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Abstract: This paper explores the mild solutions of partial impulsive fractional integro-
differential systems of order 1 < α < 2 in a Banach space. We derive the solution of
the system under the assumption that the homogeneous part of the system admits an α-
resolvent operator. Krasnoselskii’s fixed point theorem is used for the existence of solution,
while uniqueness is ensured using Banach’s fixed point theorem. The stability of the system
is analyzed through the framework of Hyers–Ulam stability using Lipschitz conditions.
Finally, examples are presented to illustrate the applicability of the theoretical results.
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1. Introduction
We investigate the system:


cDα

0 u(s) = Au(s) +
∫ s

0 E(s − t)u(t)dt + w(s, us,
∫ s

0 e(s, t, ut)dt), s ∈ [0, T] = I, s ̸= sj,

u(0) = χ + µ(u) ∈ B, u′(0) = 0,

∆u(sj) = Jj(usj ), j ∈ {0, 1, . . . , m},

(1)

where cDα
0 denotes the Caputo derivative with 1 < α < 2, A is a closed linear operator with

domain D(A) that satisfies the Hille–Yosida axiom, D(A) = U is a Banach space (BS),
and E represents the set of operators mapped from D(A) to U that are linear and bounded.
The mappings us : (−∞, T] → U defined by us(θ) = u(s + θ) are elements of an abstract
space B defined axiomatically. Consider the sequence 0 = s0 < s1 < · · · < sm+1 = T of
specified values and w : I ×B × U → U , e : I × I ×B → U suitable mappings. The jump
∆u(s) for any function u at a specific point s is defined as ∆u(s) = u(s+)− u(s−).

In applied mathematics, fractional calculus is an intransitive area that works with
integrals and derivatives of real-number or complex-number powers. Developing calculus
for differential and integral operators of such powers generalizes classical calculus. Due
to its multiple uses in viscoelasticity, biology, control hypotheses, information processing
system, and image processing [1–5], fractional calculus has garnered significant relevance
and appreciation. Fractional differential equations are also utilized to examine processes

Axioms 2025, 14, 111 https://doi.org/10.3390/axioms14020111

https://doi.org/10.3390/axioms14020111
https://doi.org/10.3390/axioms14020111
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-2556-2806
https://orcid.org/0000-0001-8042-1806
https://doi.org/10.3390/axioms14020111
https://www.mdpi.com/article/10.3390/axioms14020111?type=check_update&version=1


Axioms 2025, 14, 111 2 of 18

such as the rate of substrate dimerization during electrochemical reduction and the analysis
of ground water flow problems.

The existence and uniqueness of solutions are key requirements for boundary value
problems involving fractional differential equations, revealing the specific behavior of the
solution. The existence of mild solutions for fractional integro-differential equations is
established through the use of fixed point (FP) theory in Banach spaces (BSs) using the
Caputo fractional derivative in [6]. Shu et al. [7] investigated mild solutions for impulsive
fractional evolution equations of order 0 < α < 1. Building on analytic results using the
Mittag-Leffler function proposed a new and more suitable definition of mild solutions
for these equations. In recent years, much work has been done on different classes of
fractional and integro-differential equations using approaches such as semigroup theory
[8,9], resolvent operator theory [10–12] and α-resolvent operator theory [13–18].

It has also be shown that stability analysis is a key aspect of the qualitative research on
fractional differential equations [19]. This approach, which emphasizes the stability of dif-
ferential equations rather than seeking explicit solutions, is recognized for its effectiveness
in producing solutions that closely approximate the exact ones. Recently, the authors of
[20] examined the Hyers–Ulam stability (HUS) of a coupled system involving Ψ-Caputo
fractional derivatives with multipoint–multistrip integral-type boundary conditions, while
Sene et al. [6] demonstrated the HUS of the mild solution for fractional integro-differential
equations. For recent literature on stability analysis of differential equations, interested
readers can see [21–26] and the references therein.

There has been a surge of research focused on solving systems using the α-resolvent
operator. Many studies have built on the related findings, exploring various aspects and
applications of the α-resolvent operator in solving fractional integro-differential systems.
In 2012, Agarwal et al. [13] investigated the qualitative properties and the existence of an
α-resolvent operator for the systemcDα

0 u(s) = Au(s) +
∫ s

0 E(s − ε)u(ε)dε, s ∈ I,

u(0) = u0, u′(0) = u1,
(2)

where 1 < α < 2 and where A, {E(s)}s≥0 are closed linear operators defined on a domain
which is dense in U . They further examined the existence and regularity of solutions for
the nonhomogeneous systemcDα

0 u(s) = Au(s) +
∫ s

0 E(s − ε)u(ε)dε +Z(s), s ∈ I,

u(0) = u0, u′(0) = u1,
(3)

where Z ∈ L1([0, T],U ). They assumed that the α-resolvent operator is exponentially
bounded, meaning that there exists some w > 0 such that ∥τα(s)∥ ≤ Mews. Addi-
tionally, they demonstrated that the mild and classical solutions of (3) coincide when
Z ∈ L1([0, T], D(A)).

Following the work of Agarwal et al., Santos et al. [27] established the existence of
mild solutions of fractional integro-differential equations with state-dependent delay using
the α-resolvent operator and FP theory. Vijayakumar et al. [18] examined the fractional
integro-differential inclusions in BSs via the resolvent operator and provided the sufficient
conditions for controllability by employing Bohnenblust–Karlin’s FP theorem. Similarly,
the authors of [17] investigated the approximate controllability of fractional semilinear
integro-differential equations using α-resolvent operators, offering two alternative sets of
necessary conditions for the problem. The first set employs functional analysis theories and
the compactness of the associated resolvent operator, while the second utilizes Gronwall’s
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inequality. For insights into existence results, controllability, and approximate controllability
of fractional integro-differential equations, interested readers may see [15,17,20,28–30] and
the references therein.

