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Abstract: We study inverse problems of identification of lower-order coefficients in a
second-order parabolic equation. The coefficients are sought in the form of a finite series
segment with unknown coefficients, depending on time. The linear case is also considered.
Overdetermination conditions are the integrals over the boundary of a solution’s domain
with weights. We focus on existence and uniqueness theorems and stability estimates for
solutions to these inverse problems. An operator equation to which the problem is reduced
is studied with the use of the contraction mapping principle. A solution belongs to some
Sobolev space and has all generalized derivatives occurring into the equation summable to
some power. The method of the proof is constructive, and it can be used for developing
new numerical algorithms for solving the problem.

Keywords: inverse problem; parabolic equation; convection–diffusion; heat and mass
transfer; integral measurements
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1. Introduction
We study the question on the identification of lower-order coefficients and the right-

hand side in a parabolic equation. The equation is of the form

Mu = ut + Au = f (t, x), (t, x) ∈ Q = (0, T)× G, (1)

where G ∈ Rn is a bounded domain with boundary Γ. Let S = (0, T)× Γ. The function f
and the elliptic operator A are representable as follows:

A(t, x, D) = A0(t, x, Dx) + ∑r
i=1 qi(t)Ai(t, x, Dx), f = f0(t, x) + ∑s

i=r+1 fi(t, x)qi(t),
A0 = −∑n

k,l=1 akl(t, x)∂xkxl + ∑n
k=1 ak(t, x)∂xk + a0(t, x),

Ai = ∑n
k=1 ai

k(t, x)∂xk + ai
0(t, x), i = 1, 2, . . . , r.

Equation (1) is furnished with the initial and boundary conditions

u|t=0 = u0, Bu|S =
∂u
∂γ

+ σ(t, x)u = g(t, x),
∂u
∂γ

=
n

∑
i=1

γi(t, x)uxi . (2)

The additional conditions for recovering the coefficients are as follows:∫
Γ

u(t, x)φj(x) = ψj(t), j = 1, 2, . . . , s. (3)
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The unknowns in the problem, (1)–(3), are a solution u and the functions qi(t) (i =

1, 2, . . . , s).
Problems (1)–(3) arise when describing heat and mass transfer processes, diffusion

and filtration processes, in ecology and many other fields [1,2]. The overdetermination
conditions (3) are not standard. We mention the monograph [3] dealing with inverse
parabolic problems and the monographs [4–6] containing basic statements of inverse
problems. We can also refer to the monograph [4] (see also [7]), where inverse coefficient
parabolic problems are studied, and the coefficients in question are independent of some
part of spatial variables. Here, a large number of existence and uniqueness theorems
is obtained. Due to the method, the coefficients in the equations are independent of
some spatial variables. Overdetermination conditions are values of a solution on some
hyperplanes. More detailed results are presented in [8–10], where well-posedness of
inverse problems of the identification of coefficients from the values of a solutions on some
manifolds are investigated. Pointwise or integral data of the form (3) (see the article [11],
where the problem of identification of the heat transfer coefficient is considered) were
studied in the articles authored by Prilepko A.I., and a series of interesting problems was
described in [3]. Analogous results were obtained in [12–15], where other conditions on the
data and other spaces were employed. Additional integral conditions with integrals over
Domain G are considered in [16–18]. They are used to determine either the heat transfer
coefficient or the flux on the boundary. These conditions are also involved in the articles [11,
19,20] devoted to numerical methods for solving the problem. The problem of simultaneous
identification of the heat transfer coefficient and a lower-order coefficient depending on an
integral of a solution with weight is studied in [21]. The integral conditions (3) are often
met as some approximations of pointwise conditions. This is noted, in particular, in [19,20].
The integral condition (3) is often used in some articles devoted to model problems and
the numerical solving of these particular problems (see [22–24]). The main approaches to
constructing numerical algorithms are discussed in [25,26]). The problem of recovering
the heat transfer coefficient with the overdetermination condition (3) is considered in [27].
Note that we do not know articles devoted to the theoretical results for Problems (1)–(3),
except for our article [28]. Here, attention is paid to the case of recovering coefficients of
higher-order derivatives, which are sought in the class of continuous functions. Existence
and uniqueness theorems are obtained. However, if we deal with real problems of heat and
mass transfer, then it is more interesting to consider the case of non-smooth coefficients. By
the same approach, we obtain a similar result for lower-order coefficients, which belong to
some Lebesgue space. Note that the operator equations to which these two problems are
reduced do not coincide.

