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Abstract: In this manuscript, we present several novel results in fixed-point theory for a
complete controlled metric space. The first presented result is inspired from the Caristi
contraction where we explore the existence and uniqueness of fixed points under specific
conditions. Furthermore, we propose a graphical form of it by endowing the considered
space with a graph and develop a new fixed-point theorem, which is illustrated by two
examples. Also, we establish a theorem for the α-admissible mapping. To demonstrate
its effectiveness, the last theorem proposes an approach to solve a second-order differen-
tial equation.
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1. Introduction
The Banach contraction principle is regarded as one of the most renowned results in

fixed-point (FP) theory. It focused on the uniqueness of the FP of a self-mapping φ on a
complete metric space (Ω, ϱ) [1]. This basic result motivated researchers to develop several
FP theorems in different metric spaces [2–7].

FP theory, with its broad range of applications, has driven researchers to develop
innovative results and explore its use across diverse mathematical disciplines. A prominent
application lies in the solving of differential equations, where fixed-point theorems play a
crucial role in establishing the existence and uniqueness of solutions, particularly for non-
linear problems [8,9]. These results are instrumental in transforming complex differential
equations into solvable integral equations, providing a framework for both analytical and
numerical approaches.

On the other hand, the exploration of the interplay between fixed-point theory and
graph theory has garnered significant attention, leading to the development of numerous
research contributions. Many researchers have investigated the integration of graph-based
constraints into metric spaces, yielding novel fixed-point results. This emerging field has
not only enriched the theoretical framework of fixed-point theory but also expanded its
applicability to a wide range of disciplines, including network theory, optimization, and
dynamical systems. We will provide a brief historical overview of the development of the
concept of metric spaces endowed with a graph structure.

It is essential to note that early research was focused on equipping metric spaces
with a partial ordering. The first significant result in this area was presented by Ran and
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Reurings [10]. They presented an analogue of Banach’s FP theorem in partially ordered
sets and several applications. Their results were extended by Petrusel and Rus in [11]
by introducing FP results in ordered L-spaces. Next, in [12], Jachymski established the
foundational framework for metric spaces endowed with graph structures. This pioneering
approach created new possibilities for investigating the interactions between distance
functions and relational structures, leading to significant advancements in FP theory within
these spaces [13–18].

One of the most important FP results was introduced by Caristi in [19]. He established
an FP theorem for a mapping φ satisfying the following condition

ϱ(τ, φτ) ≤ ϕ(τ)− ϕ(φτ),

where ϕ is a nonnegative real function which is lower semi-continuous. The mapping φ

is called a Caristi map on (Ω, ϱ). Next, Caristi’s result was considered and developed to
obtain more general results. Recently, Karapinar et al. [20] proposed a new FP theorem that
combined both Banach and Caristi type theorems in a b-metric space. The concept of the
b-metric is based on the generalization of the triangle inequality of the standard metric by
inserting a constant coefficient b ≥ 1 to the right-hand side of the triangle inequality. More
studies of the b-metric can be found in [21–25]. One of the recent extensions of the b-metric
was introduced by Mlaiki et al. [26] and is called controlled metric type space (CMS for
short). They inserted a controlled function of the right-hand side of the b-triangle inequality.
Subsequently, numerous studies have investigated this new space, demonstrating fixed-
point results for various contraction mappings under a range of conditions [27,28].

In this paper, we introduce a new FP theorem inspired by the Caristi contraction
in the CMS. Inspired by the exploration of the interplay between FP theory and graph
theory, we endow the considered metric space with a graph and we propose a graphical
form of the first theorem established. We illustrate the obtained result by two examples.
Additionally, we present a theorem for α-admissible mappings. Since FP theory provides
a robust mathematical framework for tackling a wide range of problems in differential
equations and integral equations, our last result offers an approach to solve a second-order
differential equation using FP theory to highlight its practical utility.

Let us revisit the definition and essential topological properties of the CMS.

Definition 1 ([26]). Let Ω ̸= ∅, ϖ : Ω × Ω → [1, ∞), and a function ϱ : Ω × Ω → [0, ∞)

satisfying the following hypothesis for all s1, s2, s3 ∈ Ω:

(d1) ϱ(s1, s2) = 0 if and only if s1 = s2;
(d2) ϱ(s1, s2) = ϱ(s2, s1);
(d3) ϱ(s1, s2) ≤ ϖ(s1, s3)ϱ(s1, s3) + ϖ(s3, s2)ϱ(s3, s2).

The triplet (Ω, ϱ, ϖ) is called a controlled metric type space, and the function ϱ is called a con-
trolled metric.

It is clear that the CMS is an extension for b-metric spaces. Every b-metric space is a
CMS, though the reverse may not hold.

Notation 1. In the rest of this paper, we adopt the following notations:
R represents the set of real numbers.
N represents the set of natural numbers.

Definition 2 ([26]). Let (Ω, ϱ, ϖ) be a CMS and {τn}n≥0 be a sequence in Ω.

1. The sequence {τn} converges to some τ in Ω, if for every δ > 0, there exists n0 = n0(δ) such
that ϱ(τn, τ) < δ for all n ≥ n0.
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2. {τn} is a Cauchy sequence, if lim
m,n→∞

ϱ(τn, τm) = 0.

