes a likelihood difference instead of a likelihood ratio, namely,

Λõ(n2 : n1|Y = r) = ℓ(n2|Y = r)− ℓ(n1|Y = r)

where ℓ(n|Y = r) = logr n quantifies the likelihood of n when the actual value r occurs. In
short, the local coding factor is the log-odds of n2 relative to n1, equivalent to the support
of [n1, n2) with radix r according to (8), i.e.,

Λõ(n2 : n1|Y = r) = logr n2 − logr n1 = logr
n2

n1
= ℓ([n1, n2)|r)

Compiling, the PN system calculates (13) as
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õ(n2 : n1|r) =
n1

n2
logr

n2

n1
(1 ≤ n1 < n2) (14)

Consequently, the local Bayes’ rule measures the entropic contribution of bin [n1, n2)

on r’s logarithmic scale, with a minimum approaching õ(r : 1|r) = 1/r as r climbs to infinity.
The local odds of a numeral against itself vanish, having no representation on a logarithmic
scale. Euler’s number has an extraordinary meaning in this setting; a Bayesian datum in
this form is maximally informative irrespective of the radix when n2/n1 = e = 2.718 . . ., an
ideal proportion that induces the nat, the local information unit associated with bin [ln n]e1
we use in (5).

A PN system must employ (13)’s variation

õ
(
n2 : n1|r′

)
= õ(n2 : n1|r) Λõ

(
r′ : r|n ∈ [n1, n2)

)
∈ R

∀
{

n1, n, n2, r, r′
}
∈ N|(1 ≤ n1 ≤ n ≤ n2)

to recode locally. When it deals with previously encoded data, the local Bayes factor is the
classical likelihood factor in statistics:

Λõ
(
r′ : r|n ∈ [n1, n2)

)
=

ℓ(r|n)
ℓ(r′|n) =

logn r
logn r′

=
ln r
ln r′

Thus, the degree to which the outcome n ∈ [n1, n2) of the random variable Y supports
“hypothesis” r′ against r is independent of n. Then, a coding source can change to radix
r′ utilizing

õ
(
n2 : n1|r′

)
= õ(n2 : n1|r)

ln r
ln r′

(15)

which coincides with the odds of n2 against n1 with radix r′ for the first time

õ(n2 : n1|r)
ln r
ln r′

=

(
n1

n2
logr

n2

n1

)
ln r
ln r′

=
n1

n2
logr′

n2

n1

Note that the transformation r → r′ increases the odds if r > r′, and vice versa,
decreases the odds if r < r′.

For example, a coding source locally encodes the bin [4, 13) using radix r = 100 as

õ(13 : 4|100) =
4

13
log100

13
4
≈ 0.07875

This value measures the entropic contribution of bin [4, 13) to the 100-ary logarithmic
scale. When the coding source changes the radix to r′ = 110, it delivers using (15)

õ(13 : 4|110) = õ(13 : 4|100)
ln 100
ln 110

≈ 0.07715

Then, changing the radix to r′ = 90 yields

õ(13 : 4|90) = õ(13 : 4|110)
ln 110
ln 90

≈ 0.0806

Finally, the coding source decodes the odds with radix 90 by solving the prior from
(14), i.e.,

õ(13 : 4) =
õ(13 : 4|90)

Pr(90, [4, 13))
=

0.0806
log90

13
4
≈ 0.30769 ≈ 4

13
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Remember that local Bayesian coding copes not only with ratios of digits but with
ratios of numerals in general. For example, the rational 95/971 (bin [95, 971)) encoded with
radix 4 is

õ(971 : 95|4) = 11334

330234
log4

330234

11334
≈ 0.022133334

If environmental conditions cast a change to radix 3, the coding source would decode
the datum

õ(971 : 95|3) = 0.022133334
ln 4
ln 3
≈ 0.012120223

as

õ(971 : 95) =
õ(971 : 95|3)
ℓ([95, 971)|3) ≈

0.012120223

log3
10222223
101123

≈ 95
971

3.3. Elemental Jumps

Elemental jumps between successive quanta or digits are a problem where the synergy
between NBL and the odds form of Bayes’ rule manifests. Physically, they explain why
minor energy levels of a system are more stable than high-energy ones.

The odds (11) between consecutive quanta

Õ(q + 1 : q|b) =
(

q
q + 1

)2
Pr(b, [q, q + 1)) =

(
q

q + 1

)2 1
qHb−1

=
q

(q + 1)2Hb−1

measure the associated harmonic likelihood gap in a given base b, where we have used
Equations (3) and (4). b-normalized quantum jumps define the PMF

Çb =
1

Hb−1 − Hb−1,2

Pr
Õ
(b, q) = Çb

q

(q + 1)2 ∈ Q (16)

an exact and multiplicatively separable function where HN,2 ≡ ∑N
k=1

1/k2 is the generalized
Nth harmonic number in power two and 1 ≤ q < b− 1. It is well defined because of

b−2

∑
q=1

Pr
Õ
(b, q) = 1

so we can take it as the odds version of PMF (4).
Note that the summation only goes until the penultimate quantum q = b − 2 be-

cause q = b − 1 cannot jump to b. For example, Ç4 = 36/17, PrÕ(4, 1) = Ç41/4 = 9/17,
and PrÕ(4, 2) = Ç42/9 = 8/17. With b = 7, we obtain PrÕ(7, 1) = 900/3451 ≈ 0.261,
PrÕ(7, 2) = 800/3451 ≈ 0.232, PrÕ(7, 3) = 675/3451 ≈ 0.196, PrÕ(7, 4) = 576/3451 ≈ 0.167,
and PrÕ(7, 5) = 500/3451 ≈ 0.145. Figure 4 outlines in red the PMF corresponding to stan-
dard undecimal in a global setting. The information gap decays harmonically from the
second quantum so that transiting from the greatest quanta is easier than from the minor
ones. Indeed, only the first few quanta remain stable.

Developing similar reasoning in a local setting, using Equations (6), (7), and (14)
(d1 = d and d2 = d + 1), the odds between consecutive digits

õ(d + 1 : d|r) = d
d + 1

logr

(
1 +

1
d

)
(17)
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measure the associated likelihood gap in radix r. Then, we can calculate the PMF that nor-
malizes these digit gaps in a given radix; the larger the digit, the lesser the information differ-
ential. For example, the PMF corresponding to standard quaternary is {0.561814, 0.438186}.
With radix r = 7, we obtain Prõ(7, 1) ≈ 29.8%, Prõ(7, 2) ≈ 23.24%, Prõ(7, 3) ≈ 18.55%,
Prõ(7, 4) ≈ 15.35%, and Prõ(7, 5) ≈ 13.06%.

Figure 4 outlines in green the logarithmic PMF of standard undecimal, measuring the
improbability of a random local jump through its contribution to the coding source’s en-
tropy. The lowest digits maintain discernibility from the environment, while the decreasing
entropic support of the more significant digits makes them more vulnerable.

Figure 4. These are the information gaps the undecimal numeral system induces. b stands for standard
base, and r for standard radix. Note that the fiducial NBL for decimal numerals (Equation (7)) is
steeper than the digit plot (in green, Equation (17)), and the digit plot is steeper than the quantum (in
red, Equation (16)).

Although the fiducial NBL is steeper than the corresponding Prõ regardless of the
radix, and this is steeper than PrÕ irrespective of the base, these three plots are hardly
distinguishable for large cardinalities (see Figure 5), meaning that an NBL probability is
synonymous with stability. A transition from the greatest quanta or digits is much more
frequent than a transition from the minor ones. This condition resembles the reactivity of
the chemical element periodic table concerning the electron shell (i.e., principal quantum
number). More generally, ascending order (of numbers, quanta, digits, or shells) correlates
with unsteadiness, which explains why closeness prevails over farness.
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Figure 5. These are information gaps induced by the quanta of global standard base 10,000 (in red,
Equation (16)) and the digits of local standard radix 10,000 (in green, Equation (17)), compared with
the fiducial NBL (Equation (7)).

3.4. Optimal Stopping

We introduce a class of problems where the synergy between NBL and the odds form
of Bayes’ rule elucidates a solution.

A PN system assigns an information value to the concepts of likelihood, probability,
and odds. In Sections 3.1 and 3.2, we argued that Bayes’ rule is the entropic contribution
of a bucket to a harmonic scale or a bin to a logarithmic scale. In particular, Equation
(14) allows us to calculate the information we can extract from a bipartition by anchoring
the first and last domain digits. Assuming 1≪ r < b, the local odds of obtaining digit x
against 1 and r against x estimate the information aggregate of the two parts. Inherent to
X’s dichotomy {[1, x), [x, r)},

ör(x) = ö({[1, x), [x, r)})
= õ(x : 1|r) + õ(r : x|r)
= 1

x logr x + x
r logr

r
x

gives the bipartite odds in logarithmic r-ary units of information, where 1 < x < r.
We obtain additive countability by making κ

∫ r
1 ör(x)dx = 1. The entropy (local

likelihood) distribution function

κ =
4

r2 + 4(r ln r− 1) ln
√

r− 1

←−o r(x) = κ
r
x

ln x

−→o r(x) = κx ln
r
x

←→o r(x) =←−o r(x) +−→o r(x) (18)

gives the normalized bipartite odds so that←→o r(x) = κör(x) acquires a value between
0 and 1.
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For ←→o r(1) = ←→o r(r) = κ ln r, both ←→o r(1) and ←→o r(r) tend to vanish in the limit
r → b→ ∞. Where does (18) become stationary? When r ≥ 55, the normalized bipartite
odds produce two maxima corresponding to←−o r(x) and −→o r(x). These maxima optimize
the total information transmission of the system. We find at x =

√
r, between the two

maxima, a digit that minimizes the distinguishability between the two partitions, which is
the analog of the middle point of a segment on the linear scale.