We expose existence and uniqueness theorems for Problems (1)–(3) and some remarks
on the stability of solutions. The method of the proof relies on the fixed point theorems and
a priori estimates. The method is constructive and allows to develop quickly converging
numerical methods based on an iteration procedure, finite element method, and the method
of finite differences, an approach that allows to diminish the number of calculations in
contrast to gradient methods. In the proof, we employ the known results on solvability of
boundary value problems for parabolic equations, embedding theorems, and interpolation
inequalities.

The rest of this paper is organized as follows. In Section 2, we expose some definitions
and notations, and we briefly recall some results from the parabolic theory, which are
the starting point of our study. Section 3 consists of four subsections. Section 3.1 pro-
vides additional conditions on the data and reducing the problem to an equivalent one.
Section 3.2 deals with the main result of this study, which is the existence and uniqueness
of solutions in Sobolev spaces; Section 3.3 provides the stability estimate and the statement
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of the results in the linear case. In Section 3.4, an example is displayed, where some applied
problems are described. Section 4 comprises a discussion, and concluding remarks are
provided in Section 5.

2. Preliminaries
Let E be a Banach space. By Lp(G; E) (G is a domain in Rn), we mean the space of mea-

surable functions defined on G with values in E and the finite norm ∥∥u(x)∥E∥Lp(G) [29].

We use Sobolev spaces Ws
p(G; E), Ws

p(Q; E) (see [30,31]) and Hölder spaces Cα,β(Q),
Cα,β(S) (see [32]). By a norm of a vector, we mean the sum of the norms of coordinates.
Given an interval J = (0, T), put Ws,r

p (Q) = Ws
p(J; Lp(G)) ∩ Lp(J; Wr

p(G)). Respectively,
Ws,r

p (S) = Ws
p(J; Lp(Γ)) ∩ Lp(J; Wr

p(Γ)). All function spaces and coefficients of Equation
(1) are assumed to be real. Next, we suppose that p > n + 2 and Γ ∈ C3 (see the defini-
tion in [32]). Given sets X, Y, the symbol ρ(X, Y) stands for the distance between them.
Introduce the notations Qτ = (0, τ)× G, Sτ = (0, τ)× Γ. Gδ = {x ∈ G : ρ(x, Γ) < δ},
Qδ = (0, T)× Gδ, Qτ

δ = (0, τ)× Gδ. Construct a function φ(x) ∈ C∞(G) such that φ(x) = 1
in Gδ/2 and φ(x) = 0 in G \ G3δ/4. In what follows, we fix a parameter δ > 0 (it can be
arbitrary small). Consider the auxiliary problem

Mu = ut + A0u = f0(t, x), A0u = −
n

∑
i,j=1

aijuxi ,xj +
n

∑
i=1

aiuxi + a0u, (4)

∂u
∂γ

+ σu
∣∣∣
S
= g, u|t=0 = u0, (5)

We assume that

u0 ∈ W2−2/p
p (G), B(0, x, D)u0|Γ = g(0, x), g ∈ Ws0,2s0

p (S), f0 ∈ Lp(Q), (6)

where s0 = 1/2 − 1/2p;

φu0(x) ∈ W3−2/p
p (G), φ f0 ∈ Lp(0, T; W1

p(G)), g ∈ Ws1,2s1
p (S) (s1 = 1 − 1/2p); (7)

aij ∈ C(Q), γi, σ ∈ Ws0,2s0
p (S), ak ∈ Lp(Q), i, j = 1, 2, . . . , n, k ≤ n; (8)

aij ∈ L∞(0, T; W1
∞(Gδ)), ak ∈ L∞(0, T; W1

p(Gδ)), γi, σ ∈ Ws1,2s1
p (S); (9)

where i, j = 1, . . . , n, k = 0, 1, . . . , n, l = 1, 2, . . . , r. Next, we suppose that

|
n

∑
i=1

γiνi| ≥ ε0 > 0, ∀(t, x) ∈ S, (10)

where ν is the exterior unit normal to Γ, and ε0 is a positive constant. The operator A0 is
elliptic, i. e., there exists a constant δ0 > 0, such that

n

∑
i,j=1

aijξiξ j ≥ δ0|ξ|2 ∀(t, x) ∈ Q, ∀ξ ∈ Rn. (11)

The next theorem follows on from Theorem 1 in [33].