Impulsive delayed fractional integro-differential equations are commonly encountered
as models in various applications, which has led to significant attention on the study of
such equations in recent years. The literature on this topic primarily focuses on first-order
impulsive differential equations with delays; for examples, see [11,14,31,32]. The problem
of solution existence for partial fractional differential equations using the α-resolvent op-
erator and FP theory has been explored in a number of recent works [6,7,15,27,30]. In
our current work, we extend and build upon previous research in the area of fractional
integro-differential equations with delay. In [33], Agarwal et al. provided the sufficient
conditions for the existence of mild solutions for a class of fractional integro-differential
equations with state-dependent delays. Here, we further extend this to impulsive systems,
which introduces additional complexity. Furthermore, while studies such as [34,35] have
investigated the existence and uniqueness of solutions for fractional differential equations
with delays, our study introduces the use of the α-resolvent operator for partial impulsive
fractional integro-differential systems with 1 < α < 2, offering a more generalized frame-
work for analyzing these systems. In previous research, studies have either focused on
analyzing partial fractional integro-differential systems without impulses, or have consid-
ered partial impulsive integro-differential systems while employing different fixed point
techniques. The main novelty of this work lies in the methodological approach employed
to investigate the studied instantaneous impulsive fractional integro-differential system
containing delay and incorporating the Caputo derivative with order 1 < α < 2. To the
best of our knowledge, this is the first study to examine the existence of a mild solution for
System (1) using the α-resolvent operator and Krasnoselskii’s FP approach. Furthermore,
this study establishes the HUS for System (1), which has yet to be studied in the literature
by using the α-resolvent approach for fractional systems.

The rest of this paper is organized as follows: in Section 2, we provide the essential
definitions and results that are employed in the subsequent sections; in Section 3, we
provide the variation of constants formula for System (1); in Section 4, we outline the
sufficient conditions for the existence and uniqueness of the mild solution and establish the
HUS ; finally, examples are provided in the concluding section.

2. Basics
Let U = (U , ∥.∥), U = (D(A), ∥.∥U) be BSs, A : D(A) ⊂ U → U be a closed linear

operator, and ∥u∥U = ∥Au∥+ ∥u∥ ∀ u ∈ D(A). L(U ; U) denote the BS endowed with
the uniform operator topology and consisting of operators from U to U which is linear
and bounded. When U = U, then L(U ; U) is written as L(U ), with (D(A)) denoting the
domain of A endowed with the graph norm. Let 0 ∈ ρ(A) be the resolvent set of A; then,
A−1 exists. Additionally, if A meets the Hille–Yosida condition [36], then we have s1 and
s2 in R such that

(s1, ∞) ⊂ ρ(A), and

∥(λ −A)−n∥ ≤ s2

(λ − s1)n , n = 1, 2, . . . , λ > s1.

For impulsive conditions, we introduce additional terms and notation. We define
PC(I,U ) as the space consisting of functions u : [0, T] → U such that u is continuous at
s ̸= sj, u(s−j ) = u(sj) and u(s+j ) exists for each j = 1, 2, . . . , m. In this paper, PC(I,U ) is
equipped with the norm ∥u∥PC = sups∈[0,T] |u(s)|. Evidently, (PC(I,U ), ∥ · ∥PC) is a BS .
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For convenience, let s0 = 0 and T = sm+1. For every u ∈ PC(I,U ), we have ūj, which
is defined for j = 0, 1, . . . , m, belongs to C([sj, sj+1];U ), and is expressed as follows:

ūj =

u(s), s ∈ (sj, sj+1],

u(s+j ), s = sj.

In addition, if B is a subset of PC(I,U ), we define B̄j as B̄j = {ūj : u ∈ B}. For a
foundational study on differential equations with impulses, see [37,38].

Lemma 1. [31] A subset B of PC(I,U ) is relatively compact in PC(I,U ) if and only if B̄j are
relatively compact in C([sj, sj+1];U ) for every j = 0, 1, 2, . . . , m,.

For the phase space B, we use an axiomatic definition following a framework akin
to that in [32]. A linear space B comprises functions that map from (−∞, 0] to U and is
equipped with seminorm ∥.∥B . Moreover, B meets certain axiomatic criteria.

• If u : (−∞, ξ + T] → U , T ∈ (0, ∞) and uξ ∈ B, and if u|[ξ,ξ+T] ∈ PC([ξ, ξ + a];U ),
then the following is true for ξ ≤ s ≤ ξ + T:

(i) us is in B; (ii) ∥u(s)∥ ≤ H∥us∥B , H > 0; (iii) ∥us∥B ≤ F(s − ξ) sup{∥u(t)∥ :
ξ ≤ t ≤ s}+ G(s − ξ)∥uξ∥B , F and G are functions from [0, ∞) to [1, ∞), F is continu-
ous, G is locally bounded, and H, F, and G do not depend on u(·).

• The space B is complete.

Definition 1. [9] The fractional integral Iα
0 with 0 as a lower limit and order α for u is

Iα
0 u(s) =

1
Γ(α)

∫ s

0

u(r)
(s − r)1−α

dr, s > 0, α > 0,

where Γ(.) is a gamma function. This definition is valid as long as the right-hand side is defined
pointwise for 0 ≤ s < ∞.

Definition 2. [9] The RL derivative RDα
0 with a lower limit 0 and order α for u is defined as

RDα
0 u(s) =

1
Γ(n − α)

dn

dsn

∫ s

0

u(r)
(s − r)1−n+α

dr, s > 0, n − 1 < α < n,

which is valid as long as the right-hand side is defined pointwise for s ∈ (o, ∞).

Definition 3. [9] The Caputo derivative cDα
0 with a lower limit 0 and order α for u is defined as

cDα
0 u(s) = RDα

0

(
u(s)−

n−1

∑
k=0

sk

k!
uk(0)

)
, s > 0, n − 1 < α < n.

We address the solution of System (1) by employing the α-resolvent operator, which is
defined below.

Definition 4. [36] A set of operators (τα(s))s≥0 such that τα(s) ∈ L(U ) is an α-resolvent operator
for System (2) when the following conditions are fulfilled:
(T1) τα(.) : [0, ∞) → L(U ) is strongly continuous and

τα(0)u = 0, ∀u in U , 1 < α < 2.
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(T2) For u in U , τα(.)u ∈ C([0, ∞), D(U ) ∩ C1([0, ∞),U ),

cDα
0 τα(s)u = Aτα(s)u +

∫ s

0
E(s − r)τα(r)udr, (4)

cDα
0 τα(s)u = τα(ε)Au +

∫ s

0
τα(s − r)E(r)udr, ∀u ∈ U , s ≥ 0. (5)

In this paper, we adopt the following conditions:
(P1) Suppose that A : D(A) ⊆ U → U is a closed linear operator with (D(A)) = U .

Let α ∈ (1, 2). For some Φ0 ∈ (0, π
2 ], for each Φ < Φ0 let there be 0 < L0 = L0(Φ)

such that Λ ∈ ρ(A) for each Λ ∈ Π0,αφ = {Λ ∈ C : |arg(Λ)| < Λφ, Λ ̸= 0}. Finally,
∥R(Λ,A)∥ ≤ L0

|Λ| , ∀Λ ∈ Π0,αφ, where φ = Φ + π
2 .