For example, with radix r = 10, 000, the bipartitions are maximally entropic about
{[1, 2.7329), [2.7329, 10000)} and {[1, 3659.1), [3659.1, 10000)}, and ←→o r(100) is the mini-
mum. Figure 6 repeats this exercise and shows the results with r = 100 applicants.

Figure 6. Plots of the odds that yield the past (←−o r(x), in yellow), future (−→o r(x),in red), and bipartite
entropy (the local likelihood distribution function given by (18), in black) with radix 100 (99 appli-
cants). The three points correspond to the maxima and the minimum, whose abscissas give place to
the bipartitions with the most information and the lowest bipartite distinguishability, respectively.

Supposing that 1/x and x/r are probabilities, Equation (18) is the addition of the
corresponding entropies. Both maxima separate a stage of “retention” from a “decision”
stage. Retention implies input processing, which raises entropy, whereas decision involves
output processing, which lowers entropy. Maximum entropy indicates the most efficient
share between the ascent and descent sections. Overall, the plot of←→o r(x) reflects a natural
entropic imbalance toward the small values;←−o r(x) dominates in the short term, whereas
−→o r(x) dominates in the middle and long terms. Computationally, it induces the bulk of
processing far before reaching x = r/2, while physically, it implies a bias of space or time.

The bipartite odds function can have interesting consequences in computational
physics, especially in sequential decision making to solve optimal-stopping (or planning)
problems with solutions such as the odds algorithm [52]. Specifically, the secretary problem
[53] is a mathematical trope to grasp how computation closely ties with incremental
(Bayesian) inference, hence with the asymmetric management of fundamental resources.
Shortly, one of r − 1 sequentially interviewed applicants must be nominated, with the
proviso that they will be either chosen or rejected just after being examined; past the first
⌊x⌋ applicants (typically a secretary, but also a lead actor or actress or a car), the judges
select the next one that is better than any of the previous ones. x ≈ r/e maximizes −→o r(x),
i.e., the probability of success in choosing “the best” applicant.
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Instead,←→o r(x) answers a different question. What is the optimal size ⌈x⌉ of examined
applicants to maximize the odds of choosing “a good” one? This nuance implies a crucial
difference in approaching a solution; in this case, we must consider both terms of (18). We
define “a good” prospect as a “candidate” in terms of the classic secretary problem, i.e., a
seeker (or contender, or claimant) better than the previously examined applicants.

Considering that x is the current applicant, the bipartition separates the past from the
future because←−o r(x) and −→o r(x) focus on the expected benefit before and after x and the
practicality of preceding against succeeding data.

Regarding the “past” term, ln x is the amount of information ascribed to examined
applicants, and 1/x is the probability of using such information. As x → 1, we take
advantage of less and less gathered information, albeit more likely, whereas if x → r, we
can leverage more and more references, albeit less likely. There is a compromise between
choosing the first applicant (i.e., utterly uninformed decision making) and selecting the last
applicant (i.e., ignoring the acquired information). We obtain the maximum of←−o r(x) at
x → e as r → b→ ∞.

Regarding the “future” term, ln r/x is the information we can obtain from forthcoming
applicants, and x/r is the probability of using such information. As x → 1, we will
surely miss the most suitable prospects; if x → r, we will hardly find a suitable applicant.
There is a compromise between choosing the first applicant (i.e., ignoring the information
the remaining applicants can provide) and selecting the last applicant (i.e., remaining
information exhausted). We obtain the maximum of −→o r(x) at x → r/e as r → b→ ∞.

Summing both terms implies balancing the partition behind against the partition ahead.
If x is too low (x ≳ 1), you have the most information ahead for an acceptable selection,
and if x is too high (x ≲ r), you have many references for a good choice. Unfortunately,
if x is too low (x ≳ 1), you have less probability of making an acceptable selection, and
if x is too high (x ≲ r), you have probably missed the finest choices. While bipartition
{[1, r/e), [r/e, r)} implies a probability of 1/e% of skipping and selecting the best alternative,
bipartition {[1, e), [e, r)} reduces this percentage significantly to anticipate a nomination.
Thus,←−o r(x) enables promptness and −→o r(x) quality.

The entropy distribution function of a bipartiton rises to the first maximum, falls and
rises again to reach the second maximum, and decays until it almost vanishes. The right
holistic strategy is to wait for the information to stop rising so that ∂←→o r(x)/∂x vanishes and
∂2←→o r(x)/∂x2 decreases, i.e., in agreement with the maximum entropy principle for isolated
systems (and the minimum energy principle for closed systems) in thermodynamics.

Exclusively concentrating on the past term also makes sense. The idea is to assess
the general level after examining only a few applicants. Assuming that ours behaves as
a linear time-invariant system, deviations decay as e−x, so the probability that the mean
of the three first interviewed applicants is close to the pool mean is 1− e−3 ≈ 95%. Since
a threesome reasonably represents the whole set of applicants, we can confidently pick
a forthcoming candidate. ←−o r(x) considers the cost of the processing; it is a precursor of
human intuition and opens the door to computational methods of solution refinement. For
instance, assuming that we can retain a (preliminary) solution, we can progressively renew
candidates between the two maxima. If the selection process continues after the second
maximum, we are in the same scenario as the classic secretary problem.

Deciding near x =
√

r, between the maxima, is questionable because having already
spent substantial resources on obtaining information, the probability of picking the best
applicant still needs to reach the optimum. Nonetheless, it is a separator of the two partitions
that a living being, for instance, can seek on purpose to maximize internal order or coherence.

The local entropy distribution function has applications other than optimal stopping
problems. In general, when the input corresponds to raw data of a natural phenomenon,
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we can assume NBL statistical redundancy and fit data with (4) or (7). In cryptography, this
assumption can facilitate frequency analysis against many ciphers. In data compression,
there is no need to scan the whole data block to estimate the underlying PMF; we can
randomly and iteratively pick trios or quartets of symbols (past maximum) within the
block until satisfying a fitting condition. For instance, (n-ary) Huffman is a lossless data
compression prefix code that can presuppose that the global NBL is underneath when
the symbol frequencies are unknown. Likewise, “arithmetic coding” could use Benford’s
cumulative distribution function. If the input is not NBL-compliant, we can scan over
a group of approximately r/e symbols (future maximum) to calculate a predetermined
probability model. Moreover, adaptive entropy encoders can estimate the probability
distribution for the following three or four symbols based on the observed frequencies of
the last r/e values.

Let us focus on Golomb coding [54], a lossless data compression method appropriate
to alphabets following a geometric distribution. It pivots on an adaptative parameter M to
split an input value into a twofold length-variable sequence of bits, to wit, the quotient q of a
division by M, sent in unary coding, and the remainder ξ, sent in truncated binary encoding.
We must fix M to an integer value other than 1 (no compression). For example, suppose
we want to encode the decimal N = 67 with M = 10 (Rice code bits b = ⌊log2(M)⌋ = 3).
Then, q = ⌊N/M⌋ = ⌊67/10⌋ = 6 and ξ = 7, delivering

quotientCode(q), remainderCode(r) = codeq(⌊N/M⌋), codeξ(N modulo M)

= codeq(6), codeξ(7)
= 1111110, 1101

where 1111110 is a q-length string of ones with suffix 0 and 1101 is the binary prefix code
representation of ξ using b + 1 bits.

We can modify this algorithm to establish a double Benford–Bayes parameter.
Mpast = 4 (bpast =

⌊
log2

(
Mpast

)⌋
= 2). Then, qpast = ⌊N/Mpast⌋ = ⌊67/4⌋ = 16 and remain-

der ξpast = 3, delivered as 11. Then, we further divide the past quotient code into another

quotient–remainder pair fixing M f uture = ⌈qpast/e⌉ = 6 (b f uture =
⌊

log2

(
M f uture

)⌋
= 2),

producing q f uture = ⌊qpast/M f uture⌋ = 2 (delivered as 110) and ξ f uture = 4 (delivered as 100),
so the final code would turn out to be 110, 100, 11. Both the encoder and the decoder assume
this Benford–Bayes “model”, so that we do not have to spend resources to determine the
optimal value of M when the probability distribution for integers is unknown, nor do
streaming data require a first pass over the data to define a probability model. Moreover,
since we have a fixed model, the encoder and decoder do not need synchronization or
waste computational power to adapt their state.

3.5. Gap Ratio and Cross-Ratio

If we call the quotient

A− B
C− D

≡ (A : B |C : D)

a “ratio of gaps” or “gap ratio”, we can rewrite the encoding rule (11) as

Õ(t : s|b) =
(

s2Ht−1 : s2Hs−1 | t2Hb−1 :
)
∈ Q (1 ≤ s < t < b)

Interestingly, the product, quotient, sum, and difference of two gap ratios are gap ratios,

(A : B |C : D) + (J : K | L : M) =
A− B
C− D

+
J − K

L−M
= (19)
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=
(AL + BM + CJ + DK)− (AM + BL + CK + DJ)

(CL + DM)− (CM + DL)

(A : B |C : D)− (J : K | L : M) =
A− B
C− D

− J − K
L−M

= (20)

=
(AL + BM + CK + DJ)− (AM + BL + CJ + DK)

(CL + DM)− (CM + DL)

(A : B |C : D)× (J : K | L : M) =
A− B
C− D

× J − K
L−M

= (21)

=
(AJ + BK)− (AK + BJ)

(CL + DM)− (CM + DL)

(A : B |C : D)÷ (J : K | L : M) =
A− B
C− D

÷ J − K
L−M

= (22)

=
(AL + BM)− (AM + BL)
(CJ + DK)− (CK + DJ)

In other words, the set of gap ratios, Q̃, is an ordered algebraic field (of characteristic
zero). We can represent a gap ratio (A : B |C : D) on a square grid as an oriented rectangle
with vertices (A, D), (B, D), (A, C), and (B, C) (see Figure 7).