3. The space (Ω, ϱ, ϖ) is said to be complete if every Cauchy sequence {τn} in Ω is convergent.

Definition 3. Let (Ω, ϱ, ϖ) be a CMS. Let τ ∈ Ω and δ > 0.
(i) The open ball B(τ, δ) is

B(τ, δ) = {s ∈ Ω, ϱ(τ, s) < δ}.

(ii) The mapping φ : Ω → Ω is said to be continuous at τ ∈ Ω if ∀ r > 0, there exists γ > 0 such
that φ(Bp(τ, γ)) ⊆ Bp(φτ, r).

Evidently, if a mapping g is continuous at v in the space (Ω, ϱ, ϖ), then vn → v implies
that gvn → gv as n → ∞.

2. Main Results
In this section, we present the main results concerning fixed-point theorems for Caristi

contractions and α-admissible mappings. Some examples and an applications are presented.

2.1. Fixed-Point Theorems for Caristi Contractions

Our first main result is a fixed-point theorem for Caristi contraction mappings. We
demonstrate the existence and uniqueness of fixed points under certain conditions. Then,
in Theorem 2, we extend this framework to providing a new fixed-point theorem that
incorporates the structure of a graph on the underlying space. We propose two examples
to illustrate the practical application of the FP results in metric spaces with a graph.

Theorem 1. Let (Ω, ϱ, ϖ) be a complete CMS. Consider the mapping φ : Ω → Ω such that

ϱ(φd, φt) ≤ (h̄(d)− h̄(φd))ϱ(d, t) for all t, d ∈ Ω (1)

where h̄ : Ω → R is a bounded function from below.
For d0 ∈ Ω, take dn = φnd0. Moreover, assume that, for every d ∈ Ω, we have

lim
n→∞

ϖ(dn, d) and lim
n→∞

ϖ(d, dn) exist and are finite (2)

and ϖ satisfies the following condition

sup
m≥1

lim
i→∞

ϖ(di+1, di+2)

ϖ(di, di+1)
ϖ(di+1, dm) <

1
k

where k ∈ (0, 1). (3)

Then, φ has a unique FP.

Proof. Case 1: Assume that there exists n ≥ 0 such that ϱ(dn, φdn) = 0, which implies that
φdn = dn. Then, dn is a FP of φ.

Case 2: Assume that ϱ(dn, φdn) > 0 for all n ∈ N. Let us denote bn = ϱ(dn−1, dn).
From (1), we obtain

bn+1 = ϱ(dn, dn+1) = ϱ(φdn−1, φdn)

≤ (h̄(dn−1)− h̄(φdn−1))ϱ(dn−1, dn)

= (h̄(dn−1)− h̄(dn))bn.

Hence,

0 <
bn+1

bn
≤ h̄(dn−1)− h̄(dn), ∀n ∈ N. (4)
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Therefore, the sequence (h̄(dn)) is required to be positive and non-increasing. Thus,
lim

n→∞
h̄(dn) = r > 0. Now, using (4), we obtain

n

∑
i=1

bi+1

bi
≤

n

∑
i=1

(h̄(di−1)− h̄(di))

= h̄(d0)− h̄(d1) + h̄(d1)− . . . + h̄(dn−1)− h̄(dn)

= h̄(d0)− h̄(dn)

which means that
∞

∑
i=1

bi+1

bi
< ∞. Consequently, we have

lim
i→∞

bi+1

bi
= 0. (5)

Taking into account (5), there exists i0 ∈ N such that for all i ≥ i0,

bi+1

bi
≤ k for k ∈ (0, 1). (6)

This yields that
ϱ(di+1, di) ≤ kϱ(di, di−1) ∀i ≥ i0. (7)

Now, we show that {di} is a Cauchy sequence. From (7), we obtain

ϱ(di+1, di) ≤ kiϱ(d0, d1) ∀i ≥ i0. (8)

Let m, n ∈ N with n < m. By using the condition (d3) in Definition 1, we have

ϱ(dn, dm) ≤ ϖ(dn, dn+1)ϱ(dn, dn+1) + ϖ(dn+1, dm)ϱ(dn+1, dm)

≤ ϖ(dn, dn+1)ϱ(dn, dn+1) + ϖ(dn+1, dm)ϖ(dn+1, dn+2)ϱ(dn+1, dn+2)

+ ϖ(dn+1, dm)ϖ(dn+2, dm)ϱ(dn+2, dm)

≤ ϖ(dn, dn+1)ϱ(dn, dn+1) + ϖ(dn+1, dm)ϖ(dn+1, dn+2)ϱ(dn+1, dn+2)

+ ϖ(dn+1, dm)ϖ(dn+2, dm)ϖ(dn+2, dn+3)ϱ(dn+2, dn+3)

+ ϖ(dn+1, dm)ϖ(dn+2, dm)ϖ(dn+3, dm)ϱ(dn+3, dm)

≤ · · ·

≤ ϖ(dn, dn+1)ϱ(dn, dn+1) +
m−2

∑
i=n+1

(
i

∏
j=n+1

ϖ(dj, dm)

)
ϖ(di, di+1)ϱ(di, di+1)

+
m−1

∏
k=n+1

ϖ(dk, dm)ϱ(dm−1, dm).