(P2) E(s) : D(E) ⊆ U → U is closed linear operator for all s > 0 with D(A) ⊆
D(E(s)), and E(s)u is strongly measurable for s ∈ (0, ∞) and each u ∈ D(A). We have
q(.) ∈ L1

loc(R
+) such that q̃(Λ) exists for the real part of Λ greater than 0 and ∥E(s)u∥ ≤

q(s)∥u∥1, ∀s > 0, u ∈ D(A). Furthermore, Ẽ : Π0, π
2

→ L(D(A),U ) has an analytic
extension to Π0,φ (also represented by Ẽ), such that

∥Ẽ(Λ)u∥ ≤ ∥Ẽ(Λ)∥u∥1, ∀u ∈ D(A)

and
∥Ẽ(λ)∥ ≤ O(

1
|λ| ), as λ → ∞.

(P3) There is a subspace D ⊆ D(A) such that D = (D(A)) and L1 > 0 such that
A(D) ⊆ D(A), Ẽ(λ)(D) ⊆ D(A), ∥AẼ(λ)u∥ ≤ L1∥u∥ for each u ∈ D and every λ ∈ Π0,φ.

In the sequelae, for r ∈ (0, ∞), ϕ ∈ (π
2 , φ), Πr,ϕ = {Λ ∈ C : Λ ̸= 0, |Λ| > r, |arg(Λ)| <

ϕ}. By γr,ϕ, γi
r,ϕ, i = 1, 2, 3 we denotes the paths γ1

r,ϕ = {seiϕ : s ≥ r}, γ2
r,ϕ = {seiε : −ϕ ≤

ε ≤ ϕ}, γ3
r,ϕ = {se−iϕ : s ≥ r} and γr,ϕ = ∪3

i=1γi
r,ϕ oriented counterclockwise. Moreover,

ρα(Gα) =

{
Λ ∈ C : Gα(Λ) = Λα−1(Λα Id −A− Ẽ(Λ))−1 ∈ L(U )

}
.

We describe (τα(s))s≥0 by

τα(s) =
1

2πi

∫
γr,θ

eΛsGα(Λ)dΛ, s > 0 and τα(s) = Id, when s = 0.

Theorem 1 ([17]). Assuming that conditions (P1)− (P3) are met, then System (2) possesses an
α-resolvent operator.

Theorem 2 ([13]). The mapping τα from (0, ∞) to L(U ) is uniformly continuous, while the
mapping τα from [0, ∞) to L(U ) is strongly continuous.

In our study, we assume that conditions (P1)− (P3) are satisfied.

Definition 5 ([17], Definition 2.5). Let α be in the interval (1, 2). We introduce the operator Sα,
defined by

Sα(s)u =
∫ s

0
gα−1(s − r)τα(r)uds, for every s ≥ 0, where gα(r) =

rα−1

Γ(α)
, r > 0, α > 0.

Lemma 2 ([17], Lemma 2.6). τα(.) exhibits exponential boundedness within L(U ).
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Lemma 3 ([17], Lemma 2.7). If τα(.) is bounded by an exponential function in L(U ), then Sα(.)
is also bounded by an exponential function in L(U ).

Lemma 4 ([17], Lemma 2.8). If τα(.) is bounded by an exponential function in L(D(A)), then
Sα(.) is also bounded by an exponential function in L(D(A)).

Lemma 5 ([17], Lemma 2.18). Let E ⊆ U such that E is non-empty, closed, bounded, and convex.
Consider an upper semicontinuous mapping H : E → 2U\∅ that takes closed and convex values
such that H(E) is compact and H(E) ⊆ E. Then, H has an FP .

Theorem 3. Suppose that U is a BS and that B ⊆ U such that it is bounded, closed, and convex.
Let T, R be maps from B into U so that Tu + Rw ∈ Bfor all u, w ∈ B. If T is a contraction and R is
completely continuous, then Tu + Ru = u has a solution in B.

3. Representation of the Solution
For System (1), we utilize the α-resolvent operator to obtain the variation of constants

formula.

Theorem 4. Suppose that w : I × B × U → U , e : I × I × B → U are continuous functions,
E(s) is an operator which is bounded and linear, and u(0) = χ + µ(u) ∈ B. If u(.) is a classical
solution to (1) within I, then

u(s) = τα(s)(χ(0) + µ(u(0))) + ∑
0<sj<s

τα(s − sj)Jj(u(sj)) +
∫ s

0
Sα(s − r)w(r, ur,

∫ r

0
e(r, ε, uε)dε)dr for s ∈ I. (6)

Proof. Applying Iα
0 to each side of (1) for s in the interval [0, s1] provides us with

u(s) = χ(0) + µ(u)(0) +
∫ s

0
gα(s − r)Au(r)dr +

∫ s

0
gα(s − r)

∫ r

0
E(r − ε)u(ε)dεdr

+
∫ s

0
gα(s − r)w(r, ur,

∫ r

0
e(r, η, uη)dη))dr. (7)

Letting s ∈ (s1, s2] and applying Iα
0 on both sides of (1), we obtain

u(s) = u(s+1 ) +
∫ s

s1

gα(s − r)Au(r)dr +
∫ s

s1

gα(s − r)
∫ r

0
E(r − ε)u(ε)dεdr

+
∫ s

s1

gα(s − r)w(r, ur,
∫ r

0
e(r, η, uη)dη))dr.

Now, putting values

u(s) = u(s1) + J1(u(s1)) +
∫ s

o
gα(s − r)Au(r)dr −

∫ s1

o
gα(s1 − r)Au(r)dr +

∫ s

s1

gα(s − r)∫ r

0
E(r − ε)u(ε)dεdr +

∫ s

s1

gα(s − r)w(r, ur,
∫ r

0
e(r, η, uη)dη))dr, (8)

we can substitute s = s1 in (7) and use this result in (8) to obtain
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u(s) = χ(0) + µ(u)(0) + J1(u(s1)) +
∫ s1

0
gα(s1 − r)Au(r)dr +

∫ s1

0
gα(s1 − r)

∫ r

0
E(r − ε)u(ε)dεdr

+
∫ s1

0
gα(s1 − r)w(r, ur,

∫ r

0
e(r, η, uη)dη))dr +

∫ s

o
gα(s − r)Au(r)dr −

∫ s1

o
gα(s1 − r)Au(r)dr

+
∫ s

s1

gα(s − r)
∫ r

0
E(r − ε)u(ε)dεdr +

∫ s

s1

gα(s − r)w(r, ur,
∫ r

0
e(r, η, uη)dη))dr

= χ(0) + µ(u)(0) + J1(u(s1)) +
∫ s

o
gα(s − r)Au(r)dr +

∫ s

0
gα(s − r)

∫ r

0
E(r − ε)u(ε)dεdr

+
∫ s

0
gα(s − r)w(r, ur,

∫ r

0
e(r, η, uη)dη))dr.