Theorem 1. Let Conditions (6), (8), (10) and (11) hold. Then, there exists a unique solution
u ∈ W1,2

p (Q) to Problems (4) and (5). The following estimates is valid:

∥u∥W1,2
p (Q)

≤ c
[
∥u0∥W2−2/p

p (G)
+ ∥ f0∥Lp(Q) + ∥g∥

W
s0,2s0
p (S)

]
. (12)



Axioms 2025, 14, 116 4 of 11

If Conditions (7) and (9) also hold, then a solution is such that φut ∈ Lp(0, T; W1
p(G)), φu ∈

Lp(0, T; W3
p(G)). In the case of g = 0 and u0 = 0, we have the estimates

∥u∥W1,2
p (Qτ)

≤ c∥ f ∥Lp(Qτ), (13)

∥u∥W1,2
p (Qτ)

+ ∥φut∥Lp(0,τ;W1
p(G)) + ∥φu∥Lp(0,τ;W3

p(G)) ≤ c(∥ f0∥Lp(Qτ) + ∥φ f0∥Lp(0,τ;W1
p(G))), (14)

where the constant c is independent of f , τ ∈ (0, T].

3. Existence and Uniqueness Theorems
3.1. Additional Conditions on the Data

The problem is to find a solution u to Equation (1) and the functions (q1, q2, . . . , qs)

satisfying (1)–(3), and such that u ∈ W1,2
p (Q) and qj ∈ Lp(0, τ0), j = 1, 2, . . . , s. In this case,

Equation (1) is satisfied almost everywhere in Q. We reduce the problem to an operator
equation whose solvability is proven with the help of the fixed point theorem and a priori
estimates. First, we describe additional conditions on the data. We assume that

ψi ∈ W1
p(0, T), ψi(0) =

∫
Γ

u0 φi dΓ, φi ∈ Lq(Γ),
1
q
+

1
p
= 1, i = 1, . . . , s, (15)

fm ∈ L∞(0, T; Lp(G)) ∩ L∞(0, T; W1
p(Gδ)) ∩ C([0, T]; Lp(Γ)), m = r + 1, . . . , s, (16)

al
k ∈ L∞(0, T; W1

p(Gδ)) ∩ L∞(0, T; Lp(G)) ∩ C([0, T]; Lp(Γ)), (17)

for all l = 1, . . . , r, k = 0, 1, . . . , n. Assuming that the conditions of Theorem 1 and the above
conditions are fulfilled, we can construct a solution to Problems (4) and (5). It possesses
the properties Φ ∈ W1,2

p (Q), φΦt ∈ Lp(0, T; W1
p(G)), φΦ ∈ Lp(0, T; W3

p(G)). Consider the
matrix B0 of dimension s × s with the rows

− < A1(t, x, D)Φ, φj >, . . . ,− < Ar(t, x, D)Φ, φj >,

< fr+1(t, x), φj >, . . . ,< fs(t, x), φj >, j ≤ s,

where < u, v >=
∫

Γ u(x)v(x) dΓ. The embedding theorems imply that Φ ∈
C1−(n+2)/2p,2−(n+2)/p(Q) (see Lemma 3.3, Ch.2 [32]). In this case, the entries of the matrix
B0 are continuous functions. We require that

det B0 ̸= 0 ∀t ∈ [0, T]. (18)

Since, in Theorem 2 below, we prove existence of solutions locally in time, Condition (18)
can be replaced with the following condition:

det B ̸= 0, ∀t ∈ [0, T]. (19)

where Matrix B has the rows

− < A1(t, x, D)u0, φj >, . . . ,− < Ar(t, x, D)u0, φj >,

< fr+1(t, x), φj >, . . . ,< fs(t, x), φj >, j ≤ s.