Using (8), we obtain
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ϱ(dn, dm) ≤ ϖ(dn, dn+1)knϱ(d0, d1) +
m−2

∑
i=n+1

(
i

∏
j=n+1

ϖ(dj, dm)

)
ϖ(di, di+1)kiϱ(d0, d1)

+
m−1

∏
i=n+1

ϖ(di, dm)km−1ϱ(d0, d1)

≤ ϖ(dn, dn+1)knϱ(d0, d1) +
m−2

∑
i=n+1

(
i

∏
j=n+1

ϖ(dj, dm)

)
ϖ(di, di+1)kiϱ(d0, d1)

+

(
m−1

∏
i=n+1

ϖ(di, dm)

)
km−1ϖ(dm−1, dm)ϱ(d0, d1)

= ϖ(dn, dn+1)knϱ(d0, d1) +
m−1

∑
i=n+1

(
i

∏
j=n+1

ϖ(dj, dm)

)
ϖ(di, di+1)kiϱ(d0, d1)

≤ ϖ(dn, dn+1)knϱ(d0, d1) +
m−1

∑
i=n+1

(
i

∏
j=0

ϖ(dj, dm)

)
ϖ(di, di+1)kiϱ(d0, d1).

Let

Rq =
q

∑
i=0

(
i

∏
j=0

ϖ(dj, dm)

)
ϖ(di, di+1)ki.

Then, we obtain

ϱ(dn, dm) ≤ ϱ(d0, d1)[knϖ(dn, dn+1) + (Rm−1 − Rn)]. (9)

Now, in order to obtain the limit of Rq, we will study the convergence of the ratio
Rq+1

Rq
.

We have

lim
q→∞

Rq+1

Rq
= lim

q→∞

q+1

∑
i=0

(
i

∏
j=0

ϖ(dj, dm)

)
ϖ(di, di+1)ki

q

∑
i=0

(
i

∏
j=0

ϖ(dj, dm)

)
ϖ(di, di+1)ki

= lim
q→∞

∏
q+1
j=0 ϖ(dj, dm)ϖ(di, di+1)kq+1

q

∑
i=0

(
i

∏
j=0

ϖ(dj, dm)

)
ϖ(di, di+1)ki

≤ lim
q→∞

q+1

∏
j=0

ϖ(dj, dm)ϖ(di, di+1)kq+1

q

∏
j=0

ϖ(dj, dm)ϖ(di, di+1)kq

= lim
q→∞

ϖ(dq+1, dm)ϖ(dq+1, dq+2)

ϖ(dq, dq+1)
.k
(

by condition (3)
)

<
1
k

.k = 1.

Therefore, by the ratio test, we deduce that lim
n→∞

Rn exists and is finite. Hence, {Rn} is a

Cauchy sequence. Subsequently, by applying the limit to the inequality (9), we obtain

lim
n,m→∞

ϱ(dn, dm) = 0. (10)
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Therefore, {dn} is a Cauchy sequence, and by the completeness of the space Ω, we can
affirm that dn −→ d∗ as n −→ ∞.

Now, we claim that d∗ is an FP of φ. From (1), we have

ϱ(d∗, dn+1) ≤ ϖ(d∗, dn)ϱ(d∗, dn) + ϖ(dn, dn+1)ϱ(dn, dn+1). (11)

Knowing that the limits of ϖ(d∗, dn) and ϖ(dn, dn+1) exist and are finite from (2) and using
(10), we can affirm that

lim
n→∞

ϱ(d∗, dn) = 0. (12)

On the other hand, we have

ϱ(d∗, φd∗) ≤ ϖ(d∗, dn+1)ϱ(d∗, dn+1) + ϖ(dn+1, φd∗)ϱ(dn+1, φd∗)

= ϖ(d∗, dn+1)ϱ(d∗, dn+1) + ϖ(dn+1, φd∗)ϱ(φdn, φd∗)

≤ ϖ(d∗, dn+1)ϱ(d∗, dn+1) + ϖ(dn+1, φd∗)(h̄(dn)− h̄(dn+1))ϱ(dn, d∗). (13)

If we take the limit in (13) as n goes toward ∞ and from (2) and (12), we obtain ϱ(d∗, φd∗) =
0, that is, d∗ is an FP of φ.

Assume that φ has two FPs, e.g., d1 and d2 (that is, φd1 = d1 and φd2 = d2). Then,

ϱ(d1, d2) = ϱ(φd1, φd2)

≤ (h̄(d1)− h̄(φd1))ϱ(d1, d2)

= (h̄(d1)− h̄(d1))ϱ(d1, d2) = 0.

Therefore ϱ(d1, d2) = 0 and d1 = d2.

Now, we present the graphical version of Theorem 1 by endowing the CMS with
a graph. We propose a corollary by relaxing the condition of the continuity. Also, two
examples are introduced. In order to get into the topic, let us begin by recalling some
concepts and definitions from graph theory which will be necessary later.

In accordance with the work of Jachymski in [12], we endow the CMS (Ω, ϱ, ϖ) with
a graph G, where G is characterized by its set of vertices U = U(G), which is identical to
Ω, and its set of edges E = E(G). Assuming that G contains no parallel edges, it can be
identified as the pair (U, E).

