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Abstract: The concept of fuzzy metric space introduced by Kramosil and Michalek was
later slightly modified by George and Veeramani who imposed three additional restrictions
on it. A significant difference between these two concepts of fuzzy metrics is that fuzzy
metric spaces in the sense of George and Veeramani do not admit completion, in general.
This paper is devoted to go into detail on completable fuzzy metric spaces by means of the
study of the impact on the completion of each one of the restrictions imposed by George
and Veeramani in their definition of fuzzy metric. In this direction, we characterize those
completable fuzzy metric spaces, in which just one of the three restrictions imposed by
George and Veeramani is required. Various examples illustrate and justify the main results.

Keywords: GV-fuzzy metric space; KM-fuzzy metric space; Cauchy sequence; convergence;
completeness; completion
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1. Introduction
The concept of the fuzzy set introduced by L.A. Zadeh in [1] constitutes a general-

ization of the classical notion of sets. Recall that, give a non-empty (crisp) set A, a fuzzy
set F on A can be defined (simply) as a mapping F : A → [0, 1]. This concept has turned
out essential for various branches of mathematics as topology, algebra, and analysis. Thus,
many researchers have focused their interest in adapting classical theories to the fuzzy
context. In this direction, we can find different notions of fuzzy metrics defined with the
aim of giving a fuzzy version of the classical concept of metrics. Concretely, in the literature,
we can find distinct approaches to define fuzzy metrics, such as the Kaleva and Seikkala’s
one in [2], or another one introduced by Kramosil and Michalek in [3], which was slightly
modified later by George and Veeramani in [4]. Fuzzy metric spaces in the Kramosil and
Michalek’s sense are usually known currently following their reformulation provided by
Grabiec in [5] which, on account of the expounded by Miñana and Valero in [6], can be
defined as follows.

Definition 1. A fuzzy metric space is an ordered triple (X ,M, ∗) such that X is a (non-empty)
set, ∗ is a continuous t-norm, and M is a fuzzy set on X × X × R+ satisfying the following
conditions, for all x, y, z ∈ X and t, s > 0

(KM1) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(KM2) M(x, y, t) = M(y, x, t);

(KM3) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);
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(KM4) The function Mxy : R+ → [0, 1] is left-continuous, where Mxy(t) = M(x, y, t) for each
t > 0.

Subsequently, George and Veeramani slightly modified the preceding notion in [4]
with the aim of defining a concept of fuzzy metric which induces a Hausdorff topology.
Concretely, George and Veeramani replaced axioms (KM1) and (KM4) in the preceding
notion by two more restrictive ones. In addition, they imposed another requirement. So,
fuzzy metrics in the George and Veeramani’s sense can be defined as follows.

Definition 2. A GV-fuzzy metric space is a fuzzy metric space (X ,M, ∗) such that M satisfies
(in addition) the following conditions:

(GV1) M(x, y, t) > 0, for all x, y ∈ X and t > 0;

(GV2) M(x, y, t) < 1, for all x, y ∈ X , with x ̸= y, and t > 0;

(GV3) The function Mxy : R+ → [0, 1] is right-continuous (and so it is continuous), where
Mxy(t) = M(x, y, t) for each t > 0.

Both notions of fuzzy metrics defined above have been studied deeply in the literature
for different authors since they were introduced. Indeed, we can currently find works
that approach different subjects in this kind of fuzzy metrics such as convergence and
Cauchyness, completion, the asymptotic dimension, or the Wijsman topology (see, for
instance, [7–13]).

George and Veeramani showed in [4] that given a GV-fuzzy metric space (X ,M, ∗),
then M induces a topology TM on X , which has the family of open balls {BM(x, r, t) : x ∈
X , r ∈]0, 1[, t > 0} as a base, where BM(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r} for each
x ∈ X . Then, Gregori and Romaguera proved in [14] that the aforementioned topology
TM is metrizable (see also [15]). Conversely, for each metrizable topology, there exists a
fuzzy metric that induces such a topology (see [4,14]). Moreover, it is well-known that
these conclusions are retrieved in fuzzy metrics in the sense of Kramosil and Michalek. So,
from the topological point of view, fuzzy metrics (in both senses) and classical metrics are
the same. Nonetheless, fuzzy metrics show some differences to their classical counterparts
in “purely metrics” issues as the fixed point theory, which is currently an active topic of
research in fuzzy metric spaces (see, for instance, [16–22]). Even more, the restrictions
imposed in their definition of fuzzy metric by George and Veeramani provide a significant
difference on completion between GV-fuzzy metrics and fuzzy metrics introduced by
Kramosil and Michalek. Indeed, each fuzzy metric space (in the sense of Kramosil and
Michalek) admits completion (see Remark 3 in [23]) whereas there exists GV-fuzzy metric
spaces which are not completable (see [24]). Moreover, a characterization of those GV-fuzzy
metric spaces which are completable was provided in [25], which was slightly modified
later in [26]. On account of this last one characterization (see Theorem 1), a GV-fuzzy metric
space is completable if and only if three properties are satisfied by each pair of Cauchy
sequences (see Theorem 1).