This condition is easier to check in contrast to that in (18). If we replace Condition (18) with
Condition (19) in Theorem 2, then the claim of Theorem 2 remains valid.
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Make the change of variables u = v+Φ. Problems (1)–(3) are reduced to an equivalent
problem as follows:

vt + A(⃗q)v =
s

∑
i=r+1

qi fi −
r

∑
i=1

qi AiΦ = f 1, (20)

where A(⃗q)v = A0v + A1 (⃗q)v, A1 (⃗q) = ∑r
i=1 qi Ai;

v|t=0 = 0, Bv|S = 0; (21)

< v, φj >= ψj(t)− < Φ, φj >= ψ̃j, i = 1, . . . , s. (22)

We use the smoothness conditions on the data, (6)–(9) and (15)–(17), and the well-
posedness conditions, (10), (11) and (18).

3.2. The Main Result

Theorem 2. Let Conditions (6)–(11) and (15)–(18) hold. Then, there exists a number τ0 ∈ (0, T]
such that on segment [0, τ0], there exists a unique solution (u, q1, q2, . . . , qs) to Problem (1)–(3),
such that u ∈ W1,2

p (Qτ0), φu ∈ Lp(0, τ0; W3
p(G)), φut ∈ Lp(0, τ0; W1

p(G)), qj ∈ Lp(0, τ0),
j = 1, 2, . . . , s.

Proof. Reduction of the problem to the operator equation. We have reduced our prob-
lem, (1)–(3), to an equivalent simpler problem, (20)–(22). Denote by Hτ the space of
functions v satisfying the Condition (21), such that v ∈ W1,2

p (Qτ), φvt ∈ Lp(0, τ; W1
p(G)),

φv ∈ Lp(0, τ; W3
p(G)). Let ∥v∥Hτ = ∥v∥W1,2

p (Qτ)
+ ∥φvt∥Lp(0,T;W1

p(G)) + ∥φv∥Lp(0,T;W3
p(G)).

Moreover, define the space Wτ of functions f ∈ Lp(Qτ) such that φ f ∈ Lp(0, τ; W1
p(G)).

This space is endowed with the norm ∥ f ∥Wτ
= ∥ f ∥Lp(Qτ) + ∥φ f ∥Lp(0,τ;W1

p(G)). By Theo-

rem 1, given a function f 1 ∈ Wτ , there exists a unique solution v = (∂t − A0)
−1 f 1 to the

equation vt − A0v = f 1, satisfying Condition (21) and the estimate

∥v∥Hτ ≤ c1∥ f 1∥Wτ
, (23)

where the constant c1 is independent of τ. Reduce our problem to an operator equation.
Multiply Equation (20) by φj and integrate over Γ. Note that in the class of solutions
u described in Theorem 2, traces of summands occurring in (20) on Γ exist. We obtain
the equality

ψ̃′
j+ < A(⃗q)v, φj >= −

r

∑
i=1

qi < AiΦ, φj > +
s

∑
i=r+1

qi < fi, φj > . (24)

The right-hand side of this equality coincides with the j-th coordinate of the vector B0(t)⃗q.
In this case, System (24) can be written in the form

q⃗(t) = B−1
0 H(⃗q)(t) = R(⃗q), H(⃗q) = (ψ̃′

1+ < A(⃗q)v, φ1 >,

ψ̃′
2+ < A(⃗q)v, φ2 >, . . . , ψ̃′

s+ < A(⃗q)v, φs >)T , (25)

where v is a solution to Problem (20), (21).
A priori estimates. Let q⃗ = 0. In this case, the right-hand side in (25) is written

as follows:
R(0) = B−1

0 Ψ⃗, Ψ⃗ = (ψ̃′
1, ψ̃′

2, . . . , ψ̃′
s)

T .

Assign R0 = 2∥R(0)∥Lp(0,T). Introduce that ball Bτ = {⃗q ∈ Lp(0, τ) : ∥⃗q∥Lp(0,τ) ≤ R0}.
Next, our aim is to prove that there exists a solution to Equation (25). We employ the fixed
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point theorem. To this end, we first obtain estimates for solutions to Problems (20) and (21),
assuming that q⃗ ∈ Bτ . We have that

v = −(∂t + A0)
−1 A1 (⃗q)v + (∂t + A0)

−1 f 1. (26)

From (23), it follows that

∥(∂t + A0)
−1 A1 (⃗q)v∥Hτ ≤ c1∥A1 (⃗q)v∥Wτ

. (27)

Our conditions on the coefficients ensure the estimate

∥A1 (⃗q)v∥Wτ
≤ ∥

r

∑
j=1

qj Aj(t, x, D)v∥Wτ
≤ ∥⃗q∥Lp(0,τ)

r

∑
j=1

(∥Aj(t, x, D)v∥L∞(0,τ;Lp(G))+

∥φAj(t, x, D)v∥L∞(0,τ;W1
p(G))) ≤ c3∥⃗q∥Lp(0,τ)(∥v∥L∞(0,τ;W1

∞(G)) + ∥φv∥L∞(0,τ;W2
∞(G))). (28)

The constant c3 depends on the norm of coefficients in L∞(0, τ; Lp(G)) ∩ L∞(0, τ; W1
p(Gδ)).