Figure 7. Example of representing a gap ratio and its arithmetic. We display the gap ratios
(−2 : 3 | 1 : −1) (in red) and (1 : | 2 : −1) (in green) and the result of the basic operations between
them, i.e., addition (−6 : 7 | 3 : −3) in yellow (19), subtraction (−8 : 9 | 3 : −3) in gray (20), multipli-
cation (−2 : 3 | 3 : −3) in orange (21), and division (−7 : 8 | 1 : −1) in blue (22). The diagonals from
bottom left to top right indicate a negative sign, while the diagonal from top left to bottom right
indicates a positive sign.

We can formally define gap ratios as equivalence classes (symbol “∼”) of ra-
tional quadruplets where (A : B |C : D) ∼ (K : J | L : M) ⇐⇒ (A− B)(L−M) =

(C− D)(J − K). Note that Q ⊂ Q̃ due to N/D ≡ (N : |D :).
This view lets us comprehend a gap ratio as a rational number with length or area.

So, Q̃ is an extension field of Q such that the latter’s operations are a particular case of
the former. Specifically, the multiplicative units of the field are (1 : | 1 :) and (: 1 | 1 :). The
reciprocal of (J : K | L : M) is (L : M | J : K). In addition, (J : K | L : M) + (K : J | L : M) and
(J : K | L : M)− (K : J |M : L) vanish.

Local Bayesian data also have the structure of a gap ratio. The original prior odds are
precisely the rational n1/n2. We can rewrite the encoding rule (14) as
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õ(n2 : n1|r) = (n1 ln n2 : n1 ln n1 | n2 ln r :) ∈ R (1 ≤ n1 < n2)

Likewise, the result of comparing a pair of local odds is the gap ratio

õ(j : i|h : g) =
õ(j : i|r)
õ(h : g|r) =

i
j logr

j
i

g
h logr

h
g
= (hi ln j : hi ln i | gj ln h : gj ln g) ∈ R

where (1 ≤ g < h) ∧ (1 ≤ i < j).
Bayesian data are elements of Q̃. Certain elements within this set are of special interest;

the following double gap ratio is the “cross-ratio" of four distinct points [55]:

(A : C | A : D)

(B : C | B : D)
=

A−C
A−D
B−C
B−D

≡ (A, B; C, D) (23)

where the alphabetical order indicates that A, B, C, and D are consecutive on the rational
projective line, and A− B and C − D have the same sign. The cross-ratio characterizes
the projective line’s geometry, calculating how much the quadruple’s crossing symmetries
deviate from the ideal proportion 1, precisely the extent to which the ratio of how C divides
[A, B) is proportional to how D divides [A, B).

We can simplify the notation when one of the cross-ratio points is infinite:

(A, ∞; C, D) = (A : C | A : D) ≡ (A; C : D) =
A− C
A− D

Moreover, we can write

(A, B; C, D) = (AB + CD; AD + BC : AC + BD)

using (22) and (23).
In physics, we must generically understand the concept of correlation as a ratio

between magnitudes of the same physical unit. The most straightforward embodiment
of the gap ratio and the cross-ratio gives the Doppler effect’s relationship between the
frequency perceived by the receiver fr and the emitted frequency fs, i.e.,

fr

fs
=

sw − sr

sw + ss
= (sw; sr : −ss)

where sw is the propagation speed of waves in the medium, sr < sw is the speed of the
receiver relative to the medium, and ss < sw is the speed of the source relative to the
medium, assuming that they are moving away from each other [56]. Likewise, the formula
of the relativistic Doppler effect of the source’s frequency relative to the receiver’s frequency
moving away at speed v is [57](

fs

fr

)2
=

1 + v/c

1− v/c
= (1;−v/c : v/c) (24)

4. Conformality
Departing from an inverse-square PMF for the naturals, we gleaned the global and

local NBL, implying that a double scale is necessary to support a universal place-value
system. A global base specifies the harmonic scale, while a local radix fixes the logarithmic
scale that a coding source uses to represent numerals in PN.
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Bayesian data are elements of the field of gap ratios. The logarithm of a cross-
ratio, an especially useful subclass of gap ratio, determines the conformal metric of local
coding spaces.

Conformal maps preserve angles, hence the shapes of the figures, which also implies
scale invariance. These properties are critical to translating the elements of a global har-
monic space into a local logarithmic subspace, the latter reflecting the state of the former.
Conformality is a requirement for coding information that drives complexity; “there is a
shared very particular characteristic of all complex systems. And that is they internally
encode the world in which they live” [58].

4.1. The Conformal 1-Ball Model

The cross-ratio paves the way to conformality because it is invariant under linear
fractional transformations over rings [59]. The group of linear fractional transformations
(Az + B)/(Cz + D), where {A, B, C, D} ∈ Z, called the “modular group" (a subset of the Möbius
group), acts transitively on the points of the grid Z2 visible from the origin, i.e., the irre-
ducible fractions [60], so preserving the form of polygonal shapes through the cross-ratio.

Because the harmonic and logarithmic scales handle the concept of cross-ratio, we can
find a modular transformation between four specific points in a global space S and four
points in a given S’s subspace, the coding space where the source makes a local model.

The most powerful application of the cross-ratio is the Poincaré disk (The Non-
Euclidean World in [61]), a conformal model of hyperbolic geometry that projects the
whole H2 in the unit disk. Circle-preserving Möbius transformations are the isometries of
the complex plane. Assuming that the disk center is at the plane’s origin, points z2 and
z3 within the disk connected by the arc of a geodesic circle perpendicularly intersecting
the disk’s boundary at z1 and z4 are at a hyperbolic distance of ln(z1, z2; z3, z4) [62]. This
measure is invariant under the subset of Möbius maps acting transitively on the unit disk,
the space of the coding source.

In one dimension, the complex plane augmented by the point at infinity can be consid-
ered the real projective line [63], and the disk becomes the unit 1-ball. More specifically, the
set of irreducible fractions augmented by the point at infinity is the rational projective line;
hence, the unit 1-ball becomes the rational open unit interval.

While (−1, 1) is the mathematical domain where the modular group acts, we are
interested in the global computational space where Bayesian processes and transformative
calculation methods occur. We assume that global Bayesian data, i.e., rational quanta,
populate a cosmos of information a source perceives and codes to create a continuous
world model. Outside a coding source, the information resides on a harmonic scale,
whereas inside, a logarithmic scale lodges local Bayesian data.

Suppose that an object is at position P outside (−1, 1). We are ignorant of the actual
computation of P, but we know that it is a rational resulting from applying the rule (11). Be
that as it may, we can use Equation (14) to locally figure the odds of P− 1 against P + 1 in
radix r, whose Bayes factor is the logarithm in r-ary units of a cross-ratio where z1 = −1,
z2 = 1, z3 = P, and z4 = ∞, i.e.,

logr(−1, 1; P, ∞) ≡ logr(P;−1 : 1) = logr
P + 1
P− 1

In information theory, this expression is the representational length in radix r of
the rational number P + 1/P− 1 and, according to NBL (8), the r-normalized width of bin
[P− 1, P + 1). We can unite these outlooks by interpreting this Bayes factor as the hyper-
bolic distance from P to b→ ∞, i.e.,

dr(P, ∞) ≡ logr(−1, 1; P, ∞) =
2

ln r
arcoth(P)
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where arcoth is the inverse function of the hyperbolic cotangent.
A neat inversion conformally maps the outside of the coding source to its inside,

(−1, 1; P, ∞) −→
z 7→1/z

(−1, 1; D, 0) (25)

conserving the cross-ratio. (Other inversions z 7→∝ 1/z also serve but violate the
minimal information principle.) For example, if P = 2 (hence, D = 1/2), (−1, 1; P, ∞) =
−1−2
1−2 = 3= 1+ 1

2
1− 1

2
= (−1, 1; D, 0). Therefore, the r-normalized hyperbolic distance between

the origin and |D| = |1/P| < 1 is

dr(0, D) ≡ logr(−1, 1; D, 0) ≡ logr(0, D; 1,−1) ≡

≡ logr
1 + D
1− D

≡ logr(1;−D : D) ≡ 2
ln r

artanh(D)

where artanh is the inverse function of the hyperbolic tangent, and ln r is the (constant)
curvature’s absolute value of the source’s coding space.

The inverse function of dr(0, 1/P) is P = coth
((

1
2 ln r

)
dr(0, 1/P)

)
. For example, an

object at a Euclidean distance P = 106 from the origin is at a natural hyperbolic distance
of de(P, ∞) = 2 arcoth

(
106) ≈ 2× 10−6 from b → ∞. The coding source positions the

object at D = 1/P = 10−6, at a natural hyperbolic distance of de(0, D) = 2 artanh
(
10−6) =

2 arcoth
(
106) from the origin, and decodes it as P = coth artanh

(
10−6) = 106.