Additionally, the graph G can be interpreted as a weighted graph by assigning a
weight to each edge based on the distance between its vertices.

Definition 4. Let v1 and v2 be two vertices in a graph G. A path from v1 to v2 in G of length j
(where j ∈ N∪ {0}) is a sequence (wi)

j
i=0 of j + 1 distinct vertices where w0 = v1 and wj = v2,

and each pair of consecutive vertices (wi, wi+1) ∈ E(G), for all i = 1, 2, . . . , j.

Definition 5 ([12]). Consider a vertex u in a graph G. The subgraph Gu, which consists of all the
vertices and edges that are part of some path in G starting at u, is referred to as the component of G
that contains u. The equivalence class [u]G on the vertex set V(G), defined by the relation R (where
uRv if there is a path from u to v), satisfies the property that the set of vertices in Gu, denoted by
V(Gu), is equal to [u]G.

Definition 6. Let φ : Ω −→ Ω be a mapping. We denote Ω f = {τ ∈ Ω/(τ, φτ) ∈
E(G) or (φτ, τ) ∈ E(G)}.

Definition 7. Let (Ω, ϱ, ϖ) be a complete CMS equipped with a graph G. We name the mapping
φ : Ω −→ Ω a G-Caristi mapping if it satisfies the following hypothesis:
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1. (G-edge preserving)

∀s1, s2 ∈ E(G), (s1, s2) ∈ E(G) =⇒ (φs1, φs2) ∈ E(G). (14)

2. There exists a function ϕ : Ω −→ R bounded from below satisfying

ϱ(φs1, φs2) ≤ (ϕ(s1)− ϕ(φs1))× ϱ(s1, s2) for all (φs1, φs2) ∈ E(G) or (s1, s2) ∈ E(G). (15)

Theorem 2. Let (Ω, ϱ, ϖ) be a complete CMS equipped with a graph G. Let φ : Ω −→ Ω be a
continuous G-Caristi mapping. Assume that there exists τ0 ∈ Ω such that

(φτ0, τ0) ∈ E(G). (16)

We take τn = φnτ0 and we assume that for each τ ∈ Ω, we have

lim
i→∞

ϖ(τi, τ) and lim
i→∞

ϖ(τi, τi+1) which exist and are finite, (17)

and ϖ satisfies the following condition

sup
m≥1

lim
i→∞

ϖ(τi+1, τi+2)

ϖ(τi, τi+1)
ϖ(τi+1, τm) <

1
k

where k ∈ (0, 1). (18)

Therefore, φ has a unique FP.

Proof. Equation (16) implies that there exists τ0 ∈ Ω such that (φτ0, τ0) ∈ E(G). Since
φ is G-edge-preserving, we obtain (φn+1τ0, φnτ0) ∈ E(G) for all n ≥ 1. Then, from (15),
we have

ϱ(φnτ0, φn+1τ0) ≤ (ϕ(φn−1τ0)− ϕ(φnτ0))ϱ(φn−1τ0, φnτ0),

which gives ϕ(φn−1τ0)− ϕ(φnτ0) ≥ 0. Hence, {ϕ(φnτ0)} is a sequence of positive numbers
that is decreasing. Let ϕ0 = lim

n→∞
ϕ(φnτ0). For any m, n ≥ 1, we obtain

ϱ(φnτ0, φn+mτ0) ≤ (ϕ(φn−1τ0)− ϕ(φnτ0))ϱ(φn−1τ0, φn+m−1τ0)

≤ (ϕ(φn−1τ0)− ϕ(φnτ0))(ϕ(φn−2τ0)− ϕ(φn−1τ0))ϱ(φn−2τ0, φn+m−2τ0)

...

≤
n

∏
k=1

(
ϕ(φn−kτ0)− ϕ(φn−k+1τ0)

)
ϱ(φ0τ0, φmτ0).

From the properties of ϕ, we have that
n

∏
k=1

(ϕ(φn−kτ0)− ϕ(φn−k+1τ0)) converges to zero

when k −→ ∞. We claim that lim
m→∞

ϱ(φ0τ0, φmτ0) = 0. Using the triangle inequality of the

controlled metric, we obtain
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ϱ(φ0τ0, φmτ0) = ϱ(τ0, τm)

≤ ϖ(τ0, τ1)ϱ(τ0, τ1) + ϖ(τ1, τm)ϱ(τ1, τm)

≤ ϖ(τ0, τ1)ϱ(τ0, τ1) + ϖ(τ1, τm)ϖ(τ1, τ2)ϱ(τ1, τ2) + ϖ(τ1, τm)ϖ(τ2, τm)ϱ(τ2, τm)

...

≤ ϖ(τ0, τ1)ϱ(τ0, τ1) +
m−2

∑
i=1

(
i

∏
j=1

ϖ(τj, τm)

)
ϖ(τi, τi+1)ϱ(τi, τi+1)

+
m−1

∏
k=1

ϖ(τk, τm)ϱ(τm−1, τm).