Similarly, for s ∈ (s2, s3] we can take the integral from s+1 to s:

u(s) = χ(0) + µ(u)(0) + J1(u(s1)) + J2(u(s2)) +
∫ s

o
gα(s − r)Au(r)dr +

∫ s

0
gα(s − r)∫ r

0
E(r − ε)u(ε)dεdr +

∫ s

0
gα(s − r)w(r, ur,

∫ r

0
e(r, η, uη)dη))dr.

Proceeding in a similar fashion,

u(s) = χ(0) + µ(u)(0) + ∑
0<sj<s

Jj(u(sj)) +
∫ s

o
gα(s − r)Au(r)dr +

∫ s

0
gα(s − r)

∫ r

0
E(r − ε)u(ε)dεdr

+
∫ s

0
gα(s − r)w(r, ur,

∫ r

0
e(r, η, uη)dη))dr. (9)

Now, considering (5), we obtain

τα(s)u = u +
∫ s

o
gα(s − r)τα(r)Audr +

∫ s

0
gα(s − r)

∫ r

0
τα(r − ε)E(r)udεdr. (10)

From (10), we have
Id = τα − gα ∗ ταA− gα ∗ τα ∗ E,

which implies that

Id ∗ u = (τα − gα ∗ ταA− gα ∗ τα ∗ E) ∗ u

= τα ∗ (u − gαAu − gα ∗ E ∗ u)

= τα ∗ (χ(0) + µ(u)(0) + ∑
0<sj<s

Jj(u(sj)) + gα ∗ w)

= τα ∗ (χ(0) + µ(u)(0)) + ∑
0<sj<s

τα ∗ Jj(u(sj)) + g1 ∗ gα−1 ∗ τα ∗ w). (11)

Therefore,
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∫ r

0
u(r)dr =

∫ s

0
τα(r)(χ(0) + µ(u)(0)dr +

∫ s

0
∑

0<rj<r
τα(r − rj)Jj(u(rj))dr +

∫ s

0

∫ r

0
gα−1(r − ε)

∫ ε

0
τα(ε − t)w(t, ut,

∫ u

0
e(t, η, uη)dη)dtdεdr

=
∫ s

0
τα(r)(χ(0) + µ(u)(0)dr + ∑

0<rj<r

∫ s

0
τα(r − rj)Jj(u(rj))dr +

∫ r

0

∫ r

0

∫ r

u
gα−1(r − ε)

τα(ε − t)w(t, ut,
∫ u

0
e(t, η, uη)dη)dεdtdr

=
∫ s

0
τα(r)(χ(0) + µ(u)(0)dr + ∑

0<rj<r

∫ s

0
τα(r − rj)Jj(u(rj))dr +

∫ s

0

∫ r

0

∫ r−t

0
gα−1(r − t − ε)

τα(ε)w(t, ut,
∫ t

0
e(t, η, uη)dη)dεdtdr

=
∫ s

0
τα(r)(χ(0) + µ(u)(0)dr + ∑

0<rj<r

∫ s

0
τα(r − rj)Jj(u(rj))dr +

∫ s

0

∫ r

0
Sα(r − t)

w(t, ut,
∫ t

0
e(t, η, uη)dη)dtdr.

Hence, we have

u(s) = τα(s)(χ(0) + µ(u)(0)) + ∑
0<sj<s

τα(s − sj)Jj(u(sj)) +
∫ s

0
Sα(s − u)

w(t, ut,
∫ t

0
e(t, η, uη)dη)dt. (12)

Definition 6. A mild solution of System (1) is a function u : (−∞, T] → U if the following
conditions are fulfilled:

• u0 = χ(0) + µ(u)(0),
• u(s) ∈ PC(I;U ), Jj(usj) = u(s+j )− u(sj), where j = 1, 2, . . . , m,

• and

u(s) = τα(s)(χ(0) + µ(u)(0)) + ∑
0<sj<s

τα(s − sj)Jj(u(sj)) +
∫ s

0
Sα(s − t)

w(t, uu,
∫ t

0
e(t, η, uη)dη)dt, where s ∈ I.

Remark 1. The mild solution u(s) is unique if for any two mild solutions u1(s) and u2(s) we have
u1(s) = u2(s) for all s ∈ [0, T].

4. Main Results
We explore the existence, uniqueness, and HUS for the problem in (1) and outline

several assumptions that are used in our analysis.

(G0)There exists a constant Mτ and MS such that ∥τα(s)∥ ≤ Mτ and ∥Sα(s)∥ ≤ MS , ∀ s ∈
I.

(G1) (1) w : I ×B × U → U satisfies the subsequent axioms:
(i) w(s, ., .) : B × U → U is continuous for almost every s ∈ I.
(ii) s → w(s, ϕ, u) is measurable for each (ϕ, u) ∈ B × U .



Axioms 2025, 14, 111 9 of 18

(iii) Given a mapping mw from I to [0, ∞) and a continuous mapping uw which
is non-decreasing from [0, ∞) to [0, ∞), the following inequality holds for all s ∈ I and
any (ϕ, u) ∈ B × U :

∥w(s, ϕ, u)∥ ≤ mw(s)uw(∥ϕ∥+ ∥u∥).

(2) w : I ×B × U → D(A) exhibits Lipschitz continuity. There exists a constant
Lw > 0 for which the following inequality holds for each ϕ1, ϕ2 ∈ B and u1, u2 in U :

∥w(s1, ϕ1, u1)− w(s2, ϕ2, u2)∥ ≤ Lw(|s1 − s2|+ ∥ϕ1 − ϕ2∥+ ∥u1 − u2∥).

(G2) (1) e : I × I ×B → U satisfies the following axioms:
(i) e(s, t, u) : B → U is continuous for each s, t in I.
(ii) e(., ., u) : I × I → U is measurable for any given u in U .
(iii) Given me from I to [0,+∞) and a function ue that is non-decreasing from

[0, ∞) to [0, ∞), the following inequality holds for each t, s in I and every u in U :

∥e(s, t, u)∥ ≤ ceme(s)ue(∥u∥B),

where ce > 0.
(2) e : I × I ×B → U is Lipschitz continuous. Provided that Le > 0, the following

inequality holds for each t, s belonging to I and for all u1, u2 belonging to B :

∥e(s, t, u1)− e(s, t, u2)∥ ≤ Le(|u1 − u2|).