Note that W1,2
p (Qτ) ⊂ C([0, τ]; W2−2/p

p (G)). Moreover, if φvt ∈ Lp(0, τ; W1
p(G)), φv ∈

Lp(0, τ; W3
p(G)), then φu ∈ C([0, τ]; W3−2/p

p (G)). These embeddings result from [31]
[Theorem III 4.10.2]. Additionally, in both cases, the embedding constant is independent of
τ. Next, we have the estimate (see Theorem 4.6.1 and 4.6.2 [29])

∥v∥L∞(0,τ;W1
∞(G)) + ∥φv∥L∞(0,τ;W2

∞(G)) ≤ c4(∥v∥L∞(0,τ;W1+s
p (G)) + ∥φv∥L∞(0,τ;W2+s

∞ (G))) ≤

c5(∥v∥θ

L∞(0,τ;W2−2/p
p (G))

∥v∥1−θ
L∞(0,τ;Lp(G))

+ ∥φv∥θ1

L∞(0,τ;W3−2/p
p (G))

∥v∥1−θ1
L∞(0,τ;Lp(G))

), (29)

where n/p < s < 1 − 2/p, 1 + s = θ(2 − 2/p), 2 + s = θ1(3 − 2/p), and we have used the
interpolation inequalities [29]. The Newton–Leibnitz formula yields

∥v∥L∞(0,τ;Lp(G)) ≤ τ(p−1)/p∥vt∥Lp(Qτ). (30)

Estimates (28)–(30) ensure the inequality

∥A1 (⃗q)v∥Wτ
≤ c6∥⃗q∥Lp(0,τ)∥v∥Hτ τβ, β = min(β0, β1), (31)

where β0 = (1 − θ)(p − 1)/p, β1 = (1 − θ1)(p − 1)/p. Choose τ0 from the condition
c1c6R0τβ = 1/2. In this case, Relation (26) yields

∥v∥Hτ ≤ 2∥(∂t + A0)
−1 f 1∥Hτ . (32)

In view of (23), we can write out the estimate

∥v∥Hτ ≤ c7∥ f 1∥Wτ
≤ c8∥⃗q∥Lp(0,τ), τ ≤ τ0, (33)

where we can assume that the constant c8 is independent of τ ≤ τ0. It depends on the
norms of the data. Next, we consider two vectors q⃗i = (qi

1, qi
2, . . . , qi

s), i = 1, 2, and we
construct the corresponding solutions vi to Problems (20) and (21). By subtracting two
Equations (20), we conclude that the difference w = v1 − v2 is a solution to the problem

wt + A((⃗q1 + q⃗2)/2)w + A1 (⃗q1 − q⃗2)(v1 + v2)/2 =
s

∑
i=r+1

(qi
1 − qi

2) fi −
r

∑
i=1

(qi
1 − qi

2)AiΦ, (34)

w|t=0 = 0, Bw|S = 0. (35)
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As before, in view of Inequality (23), we have the estimate

∥w∥Hτ ≤ c1∥A1((⃗q1 + q⃗2)/2)w∥Wτ
+ c1∥A1 (⃗q1 − q⃗2)

(v1 + v2)

2
∥Wτ

+ c10∥⃗q1 − q⃗2∥Lp(0,τ). (36)

Applying Estimate (31), we infer

∥w∥Hτ ≤ c1c6R0τβ∥w∥Hτ + c1c6τβ∥⃗q1 − q⃗2∥Lp(0,τ)∥
(v1 + v2)

2
∥Hτ + c10∥⃗q1 − q⃗2∥Lp(0,τ). (37)

Since τ ≤ τ0, the last estimate implies that

∥w∥Hτ ≤ 2c1c6τβ∥⃗q1 − q⃗2∥Lp(0,τ)∥
(v1 + v2)

2
∥Hτ + 2c10∥⃗q1 − q⃗2∥Lp(0,τ).