Similarly to Theorem 1, using (15), we have

ϱ(τi, τi+1) ≤ kiϱ(τ0, τ1). (19)

Then,

ϱ(φ0τ0, φmτ0) ≤ ϖ(τ0, τ1)ϱ(τ0, τ1) +
m−2

∑
i=1

(
i

∏
j=1

ϖ(τj, τm)

)
ϖ(τi, τi+1)kiϱ(τ0, τ1)

+
m−1

∏
k=1

ϖ(τk, τm)km−1ϱ(τ0, τm)

≤ ϖ(τ0, τ1)ϱ(τ0, τ1) +
m−1

∑
i=1

(
i

∏
j=1

ϖ(τj, τm)

)
ϖ(τi, τi+1)kiϱ(τ0, τ1)

≤ ϖ(τ0, τm)ϖ(τ0, τ1)ϱ(τ0, τ1) +
m−1

∑
i=1

(
i

∏
j=1

ϖ(τj, τm)

)
ϖ(τi, τi+1)kiϱ(τ0, τ1)

≤
m−1

∑
i=0

(
i

∏
j=0

ϖ(τj, τm)

)
ϖ(τi, τi+1)kiϱ(τ0, τ1)

=
m−1

∑
i=0

γiϱ(τ0, τ1),

where γi =

(
i

∏
j=0

ϖ(τj, τm)

)
ϖ(τi, τi+1)ki. Using condition (18) similarly to Theorem 1, we

can deduce that lim
m→∞

ϱ(φ0τ0, φmτ0) = 0. Thereafter, lim
m→∞

ϱ(φnτ0, φn+mτ0) = 0. Conse-

quently, {φnτ0} is a Cauchy sequence within the space Ω. Then, there exists u∗ ∈ Ω such
that limn−→∞ φnτ0 = u∗. The continuity of φ implies that φu∗ = u∗ and hence u∗ is an FP
of φ.

Suppose that there exist two FPs, u1
∗ and v1

∗, in Ω such that φu1
∗ = u1

∗ and φv1
∗ = v1

∗.
We have

ϱ(u1
∗, v1

∗) = ϱ(φu1
∗, φv1

∗)

≤ (ϕ(u1
∗)− ϕ(φu1

∗))ϱ(u
1
∗, v1

∗)

= (ϕ(u1
∗)− ϕ(u1

∗))ϱ(u
1
∗, v1

∗) = 0,

and therefore ϱ(u1
∗, v1

∗) = 0 =⇒ u1
∗ = v1

∗.
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Example 1. Let Ω = [0, 1], ϱ(u, v) = |u − v|2, and ϖ(u, v) = u + v + 2. It is easy to prove that
(Ω, ϱ, ϖ) is a complete CMS. Note that this space is neither a metric space in the usual sense nor a
b-metric space.

Consider the mappings φ : Ω =⇒ Ω and ϕ : Ω −→ R defined by φ(u) =
u
5
+

1
2

and

ϕ(u) = 2u2 + 3u. We claim that φ is G-Caristi mapping in (Ω, ϱ, ϖ) endowed with a graph G.
Indeed, V(G) = [0, 1] and E(G) = [0, 1]2; then, φ satisfies the G-edge preserving condition.

On the other hand, for all u, v ∈ Ω, we have(
ϕ(u)− ϕ(φ(u)

)
ϱ(u, v) =

(
2u2 + 3u + 2(

u
5
+

1
2
)2 + 3(

u
5
+

1
2
)
)
|u − v|2

=
(
2u2 + 3u + 2(

u2

25
+

u
5
+

1
4
) +

3u
5

+
3
2
)
)
|u − v|2

= (
52
25

u2 + 4u + 2)|u − v|2.

By a simple calculus, we can verify that
52
25

u2 + 4u + 2 ≥ 1
4

. Consequently, we obtain

(
ϕ(u)− ϕ(φ(u)

)
ϱ(u, v) ≥ 1

4
|u − v|2

= ϱ(φ(u), φ(v)).

Therefore, assumption (15) is satisfied and φ is G-Caristi mapping. Additionally, conditions (17)
and (23) are met. Finally, all the conditions of Theorem 2 are satisfied, so the mapping φ has a

unique fixed point that is φ(
5
8
) =

5
8
∈ [0, 1].

Example 2. Let Ω = {0, 1, 2, 3}, ϱ(u, v) = |u − v|2, and ϖ(u, v) = u + v + 2. Then, (Ω, ϱ, ϖ)

is a complete CMS. Consider the mappings φ : Ω =⇒ Ω and ϕ : Ω −→ R defined, respectively,
by φ(0) = 2, φ(1) = 1, φ(2) = 1, φ(3) = 0, and

ϕ(u) =


6 − u2 if u ≤ 1

5 if u = 2

9 if u = 3.

Consider the following set of edges E(G) = {(0, 0); (1, 1); (2, 2); (1, 2); (0, 2); (2, 1); (3, 0)}. We
represent the graph G composed by the vertices Ω = {0, 1, 2, 3} and the edges E(G) in Figure 1.