(G3) (1) If µ is a continuous mapping from C(I;U ) to C([−r, 0],U ), it follows that for
each u in C(I;U ),

∥µ(u)∥ ≤ cµ∥u∥+ d.

(2) µ : C(I;U ) → D(A) is Lipschitz continuous. Given Lµ > 0, the following
inequality holds for each u and ϕ in C(I;U ) :

∥µ(u)− µ(ϕ)∥ ≤ Lµ∥u − ϕ∥.

(G4) (1) Jj : B → U are completely continuous and there exist mappings xj from
[0,+∞) to (0,+∞), which is non-decreasing; thus, for any u belonging to B and
j ∈ {1, 2, . . . , m},

∥Jj(u)∥ ≤ xj(∥u∥B), lim inf
ξ→+∞

xj(ξ)

ξ
= φj < +∞.

(2) Jj : B → U are continuous and there exists LJj > 0, for which the subsequent
inequality holds for j = 1, 2, . . . , m and for all u1, u2 belonging to B:

∥Jj(u1)− Jj(u2)∥ ≤ LJj∥u1 − u2∥B .

Theorem 5. If u0 belongs to D(A), then 0 is in ρ(A) and the conditions (G0)− (G4) are satisfied;
then, the mild solution to System (1) is unique in [−r, T] given that

q0 = Mτ Lµ + Mτ

m

∑
j=1

LJj + TMSLw(1 + T) < 1. (13)
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Proof. Suppose u : [−r, k] → U to be a function such that its restriction u[0,T] to the interval
[0, T] belongs to PC(I,U ). Consider the operator P defined on PC(I,U ) by

(Pu)(s) =


χ(s) + µ(u)(s), s ∈ [−r, 0]

τα(s)(χ(0) + µ(u(0))) + ∑0<sj<s τα(s − sj)Jj(u(sj))

+
∫ s

0 Sα(s − r)w(r, ur,
∫ r

0 e(r, ε, uε)dε)dr, for s ∈ I.

(14)

For 0 ≤ s1 < s2 ≤ T, consider

∥(Pu)(s2)− (Pu)(s1)∥ ≤ ∥τα(s2)− τα(s1)∥∥(χ(0) + µ(u(0)))∥+ ∑
0<sj<s

∥τα(s2 − sj)− τα(s1 − sj)∥

∥Jj(u(sj))∥+
∫ s1−ϵ

0
∥(Sα(s2 − r)− Sα(s1 − r))w(r, ur,

∫ r

0
e(r, ε, uε)dε)∥dr

+
∫ s1

s1−ϵ
∥(Sα(s2 − r)− Sα(s1 − r))w(r, ur,

∫ r

0
e(r, ε, uε)dε)∥dr

+
∫ s2

s1

∥Sα(s2 − r)w(r, ur,
∫ r

0
e(r, ε, uε)dε)∥dr

≤ ∥τα(s2)− τα(s1)∥(∥χ∥+ cµ∥u∥+ d) + ∑
0<sj<s

∥τα(s2 − sj)− τα(s1 − sj)∥

xj(∥u∥B) +
∫ s1−ϵ

0
∥Sα(s2 − r)− Sα(s1 − r)∥mw(r)uw(∥ur∥B + ∥

∫ r

0
e(r, ε,

uε)dε∥)dr + MS

∫ s2

s1

mw(r)uw(∥ur∥B + ∥
∫ r

0
e(r, ε, uε)dε∥)dr

≤ ∥τα(s2)− τα(s1)∥(∥χ∥+ cµ∥u∥+ d) + ∑
0<sj<s

∥τα(s2 − sj)− τα(s1 − sj)∥

xj(∥u∥B) +
∫ s1−ϵ

0
∥Sα(s2 − r)− Sα(s1 − r)∥mw(r)uw(∥ur∥B + Tceme(r)

ue(∥uε∥))dr + MS

∫ s2

s1

mw(r)uw(∥ur∥B + Tceme(r)ue(∥uε∥)dr.

The right side approaches 0 as s1 → s2 for sufficiently small ϵ, as the compactness of
Sα(s) ensures continuity in the uniform operator topology; therefore, Pu ∈ PC(I,U ). For
s ∈ (sj, sj+1], j ∈ {1, 2, . . . , m} and u, w ∈ PC(I,U ), we have

∥(Pu)(s)− (Pw)(s)∥ = ∥τα(s)∥∥µ(u(0))− µ(w(0))∥+
m

∑
j=1

∥τα(s − sj)∥∥Jj(u(sj))− Jj(w(sj))∥

+
∫ s

0
∥Sα(s)

(
w(r, ur,

∫ r

0
e(r, ε, uε)dε)− w(r, wr,

∫ r

0
e(r, ε, wε)dε)

)
∥dr

≤ Mτ Lµ∥u − w∥PC + Mτ

m

∑
j=1

LJj∥u − w∥PC + TMSLw(1 + T)∥u − w∥PC

=

(
Mτ Lµ + Mτ

m

∑
j=1

LJj + TMSLw(1 + T)
)
∥u − w∥PC,

as
(

Mτ Lµ + Mτ ∑m
j=1 LJj + TMSLw(1+ T)

)
< 1; therefore, P is a contraction. By applying

the Banach FP theorem, P possesses an FP . This FP corresponds to the unique mild
solution of System (1).
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Theorem 6. If the conditions (G0)–(G4) are met, then there is at least one mild solution for System
(1) if

Mτ(∥χ∥+ d + xj(r)) + MS

∫ s

0
mw(r)uw(r + Tceme(r)ue(r))dr + Mτcµr − r < 1 (15)

Mτ Lµ < 1.(16)

Proof. Consider the operator P on PC(I,U ) by

(Pu)(s) =


χ(s) + µ(u)(s), s ∈ [−r, 0]

τα(s)(χ(0) + µ(u(0))) + ∑0<sj<s τα(s − sj)Jj(u(sj))

+
∫ s

0 Sα(s − r)w(r, ur,
∫ r

0 e(r, ε, uε)dε)dr, for s ∈ I.

(17)

We employ Theorem (3) in our proof, which is outlined in the subsequent steps.
Step 1. First, we demonstrate the continuity of P over the interval (si, si+1]. For this,

let un, u ∈ PC(I,U ) such that ∥un − u∥PC → 0 as n → ∞. Consider

∥(Pun)(s)− (Pu)(s)∥PC = ∥τα(s)∥∥µ(un(0))− µ(u(0))∥+
m

∑
j=1

∥τα(s − sj)∥∥Jj(un(sj))− Jj(u(sj))∥

+
∫ s

0
∥Sα(s)∥∥(w(r, un

r ,
∫ r

0
e(r, ε, un

ε )dε)− w(r, ur,
∫ r

0
e(r, ε, uε)dε))∥dr

≤ Mτ Lµ∥un − u∥PC + Mτ

m

∑
j=1

LJj∥un − u∥PC + TMSLw(1 + T)∥un − u∥PC.