Mind that the local coding space is the 1-annulus

å− ≡ {D ∈ Q| − 1 < D < −1/b}

å+ ≡ {D ∈ Q| 1/b < D < 1}

å ≡ å− ∪ å+ ≡ {D ∈ Q| 1/b < |D| < 1}

reflecting what the source observes in the 1-annulus

Å− ≡ {P ∈ Q| − b < P ≤ −1}

Å+ ≡ {P ∈ Q| 1 ≤ P < b}

Å ≡ Å− ∪ Å+ ≡ {P ∈ Q| 1 ≤ |P| < b} (26)

For instance, if D ∈ å+, dr(0, D) vanishes if P→ b→ ∞, is > 1 if P is at a Euclidean
distance closer than coth ln r/2 from the origin, and diverges if P→ 1+.

The r-normalized hyperbolic distance between two points A and B in å is dr(0, QB)−
dr(0, QA), i.e.,

dr(QA, QB) =
2

ln r
(artanh(QB)− artanh(QA)) (27)

where QA and QB result from the conformal transformation (25), i.e., P 7→ 1/Q, which
mirrors the external world concerning å’s outward boundary, to wit ±1. Thus,

dr(Q) = dr(0, Q) =
2

ln r
artanh(Q) (28)

reflects how far an object at Q is from infinity, situated at the origin.
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Nonetheless, we want the origins of the coding source and Å to coincide and ±1 to be
the infinite points of the local model. This requirement implies calculating Q’s complement
to one, a logical negation that varies on the left and the right. Recall that all negations are
derivations of the canonical one [64], so we will use the map z 7→ −1− 1/z on the left and
z 7→ 1− 1/z on the right to satisfy the minimal information principle. The coding space is
now the open 1-ball

ß ≡ {Q ∈ Q| |Q| < 1− 1/b} (29)

reflecting what the source observes in the 1-annulus Å.
Equations (27) and (28) are also valid in ß. An object at P ∈ Å− will be in ß− at a

Euclidean distance of

Q = (; P + 1 : −P) = −1− 1
P

from the origin and hence at a hyperbolic distance of

d−r (Q) =
2

ln r
artanh(Q) = − logr(−(2P + 1)) = logr(P; P + 1 : −P− 1) (30)

with inverse (decoding) function P = − 1
2

(
1 + r−d−r (Q)

)
.

Similarly, an object at P ∈ Å+ will be in ß+ at a Euclidean distance of

Q = (P; 1 :) = 1− 1
P

from the origin and hence at a hyperbolic distance of

d+r (Q) =
2

ln r
artanh(Q) = logr(2P− 1) = logr(P; 1− P : P− 1) (31)

with inverse (decoding) function P = 1
2

(
1 + rd+r (Q)

)
.

For example, a coding source places an object observed at a Euclidean distance
of P = ±106 at Q = ±0.999999 in ß at a natural hyperbolic distance de(Q) =

2 artanh(±0.999999) = ± ln
(
±2× 106 − 1

)
= ±14.50866 from the origin, and P =

± 1
2
(
1 + e14.50866) = ±106. On the positive side, the odds are õ(2P− 1 : 1|e) = ln(2P−1)

2P−1 =
ln 1999999

1999999 ≈ 7.254332× 10−6. Suppose that, later, the coding source calculates this value
as 7.254265× 10−6, meaning that either the object has moved to P ≈ ±1000010 (because
õ(2P− 1 : 1|e) = ln 2000019

2000019 ≈ 7.254265× 10−6) or the radix has changed to r ≈ 2.71831
(because õ

(
2× 106 − 1 : 1|2.71831

)
= ln 1999999

1999999 ln 2.718307 ≈ 7.254265× 10−6). Even a combina-
tion of these two cases could produce the same odds value.

Note that functions in the form |θ1| exp(|θ2Q|)artanhθ3(|θ4|Q), where {θ1, θ2, θ4 ∈ Q}
and θ3 is an odd power, e.g., 2 exp(3Q)artanh5(7Q), also give rise to an odd hyperbolic
distance that complies with boundary conditions dr(±1) = ±∞ and a vanishing distance
when Q vanishes (|P| → 1). However, they would introduce new factors and parameters
we cannot explain; artanh(Q) is the only conformal function that retains the origin and
conforms with the minimal information principle. In addition, it agrees with the canonical
PMF (the first power is the most probable) and satisfies the additional condition of having
a non-vanishing derivative at the origin, i.e., the origin is not stationary so that the function
can keep its increasing tendency from left to right.
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4.2. Conformal Coding and Computability

artanh has a protagonist role in a conformal space not only due to its manifestations in
physics, mainly the metric (28), but also because its Taylor series allows the natural logarithm
itself to be calculated iteratively based on the odd powers of x−1

x+1 ([65], 4.1.27), i.e.,

ln x = 2
∞

∑
i=1

(x; 1 : −1)2i−1

2i− 1
(32)

This is valid for any x ∈ R+, especially when x ≈ 1. For example, let us calculate the
ternary logarithm of P = 106. Since 106 = 12122102020013, a numeral with 13 digits, its log-
arithm’s characteristic is 12 and x = P− 312 = 1.88168; after five iterations, the mantissa’s

error is less than one millionth, i.e., we calculate log3 P = 12 + 2
ln 3 ∑5

i=1
(1.88168;1:−1)2i−1

2i−1 =

12.57541925 against the real value of 12.57541965.
Because the coding source can autonomously calculate the logarithm using (29), ß’s

curvature − ln r is a built-in value. Likewise, ß’s Euler characteristic χ =
∫ 1

0 ln x dx = −1, a
topological invariant [66] corresponding to no vertices, one edge, and no faces, is a built-in
value. Moreover, the coding source is “aware" of the PMF (1) through the digamma function
ψ(x) = Γ′(x)/Γ(x) (see Section 2.3) because the gamma function results from integrating the
powers of ß’s curvature over the unit segment, namely, Γ(n + 1) =

∫ 1
0 (− ln x)n dx.

Let us denominate the r-normalized hyperbolic distance (Equations (31) and (30)) in
logarithmic terms the “conformal encoding function” of P ∈ Å, namely,

−→
C r(P) ≡ sgn(P) logr(2 sgn(P) P− 1) (33)

with inverse “conformal decoding function”

←−
C r(C) ≡

1
2

sgn(C)
(

1 + rsgn(C)
−→
C r(P)

)
(34)

where sgn() is the signum function (see Figure 8).

Figure 8. The coding functions (Equations (33) and (34)) of the 1-ball conformal model.

Because the source places an object observed at a Euclidean distance P ∈ Å at a
Euclidean distance

Q = sgn(P)− 1
P
= sgn(P) (|P|; 1 :) (35)
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from the origin, we can calculate the conformal encoding function using (32) as the
infinite summation

−→
C r(Q) =

2
ln r

∞

∑
i=1

Q2i−1

2i− 1
(36)

Note that a coding source can calculate its first digit probability as

Pr(r, 1) = logr

(
1 +

1
1

)
=

∫ 1
0 artanh(Q)dQ

ln(r)
=

1
2

∫ 1

0

−→
C r(Q)dQ

The coding source can consequently calculate the conformal decoding function as the
infinite product

←−
C r(Q) =

1
2

sgn(Q)
(

1 + rsgn(Q)
−→
C r(Q)

)
=

1
2

sgn(Q)

(
1 +

∞

∏
i=1

e2 sgn(Q) Q2i−1
2i−1

)
(37)

which does not depend on r.
Therefore, Euclidean distances measured in ß (29) are the only inputs necessary to

compute the coding functions.

4.3. Conformal Relativity

We must take the hyperbolic distance (28) as an abstract concept that does not have to
be a physical length.

Imagine that the global base b physically represents the speed of light. On the right
hand, P = (b; : v) = b/(b− v) ≡ 1/(1− v/c) produces Q = 1− 1/P = v/b ≡ v/c; if an object’s
speed is v → b ≡ c, then P → ∞+ and Q → 1−, and if v → 0+, we obtain P → 1+

and Q → 0+. On the left hand, P = (; b : −(b + v)) = − b/(b + v) ≡ − 1/(1 + v/c) produces
Q = −1 − 1/P = v/b ≡ v/c; if an object’s speed is v → −b ≡ −c, then P → ∞− and
Q → −1+, and if v → 0−, we obtain P → −1− and Q → 0−. In either case, Q = v/b, and
we can write the relativistic Doppler effect (24) in the form

fs

fr
= eartanh(v/b) = eartanh(Q)

Since the rapidity corresponding to velocity v is, by definition,

ν ≡ artanh(v/b) (38)

special relativity’s Lorentz factor is γ ≡ cosh ν [67]. Moreover, the coding source resolves
the composition of Doppler shifts as the exponential of the addition of rapidities, i.e.,

fs

fm

fm

fr
= eνms+νrm

where fm is the frequency perceived by the first receiver, νms the rapidity of the first receiver
relative to the source, and νrm the rapidity of the second receiver relative to the first one.

The special relativity theory is only conformal in terms of rapidity. Visualize
two inertial frames, A and B, cruising at relativistic speed ratios of PA = 3 and PB = 18
about the origin of the coding source. These correspond in ß (using (35)) at ratios
QA = 1− 1/3 = 2/3 and QB = 1− 1/18 = 17/18 of the speed v to b ≡ c, defining rapidities
νA = artanh(2/3) and νB = artanh(17/18), and encoded in ternary as hyperbolic (relativistic)
speeds d3(QA) = 2νA/ln 3 = 1.465 and d3(QB) = 2νB/ln 3 = 3.2362. The difference in hyper-
bolic speeds is linear in ß; using (27), d3(QA, QB) = d3(QB)− d3(QA) = 1.7712. Within Å
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(26), the difference in (Euclidean) velocities is 18− 3 = 15, but the difference in hyperbolic
speeds is, using (34),

1
2

(
1 + 3

2
ln 3 (νB−νA)

)
=

1
2

(
1 + 31.7712

)
= 4

Rapidity arithmetic is more straightforward than calculating Einstein’s subtraction
formula of (Euclidean) velocities, which calculates νB − νA as artanh

(
1−QAQB
QB−QA

)
.