Let us begin by verifying the condition for G-edge preserving. We have

(0, 0) ∈ E(G), (φ(0), φ(0)) = (2, 2) ∈ E(G),
(2, 2) ∈ E(G), (φ(2), φ(2)) = (1, 1) ∈ E(G),
(1, 1) ∈ E(G), (φ(1), φ(1)) = (1, 1) ∈ E(G),
(1, 2) ∈ E(G), (φ(1), φ(2)) = (1, 1) ∈ E(G),
(0, 2) ∈ E(G), (φ(0), φ(2)) = (2, 1) ∈ E(G),
(2, 1) ∈ E(G), (φ(2), φ(1)) = (1, 1) ∈ E(G),
(3, 0) ∈ E(G), (φ(3), φ(0)) = (0, 2) ∈ E(G),

Therefore, condition (14) holds. Now, we will prove that the mapping φ satisfies condition (15) for
all the edges in E(G).

• For the edge (0, 0), we have ϱ(φ(0), φ(0)) = |2 − 2|2 = 0 = (ϕ(0)− ϕ(φ0))|0 − 0|2. Also,
we obtain the same result in a similar manner for the edges (1, 1) and (2, 2).

• For the edge (1, 2), we have ϱ(φ(1), φ(2)) = ϱ(1, 1) = |1− 1|2 = 0 = (ϕ(1)− ϕ(φ1))|1−
2|2 = (ϕ(1)− ϕ(1))|1 − 2|2.
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• For the edge (0, 2), we have ϱ(φ(0), φ(2)) = ϱ(2, 1) = |2− 1|2 = 1 ≤ (ϕ(0)− ϕ(φ0))|0−
2|2 = 4.

• For the edge (2, 1), we have ϱ(φ(2), φ(1)) = ϱ(1, 1) = |1− 1|2 = 0 = (ϕ(2)− ϕ(φ2))|2−
1|2 = (ϕ(2)− ϕ(1))|2 − 1|2 = (5 − 5).12 = 0.

• For the edge (3, 0), we have ϱ(φ(3), φ(0)) = ϱ(0, 2) = |0− 2|2 = 4 = (ϕ(3)− ϕ(φ3))|3−
0|2 = (ϕ(3)− ϕ(0)).32 = (9 − 6)32 = 27.

Then, Equation (15) is fulfilled. Additionally, it is easy to see that the function ϖ(u, v) = u + v + 2
obeys conditions (17) and (23). Finally, all the conditions of Theorem 2 are met. Then, φ has a
unique FP that is φ(1) = 1.

1 2

3
0

℘(0,2)=4

℘(1,2)=1

℘(0,0)=0

℘(3,0)=9

℘(2,1)=1

℘(1,1)=0
℘(2,2)=0

Figure 1. The graph of Example 2.

The following result is obtained by relaxing the condition of the continuity of the
contraction. We use orbital continuity which is weaker than continuity.

Definition 8. A mapping φ : Ω −→ Ω is called orbitally G-continuous if for all s1, s2 ∈ Ω and
any positive sequence {sn}n∈N,

f sn s1 −→ s2, ( f sn s1, f sn+1 s2) ∈ E(G) =⇒ lim
n→∞

f ( f sn s1) = f s2. (20)

Corollary 1. Let (Ω, ϱ, G) be a complete CMS equipped with a graph G. Let φ : Ω −→ Ω
be a G-Caristi mapping orbitally G-continuous. We assume the following property (P): for any
{τn}n∈N in S , if τn −→ s and (τn, τn+1) ∈ E(G), then there is a subsequence {τkn}n∈N with
(τkn , s) ∈ E(G).

Moreover, suppose that there exists τ0 ∈ Ω such that

(φτ0, τ0) ∈ E(G). (21)

We take τn = φnτ0 and we assume that for each τ ∈ Ω, we have

lim
i→∞

ϖ(τi, τ) and lim
i→∞

ϖ(τi, τi+1) which exist and are finite, (22)
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and ϖ satisfies the following condition

sup
m≥1

lim
i→∞

ϖ(τi+1, τi+2)

ϖ(τi, τi+1)
ϖ(τi+1, τm) <

1
k

where k ∈ (0, 1). (23)

Therefore, the restriction φ|[τ]G has a unique FP.

Proof. Similarly to the proof of Theorem 2, we demonstrate that {φnτ0} is a Cauchy
sequence. Then, there exists u∗ ∈ Ω such that

lim
n−→∞

φnτ0 = u∗. (24)

Since τ0 ∈ Ω f , φnτ0 ∈ Ω f for all n ∈ N, then (τ0, φτ0) ∈ E(G). From property (P), there
exists a subsequence {φkn τ0}n of {φnτ0}n such that (φkn τ0, u∗) ∈ E(G) for all n ∈ N.
On the other hand, a path PG can be constructed by using the points τ0, φτ0, . . . , φk1 τ0, u∗,
which allows us to affirm that u∗ ∈ [τ0]G. From the orbitally G-continuous φ, we obtain

lim
n−→∞

φ(φkn) = φu∗. (25)

Therefore, from (24) and (25), we conclude that u∗ is an FP of φ|[τ]G . The uniqueness of the
FP is similar to Theorem 2.

2.2. Fixed-Point Results for α-Admissible Mappings

In this subsection, we introduce a new FP theorem concerning the α-admissible map-
pings under suitable hypotheses. Moreover, to highlight the potential application in various
mathematical contexts, we propose Theorem 4 to solve second-order differential equations.
Let us start by defining the α-admissible mappings that will be involved in the next theorem.