Applying the limit n → ∞, we obtain limn→∞ ∥(Pun)(s)− (Pu)(s)∥PC = 0.
Step 2. We establish that bounded sets are mapped to bounded sets within PC(I,U )

by P. For this, let u ∈ Br = {u ∈ PC(I,U ) : ∥u∥PC ≤ r},

∥Pu(s)∥ ≤ ∥τα(s)(χ(0) + µ(u(0)))∥+ ∑
0<sj<s

∥τα(s − sj)Jj(u(sj))∥+
∫ s

0
∥Sα(s − r)w(r, ur,

∫ r

0
e(r, ε, uε)dε)∥dr for s ∈ I

≤ Mτ

(
∥χ∥+ cµ∥u∥+ d + xj(∥u∥B)

)
+ MS

∫ s

0
mw(r)uw

(
∥ur∥B + ∥

∫ r

0
e(r, ε, uε)dε)∥

)
dr

≤ Mτ

(
∥χ∥+ cµr + d + xj(r)

)
+ MS

∫ s

0
mw(r)uw

(
r + Tchme(r)ue(r)

)
dr. (18)

Using (26), we obtain
∥Pu(s)∥ ≤ r − Mτcµr = r1,

implying that bounded sets are mapped into bounded sets in PC(I,U ).
Step 3. We show that bounded sets are mapped into equicontinuous sets of functions

on (si, si+1] by P. Letting u ∈ Br and s′, s′′ ∈ (si, si+1] such that si < s′ < s′′ ≤ si+1, we
obtain
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∥(Pu)(s′′)− (Pu)(s′)∥PC

≤ ∥(τα(s′′)− τα(s′))∥∥(χ(0) + µ(u(0)))∥+
m

∑
j=1

∥τα(s′′ − sj)− τα(s′ − sj)∥∥Jj(u(sj))∥

+
∫ s′−ϵ

0
∥(Sα(s′′ − r)− Sα(s′ − r))∥∥w(r, ur,

∫ r

0
e(r, ε, uε)dε)∥dr +

∫ s′

s′−ϵ
∥(Sα(s′′ − r)

−Sα(s′ − r))∥∥w(r, ur,
∫ r

0
e(r, ε, uε)dε)∥dr +

∫ s′′

s′
∥Sα(s′′ − r)∥∥w(r, ur,

∫ r

0
e(r, ε, uε)dε)∥dr

≤ ∥τα(s′′)− τα(s′)∥(∥χ∥+ cµ∥u∥+ d) +
m

∑
j=1

∥τα(s′′ − sj)− τα(s′ − sj)∥xj(∥u(sj)∥B) +
∫ s′−ϵ

0

∥(Sα(s′′ − r)− Sα(s′ − r))∥mw(r)uw(r + Tchme(r)ue(r))dr +
∫ s′

s′−ϵ
∥Sα(s′′ − r)− Sα(s′ − r)∥

mw(r)uw(r + Tchme(r)ue(r))dr +
∫ s′′

s′
∥Sα(s′′ − r)∥mw(r)uw(r + Tchme(r)ue(r))dr.

As s′ → s′′ for sufficiently small ϵ, the right hand side approaches 0 regardless of u ∈ Br.
This follows from Theorem (2) and the compactness of Sα(s), which ensures continuity in
the uniform operator topology.

Step 4. Consider the operator (Pu)(s) = (Tu)(s) + (Riu)(s), where

(Tu)(s) = τα(s)(χ(0) + µ(u(0))) and

(Riu)(s) =
i

∑
j=1

τα(s − sj)Jj(u(sj)) +
∫ s

0
Sα(s − r)w(r, ur,

∫ r

0
e(r, ε, uε)dε)dr.

We prove that Ri maps Br into a precompact set in U . We have to show that the set
ϕ(s) = {(Riu)(s) : u ∈ Br} is precompact in U . Suppose that s ∈ [0, T] and ϵ belongs to the
set of real numbers such that 0 < ϵ < s. We define an operator Ri,ϵ for u ∈ Br by

Ri,ϵ =
i

∑
j=1

τα(s − sj)Jj(u(sj)) +
∫ s−ϵ

0
Sα(s − r)w(r, ur,

∫ r

0
e(r, ε, uε)dε)dr.

The set ϕϵ(s) = {(Ri,ϵu)(s) : u ∈ Br} is precompact in U for each ϵ, where 0 < ϵ < s, as
Sα(s) is a compact operator. In addition, for 0 < ϵ < s we have

|(Riu)(s)− (Ri,ϵu)(s)| ≤ MS

∫ s

s−ϵ
mw(r)uw(r + Tceme(r)ue(r))dr.

Hence, there are precompact sets that can be made arbitrarily close to the set ϕ(s), which is
precompact in U , implying that (RiBr)(s) are relatively compact in U .

Step 5. We prove that (Riu)(s) is completely continuous and that (Tu)(s)+ (Riw)(s) ∈
Br for i = 1, 2, . . . , m. The definitions of T and Ri are provided in the previous step.

By following Steps 1 through 4 for (Riu)(s), it is straightforward to show that (Riu)(s)
is completely continuous.

From (18), we have

∥(Pu)(s)∥ ≤ Mτ(∥χ∥+ d + xj(r)) + MS

∫ s

0
mw(r)uw(r + Tceme(r)ue(r))dr + Mτcµr.

Because

Mτ(∥χ∥+ d + xj(r)) + MS

∫ s

0
mw(r)uw(r + Tceme(r)ue(r))dr + Mτcµr − r < 1,
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we have ∥(Pu)(s)∥ ≤ r. Accordingly if u, w ∈ Br, then Tu + Riw ∈ Br.
Step 6. Here, we show that T is a contraction for s ∈ (si, si+1] and u, w ∈ PC(I,U ).

Consider

∥(Tu)(s)− (Tw)(s)∥ ≤ ∥τα∥∥µ(u)(0)− µ(w)(0)∥
≤ Mτ Lµ∥u − w∥PC.

From (27), we have Mτ Lµ < 1; hence, T is a contraction. From Theorem 3, we can deduce
that System (1) has at least one mild solution over I.

To prove HUS for the given system, let us define the HUS first.