Another way to obtain the same result is directly using the cross-ratio and (33), i.e.,

1
2

1 + 3
log3

QA−1
QA+1
QB−1
QB+1

 =
1
2

(
1 + 3log3

2PB−1
2PA−1

)
=

1
2

(
1 + 3log3 7

)
= 4

These results mean the weave of Lorentz invariance, and more generally Poincaré
invariance, is the algebraic field of cross-ratios. Lorentz symmetry [68] locally preserves
central reflections and boosts, the latter maintaining constant the speed of light (the global
base) when transforming to a reference frame with a different velocity. Poincaré symmetry,
the entire symmetry group of any relativistic field theory, additionally preserves the laws
of physics for inertial coding sources situated at different quantum positions.

4.4. Local Bayesian Entropy

The conformal encoding function (33) represents the likelihood of the local Bayesian
odds, namely,

õ(2 sgn(P) P− 1 : 1 | r) =
logr(2 sgn(P) P− 1)

2 sgn(P) P− 1
=

logr(2|P| − 1)
2|P| − 1

which expresses the entropic contribution of bin [1, 2|P| − 1), hence of P, to Å’s information
total, where (26) defines Å. Because a cross-ratio is invariant under a conformal transforma-
tion, so is the Bayesian information defined by the local odds. The transformed Bayesian
datum is

õ(1 + sgn(Q) Q : 1− sgn(Q) Q | r) = 1− sgn(Q) Q
1 + sgn(Q) Q

logr

(
1 + sgn(Q) Q
1− sgn(Q) Q

)
which expresses the entropic contribution of bin [1− |Q|, 1 + |Q|), hence of Q, to ß’s
information total, where (29) defines ß. Moreover, because the mapping is bijective, Å and
ß contain the same absolute likelihood information.

The limiting function of the rationals in Å to approximate a piece of “real” average
information would require an analysis analogous to [69] (chapter 4b), which pivots on
the differential entropy [70]. Assuming b → ∞, such a “differential Bayesian entropy”
measures the continuous weighted likelihood from the coding source boundary to a point
P; it is precisely the integral

ẽÅ+(P) =
P∫

1

logr(2 x− 1)
2x− 1

dx =
1

ln r

(
ln(2P− 1)

2

)2

on the right and

ẽÅ−(P) =
−1∫
P

logr(−2x− 1)
(−2x− 1)

dx =
1

ln r

(
ln(−2P− 1)

2

)2

on the left.
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Then, using (35), artanh comes up again to estimate the dominating element of the
coding source’s entropy

ẽß(Q) = ẽÅ(P) =
artanh2(Q)

ln r
nat

from the origin to infinite points (Q→ 1). In the special theory of relativity, this result means
that the entropy grows quadratically with the rapidity (38) when v→ b ≡ c. Using (28),

ẽß(Q) = ln r(dr(Q)/2)2nat

in terms of distance; note that this expression peers the Bekenstein–Hawking’s formula of
black hole entropy in quantum gravity [71]. Since entropy measures confusion, this result
means that objects in remarkably curved coding spaces or at huge distances are indiscernible.

4.5. Conformal Iterated Coding

Because the hyperbolic distance (Equations (28) or (33)) and the rapidity range between
−∞ and ∞, we can presume the coding source’s logarithmic scale is a (new) whole external
world, defined by Euclidean distances, and repeat the encoding process.

If we apply the (right-hand) conformal encoding function recursively,

logr(2 logr(2 logr(2 . . .− 1)− 1)− 1)

the source encodes a rightward external object’s position sooner or later in ß+, and the
recursion halts. For example, if r = 3, we can map an object observed at a Euclidean
distance of googol from the origin, after five nested conformal transformations, onto a
point in ß+ at an approximated hyperbolic distance of 0.096773 from the origin.

Repeatedly applying the encoding function (33) or the decoding function (34) is
information-preserving iterated coding. We will use the notation r ◦ n to express the nth
iterate (n ≥ 1) of the encoding function

−→
C r(P), so that

−→
C r◦1(P) ≡

−→
C r(P) and

−→
C r◦(n+1)(P) ≡

−→
C r(P) ◦

−→
C r◦n(P)

where “◦” denotes function composition holding the properties

−→
C r◦(m+n)(P) ≡

−→
C r◦n(P) ◦

−→
C r◦m(P)

and

−→
C r◦mn(P) ≡

−→
C r◦n

(−→
C r◦m(P)

)
Note that the limits of the coding space remain unaltered irrespective of the iteration

because
−→
C r◦n(±1) vanishes for all n.

The iterated logarithm of N ∈ N+, written log∗ N, is the number of times the natural
logarithm function must be recursively applied before the result is less than or equal to the
unit. Similarly,

−→
C r∗(P)

is the number of times we must iteratively apply (33) until the absolute value of the result
is less than one.

We call the sequence of values
−→
C r◦n(P), where 1 ≤ n ≤ −→C r∗(P), the “conformal orbit”

of P, which outlines a tetrational plot [72]. For example, the orbit with radix r = 3 of the
quantum minus googol is

{
−10100,−210.221,−5.49687,−2.09533,−1.05609,−0.096773

}
.

No value of the orbit can be “identically 1” because ±1 represents ±∞, while the global
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base b is our universe’s maximum. Indeed,
−→
C e∗(b) gives us the universe’s maximum

natural depth.
We recover the original point by applying (34) iterated the same number of times, i.e.,

←−
C

r◦−→C r∗(P)

(−→
C

r◦−→C r∗(P)
(P)
)

where
←−
C r◦1(H) ≡

←−
C r(H) and

←−
C r◦(n+1)(H) ≡

←−
C r(H) ◦

←−
C r◦n(H).

Every 1-ball of radius
←−
C r◦n(0) might correspond to a granularity level [73], a local set-

ting belonging to the nested information of a (global) complex system such as the universe.
Considering that

−→
C r∗(P) grows with P exceptionally slowly, the natural granularity levels

are likely few; the ternary granularity depth for the currently estimated universe size in
Planck units would be

−→
C 3∗

(
1061) = 5, and the binary granularity depth for the currently

estimated number of atoms in the known universe would be
−→
C 2∗

(
1088) = 8.

Because every iteration conserves the local likelihood information, a granularity realm
has an identical copy of the Bayesian data that matches its range of distances in the external
world. Nevertheless, it is autonomous in creating new information elements, such as
those resulting from clustering points or lumping together similarity classes, defining
emerging organizational behavior. We can even take this combination of iterated coding
with coarse-grained modeling [74] as a principle of multiscale modeling [75].

From a computational point of view, conformal coding might use a representation
similar to the level-index number system [76]. The quantum P ∈ Å+ encoded as the
(true-normalized form of the) significand 0 < s < 1 after n =

−→
C r∗(P) ≥ 1 iterations would

be represented as sr◦n, so that

P ≈ ←−C r◦n(s) =
1
2


1 + r

1
2

1+r

1
2

1+r···
1
2 (1+rs)




where the order (height) of the power tower is n.
For example, a conformal representation of the number googol is 0.00212111221...3◦5

(see Figure 9) owing to 0.00212111221...3 ≡ 0.096773 . . . and

10100 =
←−
C 3◦5(0.096773 . . .) =

1
2


1 + 3

1
2


1+3

1
2

1+3

1
2

(
1+3

1
2 (1+30.096773...)

)



We similarly obtain that 1088 =

←−
C 2◦8(0.805897 . . .) ≡ 0.1100111001 . . .2◦8.
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Figure 9. The three most profound levels of granularity{
±←−C r(0) = ±1,±←−C r◦2(0) =

←−
C r(±1) = ±2,±←−C r◦3(0) =

←−
C r(±2) = ±5

}
(out of 5) the cod-

ing source in green generates to encode the number googol with radix r = 3, the minor four points
of the conformal orbit, and the conformal encoding (in red, Equation (33)) and decoding (in blue,
Equation (34)) functions.

5. Primordial Distributions
We cannot irrefutably prove that the probability ISL (1) is a foremost PMF beating

at the core of the cosmos, but NBL emanating from it is at least evidence supporting that
possibility. Because NBL is pervasive and reflects the properties of PN, efficiency must be a
rudimentary feature of nature. Following this trend of thought, we describe how to grow
this one-parameter PMF from elemental geometric distributions, guaranteeing universal
constructability. We will also tune the PMF’s parameter to achieve the expected divisibility
of N’s probability mass and cast probability values as unit fractions. This provision is
equivalent to making the event “picking the number one” a Bernoulli process.

The resulting PMF for the natural numbers allows calculating the probability and
entropy of dichotomies like odd–even and prime–composite and trichotomies such as
negative–zero–positive and elliptic–Euclidean–hyperbolic. The canonical PMF for the
integer numbers could be the germ of a fundamentally unitary, parity-invariant, uncertain,
discrete, and maximally entropic universal field.