Definition 9. Let φ : Ω −→ Ω and let α : Ω × Ω → [0,+∞). The mapping φ is called
α-admissible if ∀ τ, s ∈ Ω, α(τ, s) ≥ 1 implies that α(φτ, φs) ≥ 1.

Definition 10 ([4]). Let φ : Ω −→ Ω and α, β : Ω × Ω → [0,+∞). The mapping φ is called
α-admissible with respect to β if ∀ τ, s ∈ Ω, α(s, τ) ≥ β(s, τ), we have α(φs, φτ) ≥ β(φs, φτ).

Now, we consider a new class of families Ψ of mappings g : [0,+∞) → [0,+∞)

satisfying the following assumptions:

(i) g is an upper semi-continuous mapping from the right;
(ii) g(s) < s ∀s > 0;
(iii) g(0) = 0.

Theorem 3. Let (Ω, ϱ, ϖ) be a complete CMS and ψ ∈ Ψ. Supppose that φ : Ω → Ω is a
continuous mapping that meets the following hypotheses:

(c1) φ is α-admissible with respect to β;
(c2) if τ, s ∈ Ω and α(τ, s) ≥ β(τ, s), then ϱ(φτ, φs) ≤ ψ(ϱ(τ, s));
(c3) there exists τ0 ∈ Ω such that α(τ0, φτ0) ≥ β(τ0, φτ0).

Therefore, φ has an FP.
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Proof. Consider τ0 as an element in Ω. We denote τ1 = φτ0. Therefore, we construct the
sequence {τn} ∈ Ω defined as follows

τn+1 = φτn, ∀n ∈ N. (26)

Assume that τn ̸= τn+1 ∀n ∈ N; otherwise, φ has an FP.
From condition (c2), we have α(τ0, τ1) = α(τ0, φτ0) ≥ β(τ0, φτ0) and taking into

account that φ is α-admissible with respect to β, we obtain that

α(τ1, τ2) = α(φτ0, φτ1) ≥ β(φτ0, φτ1) = β(τ1, τ2).

By extending this process, we obtain

α(τn, τn+1) ≥ β(τn, τn+1) ∀n ∈ N. (27)

Applying (c2) and the property of ψ, we obtain that

ϱ(τn, τn+1) = ϱ(φτn−1, φτn) ≤ ψ(ϱ(τn−1, τn)) < ϱ(τn−1, τn) ∀n ∈ N. (28)

Therefore, {ϱ(τn, τn+1)} is a nonincreasing sequence. As a result, there exists r ≥ 0 fulfilling

lim
n→∞

ϱ(τn, τn+1) = r.

We claim that r = 0. Suppose that r > 0. Since ψ is upper semi-continuous from the right,
using (28), we obtain

lim
n→∞

ϱ(τn, τn+1) = r

≤ lim sup
n→∞

ψ(ϱ(τn−1, τn)) ≤ ψ(r) < r,

This leads to a contradiction. Hence,

lim
n→∞

ϱ(τn, τn+1) = 0. (29)

From (29), we can affirm the existence of some nl ∈ N for every l ∈ N, such that

ϱ(τnl , τnl+1) ≤
1
2l .

Then, we obtain
∞

∑
l=1

ϱ(τnl , τnl+1) ≤ ∞.

Consequently, {τn} forms a Cauchy sequence and thus converges to some τ ∈ Ω. Owing
to the continuity of φ, we have

τ = lim
l→∞

τnl+1 = lim
l→∞

φτnl = φτ. (30)

Thus, τ is an FP of φ.

To illustrate that the FP result is a powerful tool in various mathematical fields, we
apply it to solve a second-order differential equation using Theorem 3. Indeed, by carefully
verifying the assumptions outlined in Theorem 3, we ensure that the FP serves as a valid
and effective tool for deriving solutions to second-order differential equations for the given
problem, as demonstrated in the following theorem (Theorem 4).
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Consider the following problem (P):

− d2z
dµ2 = h(µ, z(µ)), µ ∈ [0, 1] (31)

z(0) = z(1) = 0,

where h : [0, 1]×R → R is continuous. The Green function associated to (31) is defined by

H(µ, η) =

µ(1 − η), 0 ≤ µ ≤ η ≤ 1

η(1 − µ), 0 ≤ η ≤ µ ≤ 1.

Denote Co([0, 1]) := {h : [0, 1] → [0, 1]/h continuous}. Let ϱ : Co([0, 1]× Co([0, 1] → R be
defined by

ϱ(µ, η) = ||µ − η||∞ = sup
k∈[0,1]

|µ(k)− η(k).| (32)

It is easy to see that (Co([0, 1], ϱ) is a complete CMS.