Next, involving Estimate (33), written for the functions vi, we conclude that

∥v1 − v2∥Hτ ≤ c11∥⃗q1 − q⃗2∥Lp(0,τ), (38)

with a constant c11 independent of τ ≤ τ0. Estimate the norm ∥R(⃗q1)− R(⃗q2)∥Lp(0,τ) with
τ ≤ τ0. Actually, the required estimate was already established. Consider the expressions
Ij =< (A(⃗q1)v1 − A(⃗q2))v2, φj > occurring in the difference R(⃗q1)− R(⃗q2). The Hölder
inequality yields

|Ij| = | < A0w + A1((⃗q1 + q⃗2)/2)w + A1 (⃗q1 − q⃗2)(v1 + v2)/2, φj > | ≤
c12(∥A0w∥Lp(Γ) + ∥A1((⃗q1 + q⃗2)/2)w∥Lp(Γ) + ∥A1 (⃗q1 − q⃗2)(v1 + v2)/2∥Lp(Γ).

The second summand on the right-hand side of Ij is estimated as follows (see (31)):

∥A1((⃗q1 + q⃗2)/2)w∥Lp(0,τ;Lp(Γ)) ≤ c12∥A1((⃗q1 + q⃗2)/2)w∥Wτ
≤ c13τβR0∥w∥Hτ . (39)

In view of Inequality (33), written for the functions vi, the third summand admits
the estimate

∥A1 (⃗q1 − q⃗2)(v1 + v2)/2∥Lp(0,τ;Lp(Γ)) ≤ c14∥A1 (⃗q1 − q⃗2)(v1 + v2)/2∥Wτ
≤

c13τβC1(R0)∥⃗q1 − q⃗2∥Lp(0,τ). (40)

At last, the first summand is estimated as follows:

∥A0w∥Lp(0,τ;Lp(Γ)) ≤ c15∥φA0w∥Lp(0,τ;Ws
p(G)) ≤ c16∥φA0w∥s

Lp(0,τ;W1
p(G))

∥φA0w∥1−s
Lp(Qτ)

, (41)

where n/p < s < 1. Here, we have used the interpolation inequality [29]. Using the
conditions on the coefficients, we obtain the estimate

∥φA0w∥Lp(G) ≤ c16(∥φw∥W2
p(G) + ∥w∥L∞(0,τ;W1

∞(G)). (42)

Next, we repeat the arguments used in the proof of Estimate (31) (see Inequality (29)).
Finally, we arrive at the estimate

∥φA0w∥Lp(G) ≤ c17τβ2∥φw∥Hτ , β2 > 0. (43)

Estimates (39), (40), (43) and (38) ensure the following estimate:

∥R(⃗q1)− R(⃗q2)∥Lp(0,τ) ≤ c18τβ3 ∥⃗q1 − q⃗2∥Lp(0,τ), (44)
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where β3 is a positive constant and c18 is a constant depending on R0, but it is independent
of τ.

Solvability of the problem. Choose a quantity τ1 ≤ τ0 such that c18τβ3 ≤ 1/2 for
τ ≤ τ1. In this case, the operator R(⃗q) takes the ball Bτ1 into itself and is a contraction. The
fixed point theorem implies that Equation (25) has a unique solution in the ball Bτ1 . Let
v = v(⃗q). Demonstrate that this functions satisfies (22). Integrating (20) with the weight φj

over Γ, we conclude that

< vt, φj > + < A(⃗q)v, φj >= −
r

∑
j=1

qj < AjΦ, φj > +
s

∑
j=r+1

< f j, φj > qj(t). (45)

Subtracting them from (24), we conclude that < vt, φj > −ψ̃′
j = 0 for all j; thereby,

Condition (22) holds. The uniqueness of solutions follows from the estimates obtained in
the above proof.