5.1. Constructability

The Euler product formula for the zeta function (equations 1.6 and 1.13 in [77]) allows
us to define PMF (1)’s primordial random variable X ∈ N+ as the infinite product

X = ∏
p∈P

pX(1/p2)

of independent identically distributed random variables with a geometric sequence of prob-

abilities Pr
(

X
p∈P

(1/p2) = k
)

= (1/p2)k(1− 1/p2) [40], corresponding to the PMF of k failures
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before the first success, with each binomial trial (see below) having a failure probability of the
parameter 1/p2. This construction means that the canonical PMF (up to ϵ) consists of geometric
distributions that, in turn, are “memoryless” [78] and “infinitely divisible” [79]. Of course,
this infinitude is theoretical because there must be a maximum prime.

Once we have constructed the one-parameter canonical PMF from elemental genera-
tors, which constitutes a rudimentary notion of emergence, we can improve its computabil-
ity by digging into rationality and making the probability mass of the natural numbers
divisible on average to ensure its compartmentalization.

5.2. Ensuring Divisibility

At the end of Section 2.2, we determined that ϵ ∈ (0, 6/π2) by merely demanding
Pr(N ∈ N) > 0, i.e., (1− ϵζ(2)) = (1− ϵπ2/6) > 0. Given that the fraction of square grid
Z2’s points visible from the origin is precisely 6/π2 [80], our requirement is equivalent to
setting ϵ as a rational equal to the size of a subset of them.

We now introduce a new vital constraint on the number of divisors of a natural number
intended to narrow the range of possible values of ϵ. The rationale is that divisibility, as a
dual concept of primality, is paramount to understanding our universe.

Remember that a nonzero natural’s number of divisors d̄ includes one and the number
itself; for instance, d̄

(
12) = 1, d̄

(
22) = 3 (1, 2, and 4), d̄

(
32) = 3 (1, 3, and 9), and d̄

(
42) = 5

(1, 2, 4, 8, and 16). Notwithstanding that the distribution Pr
(
d̄
(

N2)) is unknown, we can
calculate the mean of divisors of counting numbers squared by employing the general law
of the expected values (or “unconscious statistician”) [81]. We require such an expected
value to be at least two to guarantee that the divisibility of the entire probability room
defined by (1) takes place non-trivially and naturally, for if N2 splits into d̄

(
N2) ≥ 2 parts,

so can Pr(N), i.e.,

2 ≤ Ê
(
d̄
(

N2
))

= ϵ
∞

∑
N=1

d̄
(

N2)
N2 = ϵ

ζ3(2)
ζ(4)

= ϵ
(π2/6)3

π4/90
= ϵ

5
12

π2

where the summation agrees with Equation (3.41) of [82]. Considering the high probability
of picking the unit, this constraint is more rigid than it might seem at first sight.

Let us recap. We are imposing only a pair of constraints to provide ϵ with an accurate
value; first, the probability of a natural to be nonzero, and second, the expected probability
mass of the set of natural numbers to be splittable. Thus,

(0 < ϵ < 6/π2) ∧
(

ϵ
5

12
π2 ≥ 2

)
constricts the possible values of ϵ to the narrow range

ϵ ∈ 1
π2

[
24
5

, 6
)
≈ (0.4863417, 0.6079271)

We aim to define NBL in a strict rational setting to increase operability through
multiplication and division (see Sections 2.3 and 3.1). Although rationals such as 49/100 or
6/10 satisfy this constraint, the most probable numerator and denominator, in agreement
with (1), are precisely 1 and 2, so

ϵ =
1
2

(39)

In passing, this value assures that the probability mass of a nonzero natural number is
splittable. Moreover, it is a unit fraction.
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5.3. Randomness

What does (39) mean from the information theory perspective? It means converting
the event “picking the unit” into a Bernoulli (binomial) experiment equivalent to flipping a
coin. A sequence of these independent identically distributed picks is a Bernoulli process,
unique and universal in that it is the single most random non-mixing process possible [83].

More generally, the corresponding variable that considers obtaining exactly k ones
in an experiment with N trials, each with a probability of success ϵ, follows the binomial
distribution [84] (

N
k

)
=

N!
k!(N − k)!

Pr(k, N, ϵ) =

(
N
k

)
ϵk(1− ϵ)(N−k) (40)

isomorphic to “exactly k tosses out of N ≥ k tosses resulting in a head”. The logarithmic
scale awesomely comes up again when we calculate the entropy of this distribution, which
tends to 1

2 ln(2πeNϵ(1− ϵ)) as N approaches infinity.
Well, the binary entropy function of “picking the number one” (and the complementary

event “picking a number with splittable probability”) attains its maximum when (39) holds,
like a fair coin, where the odds for and against are 1 (heads or tails) by definition. For the
same reason, 1

2 maximizes the entropy of the binomial distribution (40), too.
In summary, (39) ensures five conditions, to wit, positive rational probabilities con-

gruent with the PMF itself, average divisibility of N’s probability mass, maximum number
of naturals with splittable occurrence probability, counting numbers with unit fraction
probability masses, and maximum universal randomness.

5.4. Canonical PMF for the Natural Numbers

Assuming (39), we can establish that

Pr(X = N) =

N ∈ N− {0} : 1
2N2

else : 1− 1
2 ζ(2)

(41)

is the canonical PMF for a random variable X that takes natural values. Its mode is one,
and its mean and variance are undefined. As required, the expected divisibility value of
the global probability mass surpasses two, namely,

Ê
(
d̄
(

N2
))

=
1
2

ζ3(2)
ζ(4)

≈ 2.05617

Indeterminacy has chances at every tick of the clock because of 1− 1
2 ζ(2) ≈ 17.75%.

Therefore, the probability of a counting number coming out is

1
2

∞

∑
N=1

1
N2 =

ζ(2)
2

=
π2

12
≈ 82.25%

Let us see (42) in action. The probability of a string of numbers is the product of
the individual probabilities; for example, the probability of picking s and t in a row is
Pr(< s, t >) = Pr(< t, s >) = Pr(s)Pr(t). The probability of a choice between a set of
numbers is the sum of the individual probabilities; in particular, the probability of picking
a number in the interval [s..t) is the sum of Pr(s) + Pr(s + 1) + · · ·+ Pr(t− 1).

The probabilities of a natural number being odd and even are (3/4)(ζ(2)/2) = (π/4)2 ≈
5/8 and (1/4)(ζ(2)/2) = π2/48 ≈ 5/24, respectively (see Equation (1.12) in [85]). So, obtaining
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an odd natural number is 3/4
1/4

= 3 times as probable as picking an even, in sharp contrast

with the “intuitive” 1
2 size in [26].

The probability of the event “picking a natural number greater than 1”, i.e., a num-
ber with splittable probability, is the unit minus the probabilities of indeterminate and
one, namely,

Pr(X ≥ 2) = 1−
(

1− 1
2

ζ(2) +
1
2

)
=

1
2
(ζ(2)− 1) ≈ 0.32247

The probability of the event “picking a prime” is half the sum of the reciprocals of
prime numbers P squared, i.e.,

Pr(X = N ∈ P) = ∑
N∈P

1
2N2 =

1
2

Pζ(2) ≈ 0.22612

where Pζ(·) is the prime zeta function. Thus, picking a composite number has a probability
of

Pr(X ≥ 2∧ X /∈ P) = 1
2
(
ζ(2)− 1− Pζ(2)

)
≈ 0.09634

and the probability that N ∈ P, conditioned to be greater than 1, exceeds 70% due to

Pr(X = N ∈ P|X ≥ 2) =
Pr(X = N ∈ P)

Pr(X ≥ 2)
=

Pζ(2)
ζ(2)− 1

≈ 0.22612
0.32247

≈ 0.70123

Therefore, observing primes in nature is expected; regarding number theory, the odds
of prime versus composite are 70/30.

The canonical PMF (42) straightforwardly explains the supremacy of the hyperbolic
configurations concerning the two-dimensional tilings algebraically associated with the
finite reflection groups [86].

The probability of a natural number greater than one occurring thrice is

(Pr(X ≥ 2))3 =

(
1
2
(ζ(2)− 1)

)3
≈ 0.033532

In other words, this value is the probability of producing three naturals to form
a triangle.

The probability of picking three naturals forming a Euclidean triangle (i.e., 1/l + 1/m +
1/n = 1) is the probability of picking {2, 3, 6}, {2, 4, 4}, or {3, 3, 3}, namely,(

1
2

)3( 1
223262 +

1
224242 +

1
323232

)
≈ 0.000390

The probability of picking three naturals forming a spherical triangle (i.e., 1/l + 1/m +
1/n > 1) is (

1
2

)3( ζ(2)− 1
2222 +

1
223232 +

1
223242 +

1
223252

)
≈ 0.005780

where the first term is the probability of a triplet of two 2s and any natural greater than one.
The probability of picking three naturals forming a hyperbolic triangle (1/l + 1/m +

1/n < 1) equals the occurrence probability of a triangle that is neither Euclidean nor
spherical:

0.033532− 0.000390− 0.005780 ≈ 0.0273615
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So, the odds of hyperbolic cases against non-hyperbolic cases point to the former’s
predominance, specifically

0.0273615
0.000390 + 0.005780

≈ 4.434429

In summary, two-dimensional tilings are usually hyperbolic. Therefore, inversive
and conformal geometry might be at the world’s heart, built from the simplest simplices
(generalizations of a triangle to any dimension).

5.5. Canonical PMF for the Integer Numbers

Pr(X = N) =

N ∈ N− {0} : 1
2N2

else : 1− 1
2 ζ(2)

(42)

is the canonical PMF for a random variable X that takes natural values.
Finally, we can extend (42) to establish that

Pr(Ξ = Z) =

Z ∈ Z− {0} : 1
(2Z)2

else : 1− 1
2 ζ(2)

(43)

is the canonical PMF for a random variable Ξ that takes integer values. It has mode ±1 (see
Figure 10), with entropy

−
(

1− 1
2

ζ(2)
)

log2

(
1− 1

2
ζ(2)

)
− 2

∞

∑
Z=1

log2

(
(2Z)−2

)
(2Z)2 = 3.44027bit

For nonzero integers x and y, it is the solution to the functional equation

Pr(x)Pr(y) = (x y Pr(x y))2

satisfying the condition Pr(±1) = 1
2

2
.