The aim of this paper is to go deep in the study on completion of fuzzy metrics in
both sense above detailed. Concretely, we are focused on looking into the impact on the
completion of each one of the restrictions imposed by George and Veeramani in their
definition of fuzzy metric space. In this direction, we study what are the conclusions
on completion of a fuzzy metric space when just one of the restrictions (GV1)–(GV3)
is required. The study carried out throughout the paper concludes that the aforesaid
restrictions are directly related with the conditions demanded in a GV-fuzzy metric space
to admit completion attending the characterization of completable GV-fuzzy metric spaces
provided in [26].
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The remainder of this paper is organized as follows. In Section 2, we recall the main
results on completion of a GV-fuzzy metric space that we need. Then, in Section 3 the main
results of the paper are expounded. Throughout the paper, as usual, N and R denote the
set of the positive integers and the real numbers, respectively.

2. Preliminaries
In this section, we compile the necessary definitions and results for completion of

fuzzy metrics that will be essential to the remainder of the paper. With this aim, we begin
recalling two well-known results.

Lemma 1 (Grabiec [5]). Let (X ,M, ∗) be a fuzzy metric space. Then, the function Mxy : R+ →
[0, 1] is non-decreasing for each x, y ∈ M.

Proposition 1 (George and Veeramani [4]). Let (X ,M, ∗) be a fuzzy metric space, and let {xn}
be a sequence in X . Then, {xn} converges to x ∈ X (in TM) if and only if lim

n
M(xn, x, t) = 1

for all t > 0.

Now, we continue compiling the notion of Cauchy sequence, complete fuzzy metric
space, and completion of a fuzzy metric space.

Definition 3 (George and Veeramani [4]). Let (X ,M, ∗) be a fuzzy metric space. We will say
that a sequence {xn} in X is Cauchy if, for each ε ∈]0, 1[ and t > 0, there exists nε,t ∈ N such that
M(xn, xm, t) > 1 − ε, for all n, m ≥ nε,t. A fuzzy metric space (X ,M, ∗) is said to be complete if
every Cauchy sequence converges (in the topology TM).

Definition 4 (Gregori and Romaguera [24]). Given two fuzzy metric spaces (X ,M, ∗)
and (Y ,N , ⋄), we will say that a mapping f from X to Y is an isometry if M(x, y, t) =

N ( f (x), f (y), t), for all x, y ∈ X and t > 0. (X ,M, ∗) and (Y ,N , ⋄) will be called isometric
whenever there exists an isometry from X to Y .

Definition 5 (Gregori and Romaguera [24]). Let (X ,M, ∗) be a fuzzy metric space. We will
say that a complete fuzzy metric space (Y ,N , ⋄) is a fuzzy metric completion of (X ,M, ∗) if
(X ,M, ∗) is isometric to a dense subset of Y .

The following is an interesting result concerning the uniqueness of the fuzzy metric
completion of a fuzzy metric space.

Proposition 2 (Gregori and Romaguera [24]). If a fuzzy metric space has a fuzzy metric
completion, then it is unique up to isometry.

In [23], was pointed out in Remark 3 that each fuzzy metric admits completion. Indeed,
in [23] was provided the construction of a fuzzy metric completion for an arbitrary fuzzy
quasi-metric space, a generalization of fuzzy metric in which symmetry (axiom (KM2)) is
not required. For the sake of completeness, we recall the aforementioned construction in
the context of fuzzy metric spaces below.

Let (X ,M, ∗) be a fuzzy metric space, and denote by S the set made up of all Cauchy
sequences in X . Define a relation ∼ on S as follows:

{an} ∼ {bn} if and only if sup
0<s<t

lim inf
n

M(an, bn, s) = 1, for all t > 0,
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where lim inf
n

M(an, bn, s) denotes the lower limit of the sequence {M(an, bn, s)} of real

numbers.
In [23], it was proved that ∼ is an equivalence relation and that, if we denote by X̃ the

quotient set S/ ∼, then (X̃ ,M̃, ∗) is a fuzzy metric completion of (X ,M, ∗), where

M̃({ãn}, {b̃n}, t) = sup
0<s<t

lim inf
n

M(an, bn, s), (1)

for each {ãn}, {b̃n} ∈ X̃ and t > 0. As usual, in the preceding formula {ãn} and {b̃n}
denote the class under the equivalence relation ∼ to which the Cauchy sequence {an} and
{bn} in X belong, respectively.

However, if we adapt the preceding study to the context of fuzzy metrics in the sense
of George and Veeramani, the same conclusion is not retrieved. For such an adaptation, we
are referring to obtain a GV-fuzzy metric completion of an arbitrary GV-fuzzy metric space
(X ,M, ∗), i.e., a complete GV-fuzzy metric space (Y ,N , ⋄) satisfying that (X ,M, ∗) is
isometric to a dense subset of Y . In the literature, we can find GV-fuzzy metrics which do
not admit a GV-fuzzy metric completion (see [24–26]). So, the next definition makes sense.