3.3. Some Applications of the Results

Stability estimates for solutions also hold. Actually, by repeating the proof, we can
validate the following statement:

Lemma 1. Assume that Conditions (8)–(11), (16) and (17) hold and the data (ũ0, f̃0, g, ψ̃1, . . . , ψ̃s)

satisfy the conditions (6), (7), (15) and (19). Given ε > 0, there exists a small parameter δ > 0
such that if the data (ũ0, f̃0, g̃, ϕ̃1, . . . , ψ̃s) satisfy Conditions (8)–(11), (16) and (17) and

∥ũ0 − u0∥W2−2/p
p (G)

+ ∥φ(ũ0 − u0)∥W3−2/p
p (G)

+ ∥ f̃0 − f0∥Lp(G)+

∥φ( f̃0 − f0)∥Lp(0,T;W1
p(G)) + ∥g̃ − g∥

W
s0,2s0
p (S)

+
s

∑
i=1

∥ψ̃i − ψi∥W1
p(0,T) < δ,

then a solution ũ to Problems (1)–(3) with the above new data exists on some segment (0, τ1) (the
quantity τ1 depends only on δ and τ1 → τ0 as δ → 0) and

∥ũ − u∥W1,2
p (Qτ̃)

+ ∥φ(ũ − u)t∥Lp(0,τ;W1
p(G)) + ∥φ(ũ − u)∥Lp(0,τ;W3

p(G)) ≤ ε.

Remark 1. A numerical solution to the problem can be constructed by method of successive
approximations with the use of Equation (25), and it will be stable under random perturbations of
the data.

In the linear case, i.e., the unknown functions occur only into the right-hand side; thus, the
claim becomes global in time. In this case, A = A0 and the matrix B0 has the rows

< f1(t, x), φj >, . . . ,< fs(t, x), φj >, j ≤ s, (46)

i.e., r = 0.
More exactly, the following theorem is valid.

Theorem 3. Let Conditions (6)–(11), (15), (16) and (18) hold. Then, there exists a unique solution
(u, q1, q2, . . . , qs) to Problems (1)–(3), such that u ∈ W1,2

p (Q), φu ∈ Lp(0, T; W3
p(G)), φut ∈

Lp(0, T; W1
p(G)), qj ∈ Lp(0, T), j = 1, 2, . . . , s.

The proof is in line with that of the main result in [10]. The idea of the proof is as
follows. First, we prove solvability of the problem on some small segment of time [0, τ0].
Next, by repeating the arguments, we establish solvability on [τ0, τ1], and so on. Since
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the problem is linear, it is possible to prove that the length τi − τi−1 does not tend to zero,
which implies solvability on the whole segment [0, T].

3.4. Example

As an example, we write out a one-dimensional heat equation of the form

c(t, x)
∂u
∂t

− ∂

∂x
(a(t, x)ux) + b(t, x)ux + k(t, x)u = f .

Here, Coefficient b is an advection/convection coefficient and k is a reaction or perfusion
coefficient in bio-heat conduction (see [22]). In different models, Coefficient k also serves as
the control function of the heat process [23] or the first-order rate constant for microbial
CH4 oxidation [24].

4. Discussion
Mathematical models of heat and mass transfer we considered. We studied inverse

problems of recovering lower-order coefficients and the right-hand side in a second-order
parabolic equation. The coefficients were representable in the form of finite series segments
with unknown coefficients depending on time. This approach is new. The linear case in
which only the right-hand side is recovered was also considered. The overdetermination
conditions are the integrals over the boundary of a domain of a solution with weights.
Attention was paid to existence, uniqueness, and stability estimates for solutions to inverse
problems of this type. The problems were reduced to an operator equation, which was
studied with the use of the fixed point theorem and a priori estimates. A solution had all
generalized derivatives occurring into the equation summable to some power. The method
of the proof is constructive and can be used for developing new numerical algorithms
for solving the problem. Moreover, the approach is applicable to the study of inverse
problems for higher-order parabolic equations, and the results can be transferred to this
case without any modifications. The smoothness conditions on the data are sharp and
cannot be weakened.

5. Conclusions
The existence and uniqueness theorems in inverse problems of recovering lower-

order coefficients in a parabolic equation from boundary integral measurements were
proven locally in time. They were sought in the form of a finite segment of the Fourier
series with coefficients depending on time. The proof relies on a priori bounds and the
fixed point theorem. The conditions on the data ensuring existence and uniqueness of
solutions in Sobolev classes are sharp. They are smoothness and consistency conditions
on the data and additional conditions on the kernels of the integral operators used in
additional measurements.
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