This PMF, which accounts for the weight of the ISL in physics [87], cannot be
more buildable; take every second integer from the coding source point of view, i.e.,
{· · · ,−8,−6,−4,−2, , 2, 4, 6, 8, · · · }, then their reciprocals squared, obtaining
{· · · , 1/64, 1/36, 1/16, 1/4, , 1/4, 1/16, 1/36, 1/64, · · · }, which coincides with (43). It satisfies posi-
tive probability masses summing to one, central reflection symmetry, fair (i.e., undefined)
mean and variance, holistic rationality, and randomness. Unitarity, parity invariance, in-
determinism, discreteness, and the principle of maximum entropy are the embodiments
of these properties, which are all fundamental. In addition, the square root of the proba-
bility mass (physically, the probability amplitude) of a nonzero integer is precisely half its
reciprocal.

Again, the resulting NBL is valid irrespective of the proportionality constant ϵ, follow-
ing Section 2.5, namely,

Pr(r, d) = logr

(
1 +

1
|d|

)
where 1 ≤ |d| < r, r ∈ N ≥ 2, and d ∈ Z.



Axioms 2025, 14, 106 40 of 48

Figure 10. The canonical PMF for the integer numbers (43) could germinate a fundamentally unitary,
parity-invariant, indeterministic, discrete, and maximally random universal field. The plot resembles
the (inverted) cross-section of a sombrero potential (e.g., the quartic function −(Z/2)2 + 2(Z/2)4) of a
scalar field with an unstable (indeterminate) center and a nonzero “vacuum expectation value”; the
multiplicative units ∓1 provide this field with the ground (vacuum) state, enabling spontaneous sym-
metry breaking. Thus, the sombrero potential would be the physical manifestation of a fundamental
improbability mass function.

6. Conclusions
Our research shows how discreteness and the continuum interact under the shelter of

(1). A complex system and its environment embody the continuous local and discrete global.
The NBL probability’s derivative of the local takes us to the global, and vice versa; the
global’s integral situates us in a local setting of likelihood-based probability. A harmonic
scale of rational numbers supports the global realm, while a logarithmic scale of “real
values” supports the local realm. The harmonic scale’s base confines the rational setting,
and a logarithmic scale’s radix is an exponentiation constant that normalizes a complex
system’s conformal space of “continuous” information coded in PN.

We consider a complex system a coding source that observes the outside, operates
internally with the gathered information, and takes action on the environment. More
precisely, a coding source uses the synergy between Benford’s and Bayes’s laws to reflect
(encode) the external world, process (recode or arithmetically transform) the informa-
tion, and return (decode) the results to its immediate surroundings. These laws connect
mathematics with physics.

6.1. Canonical PMF

NBL bets on smallness; little objects are more numerous than extensive ones. Why?
The fact that many probability distributions partially adhere to NBL does not reveal its
root. Nor can we glean its origin from the fact that merging methods via sampling or
multiplication of real-world data series produces adherence to NBL. “Mathematics alone
cannot justify a first-digit law”, wrote Raimi. Given that the effects of NBL are well known
in physics, we need to be aware of its fundamental character and ultimate cause.

NBL is not so mysterious if we concede that it originates from an ISL of probability.
Whenever the canonical PMF governs a system behavior, we can infer its properties are
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data spaces that record information on a positional scale. This constructible primordial
PMF states an absolute hyperbolic relation between the square of a nonzero number N ∈ N
and its probability mass Pr(N); N2 Pr(N) is constant.

If we assume the minimal information principle, PMF (43) is the only way to satisfy
that the positive probabilities sum to 1, guarantee that our random variable’s average
value is not finite if we repeat the experiment often enough, ensure mass divisibility, and
cope with the extension to all the integers. These requirements’ logic, sturdiness, and
feasibility suggest a full-fledged tenet at the heart of mathematics, physics, and higher
integrative levels. In addition, this PMF implements the Axiom of Induction; “at least
one inductive set does exist determined uniquely by its members that has a substrative
probability distribution”.

Although the canonical PMF consists of Bernoulli generators, we introduce it as a brute
fact deprived of tangible information. This probability ISL could be the embryo for crucial
experimental laws of physics, such as Newton’s universal gravitation and Coulomb’s
electrostatic force. Understood as an improbability field, it could even give place to the
energy density of free space characterized by a sombrero potential with an unstable center
and a nonzero vacuum expectation value.

The canonical PMF indicates a manner of arranging availability versus transcendence.
Occasional numbers are more startling and influential than abundant ones. While frequent
numbers provide resilience, infrequent numbers have the capacity for transformation.
Therefore, the universal equilibrium is not enforced via uniformity but achieved by hy-
perbolically balancing accessibility or stability (position) against magnitude or reactivity
(momentum); does this not sound like the uncertainty principle?

The canonical PMF naturally copes with ambiguity and vagueness by introducing the
“indeterminate” value (interpreted as inaction or not-a-number and symbolized by zero)
and dodging a finite expected value. However, pure conformality is only possible within a
finite global scope; b ultimately enables implementing a PN-based coding space where the
accessibility potential

Pr(b, q) + q
∂ Pr(b, q)

∂q

vanishes for all quanta q and the logarithm can germinate.

6.2. The Logarithm Measures Local Information

Integrating under the global NBL’s hyperbola and normalizing concerning a local
radix r ≪ b immediately drives us to the fiducial, R-based, logarithmic form of NBL.

The logarithm and its inverse (the exponential) are fundamental functions because
they appear everywhere in mathematics and physics. The logarithm bridges information
and physics, especially thermodynamics, via the Gibbs entropy formula in statistical
mechanics. In information theory, the logarithm mainly estimates the representational
extent of a given numeral written in PN. Further, this manuscript proves that the logarithm
resolves the metric of a conformal space by recasting correlations into distances or rapidities.
This conversion is critical in iterated coding, especially in coarse-grained and multiscale
modeling. The radix’s logarithm is precisely the (absolute value of the) coding space’s
curvature. In particular, radix r = e defines the natural logarithmic scale, i.e., the standard
one-dimensional hyperbolic space.

The logarithm is central to comprehending how profoundly NBL connects with re-
currence and incrementality. A coding source implements Bayes’ rule by multiplying
the prior odds between two quanta by a likelihood factor that is precisely the logarithm
of their ratio’s reciprocal. This structure represents likelihood information, e.g., the en-
coded odds of an elemental jump, and admits a representation as a gap ratio (A− B)/(C− D),
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which is recurrent under iterative processes of encoding, recoding, arithmetic operations,
and decoding.

When a digit is one of the r− 1 available items in a pool, Bayesian coding solves a
version of “the secretary problem” that considers the strategy to select “a good” item rather
than “the best” one. It belongs to a class called “last-success problems" with universal
scope. Its objective is to determine the last item x on the fly that maximizes the probability
of success in accomplishing the stopping rule, i.e., rejecting the first x items and stopping
afterward at the next that is better than the preceding ones. We approach the solution by
aggregating the past odds õ(x : 1|r) ∝ r

x ln x and the future odds õ(r : x|r) ∝ x ln r
x . We

feature a couple of characteristic properties of the local likelihood distribution function (bi-
partite entropy) that solves these good-choice (best-choice included) and optimal-stopping
problems; first, it has a phase for incremental information gathering to deliver a preliminary
output (past maximum) only refined (future maximum) if there is time left, and second,
the solution x is generally asymmetric, in that it makes the past partition (bin [1, x)) more
minor than the future partition (bin [x, r)), i.e., information flows towards the origin.

6.3. Thrifty World

NBL denotes productivity. Radix economy E̊(N, r) ≈ r logr N measures the “price”
of a numeral N using radix r as a parameter. Cost-saving number systems will employ
an efficient coding radix; the optimal radix economy corresponds to Euler’s number e,
another sign of the preeminence of small numbers. The wider the gap between the economy
of consecutive numbers relative to the radix, the higher the expected frequency. Thrifty
numbers making a difference are winning, meaning that the probability of a number coded
with radix r showing up is the rate of change, or derivative, of its economy concerning the
radix, specifically

P(N, r) =
E̊(N + 1, r)− E̊(N, r)

r
≈ logr(N + 1)− logr N = logr

(
1 +

1
N

)
This expression indicates the occurrence probability of the numeral N, not necessarily

a digit, with radix r. For example, log10(1 + 1/22) is the probability of running into a decimal
number starting with 22, such as 2.29 or 2237. The logarithmic scale shirrs the surrounding
space of a coding source; the closer, the lesser the numeral density. A large numeral is
less likely due to its representational magnitude, so the space around it is tighter than
that occupied by a numeral with more probability mass. NBL reflects how PN encodes
numerals in agreement with this economic criterion.

Therefore, the radix economy establishes a scalar field where the gap between the
“potential energies” of two objects only depends on their position as perceived from the
source. Thus, the canonical PMF and NBL subsidiaries are fundamentally efficient, balanc-
ing probability mass against notation size. Minor numbers are accessible at a lower cost,
while likelihood information is increasingly less available as we climb to infinity.