Definition 7. System (1) is said to have HUS if there are positive constants ϵ and C in such a way
that for any ũ mild solution in PC(I,U ) satisfying|cDα

0 u(s)−Au(s)−
∫ s

0 E(s − t)u(ε)dt − w(s, us,
∫ s

0 e(s, t, ut)dt)| < ϵa

|∆u(sj)− Jj(usj)| < ϵj
(19)

there exists a mild solution u ∈ PC(I,U ) to (1) for which ∥ũ(s)− u(s)∥ ≤ Cϵ.

Remark 2. Every ũ ∈ PC(I,U ) is regarded as a mild solution of (19) if and only if the following
conditions are met:

(i) There exist ϕ belonging to PC and a sequence of functions ϕj for which |ϕ(s)| ≤ ϵa and
|ϕj(s)| ≤ ϵj for s ∈ (si, si+1] with i = 0, 1, . . . , m and j = 1, 2, . . . , m.

(ii) The following equations hold:
cDα

0 u(s) = Au(s) +
∫ s

0 E(s − t)u(t)dr + w(s, us,
∫ s

0 e(s, t, ut)dt)

+ϕ(s), s ∈ (si, si+1], i = 0, 1, . . . , m,

∆u(sj) = Jj(usj) + ϕj(s), j = 1, 2, . . . , m.

(20)

Theorem 7. Assuming that (G0), (G1)(2), (G2)(2), (G3)(2), and (G4)(2) hold, System (1)
exhibits HUS .

Proof. Let ũ satisfy the inequality|cDα
0 u(s)−Au(s)−

∫ s
0 E(s − t)u(t)dt − w(s, ut,

∫ s
0 e(s, t, ut)dr)| < ϵa

|∆u(sj)− Jj(usj)| < ϵj.
(21)

From (21),cDα
0 ũ(s) = Aũ(s) +

∫ s
0 E(s − t)ũ(t)dr + w(s, ũt,

∫ s
0 e(s, t, ũt)dt) + ϕ(s)

∆ũ(sj) = Jj(ũsj) + ϕj(s), j = 1, 2, . . . , m

such that |ϕ(s)| < ϵa and |ϕj(s)| < ϵj.
Upon solving, we obtain

ũ(s) = τα(s)(χ(0) + µ(ũ(0))) + ∑
0<sj<s

τα(s − sj)Jj(ũ(sj)) +
∫ t

0
Sα(s − sj)(w(r, ũr,

∫ r

0
e(r, t, ũt)dt))ds +

m

∑
j=1

τα(s − sj)ϕj(s) +
∫ s

0
Sα(s − r)ϕ(r)dr, when s ∈ I.



Axioms 2025, 14, 111 14 of 18

Furthermore,

∥ũ(s)− u(s)∥ = ∥τα(s)(χ(0) + µ(ũ(0))) + ∑
0<sj<s

τα(s − sj)Jj(ũ(sj)) +
∫ s

0
Sα(s − sj)(w(r, ũr,

∫ r

0

e(r, t, ũt)dt))ds +
m

∑
j=1

τα(s − sj)ϕj(s) +
∫ s

0
Sα(s − r)ϕ(r)dr − {τα(s)(χ(0) + µ(u(0)))

+ ∑
0<sj<s

τα(s − sj)Jj(u(sj)) +
∫ s

0
Sα(s − sj)(w(r, ur,

∫ r

0
e(r, t, ut)dt))dε}∥

≤ ∥τα(s)∥∥µ(ũ(0))− µ(u(0))∥+
m

∑
j=1

∥τα(s − sj)∥∥Jj(ũ(sj))− Jj(u(sj))∥+ ∥
∫ s

0
Sα(s − sj)∥

∥(w(r, ũr,
∫ r

0
e(r, t, ũt)dt))ds − (w(r, ur,

∫ r

0
e(r, t, ut)dt))ds∥+ ∥

m

∑
j=1

τα(s − sj)φj(s)∥

+∥
∫ s

0
Sα(s − r)φ(r)dr∥

≤ Mτ Lµ∥ũ(0)− u(0)∥+ Mτ

m

∑
j=1

LJj∥ũ(sj)− u(sj)∥+ (TMSLw)

(∥ũr − ur∥+ LeT∥ũt − ut)∥) + mϵj Mτ + Tϵa MS

≤
(

Mτ Lµ + Mτ

m

∑
j=1

LJj + (TMSLw)(1 + LeT)
)
∥ũ(s)− u(s)∥+ mϵj Mτ + Tϵa MS

≤
mϵj Mτ + Tϵa MS(

1 − Mτ Lµ − Mτ ∑m
j=1 LJj − (TMSLw)(1 + LeT)

) ,

which implies that
∥ũ(s)− u(s)∥ ≤ Cϵ,

where

C =
mMτ + TMS(

1 − Mτ Lµ − Mτ ∑m
j=1 LJj − (TMSLw)(1 + LeT)

) and ϵ = max{ϵa, ϵj}, j = 1, . . . , m.

Thus, System (1) exhibits HUS .

Remark 3. The Hyers–Ulam stability of the impulsive fractional integro-differential system is
established using the Caputo fractional derivative and Lipschitz-type assumptions. The Caputo
derivative is suitable for fractional-order dynamics and captures the nonlocal nature of fractional
derivatives. Formulating these assumptions for the system’s components was challenging due to the
impulsive and fractional characteristics. This approach provides a novel way to study stability in
such systems, where conventional methods may not apply.

5. Example
Example 1.

∂α

∂rα v(r, s) = ∂2

∂s2 v(r, s) +
∫ s

0 (s − r)σe−ε(s−r) ∂2

∂η2 v(s, η)dη +D(r, v(r − ϵ, s),∫ r
0 θ(r, v(s, s − ϕ))dr) for r ∈ [0, r1) ∪ (r1, 1], s ∈ [0, π], (r, s) ̸= (rj, s),

v(r, 0) = v(r, π) = 0, r ∈ I,

v(0, s) = v0(s) + q(v(ϵ, s)), ϵ ∈ [0, 1], s ∈ [0, π],

∆v(r1, s) = J1(v(r1, s)), r1 ∈ [0, 1], s ∈ [0, π].