Theorem 4. Let us examine the two-point boundary value problem (P). Suppose that the following
assumptions hold:

1. there exists a function Λ : R2 → R such that, ∀ µ ∈ [0, 1], and a1, a2 ∈ R with Λ(a1, a2) ≥
0, we have

|h(µ, a1)− h(µ, a2)| ≤ 8ψ( max
a1,a2∈R,Λ(a1,a2)≥0

|a1 − a2|); (33)

2. There exists z0 ∈ Co([0, 1]) such that, ∀ µ ∈ [0, 1], we have

Λ
(

z0(µ),H(µ, η)h(η, z0(η))
)
≥ 0; (34)

3. If {zn} is a sequence in Co([0, 1]) such that zn → z ∈ Co([0, 1]) and Λ(zn, zn+1) ≥ 0, ∀
n ∈ N, then Λ(zn, z) ≥ 0 for all n ∈ N;

4. For all µ ∈ [0, 1], for all z, y ∈ Co([0, 1]), Λ(z(µ), y(µ)) ≥ 0 implies that

Λ
( ∫ 1

0
H(µ, η)h(η, z(η))dη,

∫ 1

0
H(µ, η)h(η, y(η))dη

)
≥ 0. (35)

Then, (P) possesses a solution in Co([0, 1]).

Proof. Solving the problem (P) is tantamount to solving the following integral equation:

z(µ) =
∫ µ

0
H(µ, η)h(η, z(η))dη ∀µ ∈ [0, 1]. (36)

Let φ be a self-mapping on Co([0, 1]) defined by

φz(µ) =
∫ 1

0
H(µ, η)h(η, z(η))dη ∀µ ∈ [0, 1]. (37)

Suppose that z, y ∈ Co([0, 1]) such that Λ(z(µ), y(µ)) ≥ 0 ∀ µ ∈ [0, 1]. Using the first
assumption of the theorem, we obtain that
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|φz(µ)− φy(µ)| =
∣∣∣ ∫ 1

0
H(µ, η)[h(η, z(η))− h(η, y(η))]dη

∣∣∣
≤

∫ 1

0
H(µ, η)

∣∣∣h(η, z(η))− h(η, y(η))
∣∣∣dη
∣∣∣

≤ 8
( ∫ 1

0
H(µ, η)dη

)
(ψ(||z − y||∞))

≤ 8
(

sup
µ∈[0,1]

∫ 1

0
H(µ, η)dη

)
(ψ(||z − y||∞)). (38)

As
∫ 1

0 H(µ, η)dη = −µ2

2
+

µ

2
, for all µ ∈ [0, 1], we obtain sup

µ∈[0,1]

∫ 1

0
H(µ, η)dη =

1
8

.

Consequently,
||φz − φy||∞ ≤ ψ(||z − y||∞) (39)

for each z, y ∈ Co([0, 1]), such that Λ(z(µ), y(µ)) ≥ 0 for all µ ∈ [0, 1]. Therefore, condition
(c2) of Theorem 3 holds.

Now, let us prove that φ is α-admissible concerning β. Let α, β : Co([0, 1]) ×
Co([0, 1]) → [0, ∞) be mappings defined by

α(z, y) =

1, Λ(z(µ), y(µ)) ≥ 0, µ ∈ [0, 1]

0, otherwise.

β(z, y) =


1
2

, Λ(z(µ), y(µ)) ≥ 0, µ ∈ [0, 1]

2, otherwise.

Let z, y ∈ Co([0, 1]) such that α(z, y) ≥ β(z, y). Hence, Λ(z(µ), y(µ)) ≥ 0, ∀µ ∈ [0, 1].
Hence,

||φz − φy||∞ ≤ ψ(||z − y||∞). (40)

Moreover, if z, y ∈ Co([0, 1]) such that α(z, y) ≥ β(z, y), by applying assumption 4 of
Theorem 4, we obtain Λ(φz(µ), φy(µ)) ≥ 0, and this yields α(φz, φy) ≥ β(φz, φy). There-
fore, φ is α-admissible with respect to β. Using condition 2, there exists z0 ∈ Co([0, 1]) such
that α(z0, φz0) ≥ β(z0, φz0).

Finally, given that all the conditions of Theorem 3 are satisfied, then φ has an FP in
Co([0, 1]), e.g., zsol , which is a solution of the problem (P).

3. Conclusions and Perspectives
In conclusion, this paper introduces several significant contributions to FP theory

within the context of CMS. We have extended the classical Caristi contraction by explor-
ing the existence and uniqueness of fixed points under specific conditions, and further
developed a graphical representation of this result. Also, by introducing the concept of
α-admissible mappings, we provided a new FP theorem with practical applications, in-
cluding the solution to a second-order differential equation. These contributions provide
valuable tools for tackling problems across various domains of mathematical analysis.

Moving forward, further research will aim to expand on these results, exploring
broader applications and potential generalizations of the established theorems in the
double controlled metric space which is more general than the CMS. Also, one promising
direction is the generalization of the α-admissible mappings to a broader class of operators,
potentially incorporating non-contractive and nonlinear mappings. This could pave the
way for FP theorems in settings where traditional contraction mappings are not applicable,
thereby extending the scope of fixed-point theory.
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9. Özger, F.; Temizer Ersoy, M.; Ödemiş Özger, Z. Existence of Solutions: Investigating Fredholm Integral Equations via a Fixed-Point
Theorem. Axioms 2024, 13, 261. [CrossRef]

10. Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc.
Am. Math. Soc. 2004, 132, 1435–1443. [CrossRef]
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