Our theory also associates efficiency with entropy. We can interpret NBL probabilities
as degrees of stability or coherence. The lowest digits maintain distinctness from the sur-
roundings thanks to their solid entropic support. The more significant digits are vulnerable
and give rise to more transitions, i.e., higher reactivity or less resistance to integration with
the environment.

Parsimonious management of computational resources is crucial, as optimal stopping
problems reveal. In “the secretary problem”, selecting “the best” applicant is pragmatically
less sensible than simply “a good” one, which requires maximizing the bipartite entropy.
We split the total likelihood provided by the local Benford–Bayes rule. The “past partition”
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emphasizes the information gathered, while the “future partition” deals with the informa-
tion we can obtain from forthcoming aspirants. As the number of examined applicants
grows, future information becomes past information, while the usage probability transfers
oppositely. The best applicant implies focusing on the future partition exclusively, but a
balanced decision also implies contemplating the past. Overall, the bipartite entropy and
the solution are biased toward the origin and the past, respectively. This primary memory
allocation in real-time is a default resource management strategy.

Information economy streamlines calculations. That the universe optimizes com-
putability follows from NBL embracing several invariances. Base invariance ensures even
interaction with the environment because changes in the radix value imply only incremen-
tal updates (recoding), keeping the internal metric up to the curvature. Scale invariance
provides the means to recursively operate on nested levels of domain granularity, like
a fractal. Ultimately, PN is effective because it makes the most expected data readily
accessible for iterative coding functions.

6.4. Relationalism

Literature about NBL overlooks its rational aspect. Real numbers are unattainable
mathematical objects, mere abstractions. In contrast, relative odds, i.e., proportions between
two numbers, quanta, or digits, are tractable. Rational numbers fit in an inaccurate world
where relations are as important as individual entities and comparative quantities predom-
inate over absolute values. A universe built upon Q facilitates divisibility, discreteness, and
operability.

Ours is primarily a harmonic world, where rational numbers guarantee calculability.
PMF (42) tells us that the probability of nonzero natural numbers is a unit fraction, ensuring
the average divisibility of the entire probability space. The global NBL, stemming from
(1), means that quantum frequencies are unit fractions, too. The continuous (local, real)
NBL emanates precisely from the discrete (global, rational) NBL by compartmentalizing a
one-dimensional hyperbolic space of colossal extent.

The concept of information is fundamentally rational. The harmonic likelihood is
global information defined as [L(q)]ts ≡ [ψ(q)]ts/[ψ(q)]21harmt, whereas logarithmic likeli-
hood is local information defined as [ℓ(d)]ji ≡ [ln d]ji/[ln d]e1nat. A “harmt” is the global
(harmonic) unit of information, peering the local (logarithmic) unit of information, the
“nat”. Likewise, NBL describes normalized information regarding the global base b,
Pr(b, [s, t)) ≡ [L(q)]ts/[L(q)]b1, or the local radix, Pr(r, [i, j)) ≡ [ℓ(d)]ji/[ℓ(d)]

r
1. The likelihood

is space on a harmonic (global) or logarithmic (local) scale; for example, if we assume that
the “bit” (21 possible states) is the minimal (unit) length, one “byte” (28 possible states) is
eight units long. If our world was positional, likelihood and entropy would have metric
units of length for all practical purposes, meaning that information would be a physical
and manageable resource.

The rational character of our universe pops up in all its splendor when we address
probability ratios. A source encodes, recodes, and decodes odds using Bayes’ law in odds
form. The odds value between a pair of numbers, quanta, or numerals is the quotient of
their picking probabilities, quantifying the strength of their association. Assuming a < b,
Pr(a)/Pr(b) > 1 estimates how uncorrelated a and b are; if Pr(a)/Pr(b) ≈ 1, both events are
mutually dependent. The global Bayes rule says that the odds of quantum s against t in
base b are the odds of the number s versus t times the probability of the bucket [s, t) in base
b. We derive from this the stability of a quantum (16). The local Bayes rule says that the
odds of digit i against j with radix r are the global odds of the quantum i versus j times the
probability of the bin [i, j) with radix r. We derive from this the stability of a digit (17). Both
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represent the entropic contribution of the items in a range to a positional scale, confirming
that information is relational.

An exceptional case of Bayesian data is the cross-ratio, a conformality invariant.
Despite the conformal coding functions using the logarithm and the exponential function,
power (infinite) series by definition, the coding source adds or multiplies incrementally
a finite series of cross-ratio powers to throw a rational result at any time (Equations (36)
and (37)), bettering the approximation with the number of iterates. Rationality intricately
intertwines with decidability in polynomial time and interruptible algorithms.

Numeric values do not contain information per se, while a common property makes
two entities commensurable, with the global base and the local radix as main referents. We
can take global Bayesian data as rational quanta, computable numbers, and local Bayesian
data as observable correlations of numerals. More fundamentally, holistic rationality
implies relationalism (i.e., reciprocity) and operability (i.e., arithmetical tractability), basic
properties of a physical transformation. Rationality is budding relativity. Noticeably,
Section 4.3 challenges a premise of special relativity; the global base, interpreted as the
speed of light, proves the universe’s “rational” rather than “real” essence. Indeed, the
quotidian continuum we perceive from our local outlook approximates the discrete reality;
the continuum emerges from the rational.

6.5. Conjectures

The canonical PMF, NBL subsidiaries, and Bayes’ rules explain why proximity or
slightness provides more stability than distance or heftiness. Like gravity, nature builds
physics upon proximity because occurrence probability attracts information toward a
central source. However, the entropic leaks from the most outlying digits offset this mass
accumulation in the source’s immediacy. Probability density dilutes as we move away from
the origin, which resembles the second thermodynamical law. Therefore, data encoded
in PN would induce alternating uphill and downhill flows, reflecting a brute fluctuation
between the dual elementary concepts of concentration and dispersion. Our Benford–Bayes
laws allow for the inference of this fundamental dynamic.

If the integer line Z were the position space of a generic object, the canonical PMF for
the integers (43) would match with a default wave function with one degree of freedom,
expressible as a linear combination of the position eigenstates |Z⟩, namely,

Ψ = · · ·+ 1/4 | − 2⟩+ 1/2 | − 1⟩+
√

1− 1
2

ζ(2) |0⟩+ 1/2 |+ 1⟩+ 1/4 |+ 2⟩+ 1/6 |+ 3⟩+ · · ·

A nonzero integer Z ∈ Z represents an actual eigenvalue corresponding to the eigen-
state with rational amplitude (2Z)−1, and the origin is the unstable (beable) central state

with quantum amplitude
√

1− 1
2 ζ(2). By the Born rule, the quantum-mechanical prob-

ability of being at place Z is the square modulus of its rational amplitude, precisely its
canonical probability mass. From a complementary point of view, the canonical PMF tells
us the probability Pr(Z) = (4E|Z⟩)−1 of having energy E|Z⟩ = Z2, corresponding to a

wave function’s rational amplitude
(

2
√

E|Z⟩
)−1

in the momentum space.
The Benford–Bayes laws regulate the implementation of a conformal space through

tractable hyperbolic functions. A Bayesian datum is a gap ratio, a particular case of gap ra-
tios is a cross-ratio, and the logarithm of a cross-ratio yields a conformal metric. The canoni-
cal coding functions define how a complex system, say a coding source, creates an image of
the world, which can render crucial consequences in physics, principally implementing scal-
ability and boosting efficiency as leitmotifs and chief drivers of cosmological development.
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Infinity has no place in the algebraic field of rational numbers, so it lacks physicality.
We have even factually inferred that information divergence is impossible. In the first
place, the entropy of the canonical PMF for the natural and integer numbers converges.
Then, we feature a global base closely related to the maximum natural (or prime) number.
Likewise, a ball with radius 1− 1/b confines the local Bayesian data. The jump odds between
consecutive quanta or numerals are also delimited. Physically, the entropic cost of crossing
entirely the universe or its local copy agrees with the Bekenstein bound. Perceivable
things in the cosmos are typically small but always rationally commensurable from some
standpoint; otherwise, they would be incomparable, thus indiscernible. An infinite host
universe would reduce all its finite guests to zero, an unobservable number. Moreover, a
transfinite universe prone to productivity is counterintuitive. The universe is an economic
system precisely owing to its limited scope and resources.

This investigation generally points to mathematics having a potential physical status.
We have put laws midway between mathematics and physics on the table. The canonical
PMF for integer numbers defines a pervasive numeric field of stability that is the germ
of a constitutively unitary, parity-invariant, uncertain, discrete, and maximally random
universe. The linkage between probability space and physical space, especially within a
coding space, is so intricate that we hardly find discrepancies. Further, because the notion
of logarithmic likelihood results from comparing two logarithmic sectors (5) and a local
NBL probability mass is a ratio of logarithmic likelihoods (6), stating that information is
physical means probability is physical.

We have told a hegira from information coding to physics, presuming the Galilean
idea that nature is mathematical per se. William K. Clifford (1976, On the Bending of
Space, https://doi.org/10.1007/978-94-010-1727-5) underlined that we might “be treating
merely as physical variations effects which are really due to changes in the curvature of our
space”, although “Whether one associates ’geometric’ ideas with a theory is [illegible] a
private matter”, stated Einstein in a letter written to Reichenbach (Google translation from
Doc. AEA 20-117 of the Albert Einstein Archive, 8 April 1926). Our partway philosophical
worldview supports the theory that physics emerges from algebra via geometry, supported
by hyperbolicity, economy, and relationalism. The embodiment of these pillars makes
Tegmark’s hypothesis that the observable reality is a mathematical structure defined by
computable functions plausible. We must add that such a structure consists of conformal
spaces and transformations.
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