(22)
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In this system, we have ∂α

∂rα = cDα
0 , where α ∈ (1, 2), σ, ε are constants. Assuming that V =

L2([0, π]) is a complete normed space and the space B = C0 × L2(g,V). A : D(A) ⊆ V → V
defined by

Av = v′′ with domain D(A) = {v ∈ V : v′′ ∈ V , v(0) = v(π) = 0}

is the infinitesimal generator of an analytic semigroup (τ(t))t≥0 on V implies that A is sectorial
of type and that (P1) is satisfied. We consider an operator E(r) : D(A) ⊆ V → V defined
as E(r)v = rσeεrv′′, v ∈ D(A), r ≥ 0. It is also clear that (P2) and (P3) are satisfied with
b(r) = rσeεr and D = C∞

0 ([0, π]). The space of infinitely differentiable function vanishes at s = 0
and s = π. Because (P1)–(P3) are satisfied, an α-resolvent operator exists for System (1) when
D = 0. Let us choose f = e2r, where −s < r < 0 for the phase space B, and let

∫ 0
−s f (r)dr = 1

2
for −s < r < 0 and

∥φ∥B =
∫ 0

−s
f (r) sup

ζ∈[r,0]
∥φ(ζ)∥L2 dr.

Now, let θ : [0, 1] × [0, 1] × B → L2([0, π]),D : [0, 1] × B × L2([0, π]) → L2([0, π]) be
defined as

θ(r, s, m) = C4eC5rs + C6m,

D(r, m, n) = (C1(r) + C2)(m) + C3n,

JJ(r) = Cjr2,

q(v(r, s)) =
2

∑
j=1

ϵj|v(tj, s)|, 0 < t1 < t2 < 1, t1, t2 ̸= r1.

Upon verification, the Lipschitz constants are Lθ = C4eC5 , LD = max(|C2|, |TC1 + C2|), LJ =

2Baj, where B is the bound of input values of Jj, Lq = ∑2
j=1 ϵj, where C1, . . . , C6 and aj are constants.

By comparison, we can see that D satisfies (G1)(1)(iii), θ satisfies (G2)(1)(iii), q satisfies (G3)(1),
and JJ satisfies (G4)(1).

After comparing, System (1) is an abstract structure of System (22).

Corollary 1. System (1) possesses a unique mild solution provided that

Mτ

2

∑
j=1

ϵj + 2Mτ

2

∑
j=1

BCj + 2MSLD < 1. (23)

Example 2.

cDα
0 u(s, x) = a(x)∆u(s, x) +

∫ s
0 e−b(s−t)u(t, x) dt + γ(s)∥us∥2

H1 + κ(s)
∫ s

0 f (t, ut) dt,

s ∈ [0, T], s ̸= sj,

u(0, x) = χ(x) + λ∥u∥2
L2 , u′

s(0, x) = 0,

∆u(sj, x) = δj
∫

Ω u2
sj

dx, j ∈ {1, 2, . . . , m}.

(24)

Here, U = L2(Ω), Ω ⊂ Rn is a bounded domain with a C2-boundary, B = C([−∞, T], L2(Ω)),
a space of continuous L2-valued functions. Au(s, x) = a(x)∆u(s, x), D(A) = {u ∈ H2(Ω) :
u = 0 on ∂Ω}, and ¯D(A) = L2(Ω). E(s)v = e−bsv, b > 0, ∥E(s)v∥L2 ≤ e−bs∥v∥L2 , bounded
and linear on L2(Ω).

A is a closed linear operator, as A = a(x)∆, and ∆ is closed on D(A). In addition, A is linear,
as a(x) is a scalar function, a(x) is positive, A is sectorial and its spectrum lies in the left complex
half-plane, and ∥R(λ,A)∥ ≤ L0

|λ| , R(λ,A) = (λId −A)−1, λ ∈ Π0,αφ. Hence, P1 is satisfied.
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∥E(s)v∥L2 ≤ e−bs∥v∥L2 , for v ∈ L2(Ω). The Laplace transform of E(s) is provided by
Ẽ(λ) =

∫ ∞
0 e−λsE(s) ds analytic in λ, and D = H1

0(Ω) D satisfies D = D(A), AẼ(λ)(D) ⊆
D(A), ∥AẼ(Λ)u∥ ≤ ∥a(x)∥∞∥∆Ẽ(Λ)u∥ ≤ L1∥u∥. Hence, P2 and P3 are satisfied, implying
that A generates an α-resolvent operator for System (24) when w = 0.

Now, consider

w(s, us,
∫ s

0
e(s, t, ut) dt) = γ(s)∥us∥2

H1 + κ(s)
∫ s

0
f (t, ut) dt,

Jj(usj) = δj

∫
Ω

u2
sj

dx, δj > 0,

µ(u) = λ∥u∥2
L2 , λ > 0.

After calculating the Lipschitz constants for w, J, and µ denoted by Lw, LJ , and Lµ, respectively,
which are provided by

Lw = sup
s∈I

(
2|γ(s)|+ |κ(s)|L f

)
,

LJ = 2δj sup
sj

∥usj∥ = 2δj Mj, where Mj = sup ∥usj∥,

Lµ = 2λ sup
u

∥u∥L2 ,

System (24) can be expressed in abstract form as System (1).

Proposition 1. If u0 belongs to D(A), then the mild solution to System (2) is unique in [−r, T]
given that

2Mτλ sup
u

∥u∥L2 + 2Mτδj sup
sj

∥usj∥+ TMS sup
s∈I

(
2|γ(s)|+ |κ(s)|L f

)
(1 + T) < 1. (25)

Proposition 2. There is at least one mild solution for System (24) if

Mτ(∥χ∥+ λ∥u∥2 + δjr2) + MS

∫ s

0
(|γ(s)|+ |κ(r)|)uw(r + Te−brr)dr − r < 1, (26)

2Mτλ sup
u

∥u∥L2 < 1. (27)

6. Conclusions
In this article, we have explored the existence and uniqueness of a partial impulsive

fractional integro-differential system with finite delay using the concept of the α-resolvent
operator. By employing the α-resolvent operator, we derive a solution which serves as the
basis for proving both the existence and uniqueness of the system’s solution. Using the
Banach FP theorem, we prove the uniqueness of a mild solution, while Krasnoselskii’s FP
theorem is employed to demonstrate the existence of a solution under specific conditions.
Furthermore, we examine the HUS of the studied system.

The methodology developed in this work provides a general framework that can
be extended to study other fractional integro-differential systems with different types of
impulses, delays, and boundary conditions. This approach can also be applied to related
problems in Banach spaces, offering a broader perspective on fractional dynamical systems
and their stability properties.

Looking ahead, our upcoming research will focus on exploring the controllability
of System (1) using the approach from [16–18,39] as well as on examining partial impul-
sive fractional stochastic and neutral integro-differential systems utilizing the α-resolvent
operator [21,40]. Additionally, we will establish other stability concepts, such as Hyers–
Ulam–Rassias and Mittag-Leffler–Ulam stability, using the Caputo derivative [24,41].
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