Definition 6 (Gregori and Romaguera [25]). We will say that a GV-fuzzy metric space is
completable if it admits a GV-fuzzy metric completion.

Completable GV-fuzzy metric spaces were characterized in [25]. Later, Gregori et al.
in [26] slightly modified the statement of such a characterization as follows.

Theorem 1 (Gregori et al. [26]). A GV-fuzzy metric space (X ,M, ∗) is completable if and only
if, for each pair of Cauchy sequences {xn} and {yn} in X, the following three conditions are fulfilled:

(c1) lim
n

M(xn, yn, t0) = 1 for some t0 > 0 implies lim
n

M(xn, yn, t) = 1 for all t > 0.

(c2) lim
n

M(xn, yn, t) > 0 for all t > 0.

(c3) The assignment t → lim
n

M(xn, yn, t) for each t > 0 is a continuous function on ]0, ∞[,
provided with the usual topology of R.

It should be noted that, in [27], it was proved that none of the conditions of the
preceding theorem can be obtained from the remaining two. So, these three conditions
constitute an independent axiomatic system.

Finally, for the sake of completeness, and for better understanding, we recall the
following well-known definition.

Definition 7. Let A and B subsets of R. A function f : A → B is said to be left-continuous
(right-continuous) at x0 ∈ A if, for each ε > 0, there exists δ > 0, such that | f (x0)− f (x)| < ε

whenever x ∈]x0 − δ, x0] ∩ A (x ∈ [x0, x0 + δ[∩A).

3. The Results
This section is devoted to delving into the study on the completion of GV-fuzzy metric

spaces. Concretely, we analyze in more detail the impact of each one of the three additional
axioms imposed in their definition of fuzzy metric space by George and Veeramani. Con-
cretely, we are focused in studying the consequences on the completion when we impose
only one of the aforementioned three axioms to the notion of fuzzy metric space due to
Kramosil and Michalek. Such an study is carried out considering one by one of them. First
of all, we make some observations on the construction of the completion of a fuzzy metric
space detailed in the preceding section.
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Attending to Formula (1), to construct the fuzzy metric completion of a fuzzy metric
space (X ,M, ∗), we use the lower limit of the sequence {M(an, bn, s)}, and then the supre-
mum of all s ∈]0, t[ of lim inf

n
M(an, bn, s) for each t > 0. These two facts could avoid, on the

one hand, the possibility that would not exist the limit of the sequence {M(an, bn, s)} and
that, on the other hand, the fuzzy set constructed being left-continuous on the parameter.
So, we wonder if these two considerations are actually necessary. That is, can we find a
fuzzy metric space (X ,M, ∗) in which the limit of the sequence {M(an, bn, s)} does not
exist for two Cauchy sequences {an} and {bn} in X and some s > 0? Even more so, in
case that such a limit exists for all s > 0, could the assignment t → lim

n
M(an, bn, t) not be

left-continuous?
In the next example, we tackle the first question proposed above by showing a fuzzy

metric space in which there exist two Cauchy sequences such that the aforesaid limit does
not exist. Before that, we recall a celebrated example of fuzzy metric defined from a classical
one that was introduced in [4].

Consider a metric space (X , d), and define the fuzzy set Md on X ×X×]0, ∞[ by

Md(x, y, t) =
t

t + d(x, y)
, for all x, y ∈ X and t ∈]0, ∞[. (2)

Then, (X ,Md, ·) is a fuzzy metric space, where · denotes the product t-norm. In fact,
it is a GV-fuzzy metric space.

Example 1. Let X = R and denote by du the usual metric of R, i.e., du(x, y) = |x − y|, where
| · | denotes the absolute value. Define the fuzzy set M on X ×X×]0, ∞[ as follows:

M(x, y, t) =

{
Mdu(x, y, t), if 0 < t ≤ du(x, y);
Mdu(x, y, 2t), if t > du(x, y).

(3)

We claim that (X ,M, ·) is a fuzzy metric space. Indeed, it is not hard to check that, for
all x, y ∈ X and t > 0, (KM1), (KM2) and (KM4) are satisfied. Below, we show that, for all
x, y, z ∈ X and t, s > 0, axiom (KM3) also holds.

With this aim, let x, y, z ∈ X and t, s > 0. We distinguish two possibilities:

1. Assume 0 < t + s ≤ du(x, z). Then, M(x, z, t + s) = Mdu(x, z, t + s) = t+s
t+s+du(x,z) .

Obviously, if 0 < t ≤ du(x, y) and 0 < s ≤ du(y, z) (KM3) is fulfilled due to the fact that,
in such a case, we have that

M(x, z, t + s) = Mdu(x, z, t + s) ≥

≥ Mdu(x, y, t) ·Mdu(y, z, s) = M(x, y, t) ·M(y, z, s).

Now, suppose du(x, y) < t. Then, 0 < s ≤ du(y, z), and so M(x, y, t) = Mdu(x, y, 2t)
and M(y, z, s) = Mdu(y, z, s). Therefore, we must show that the next inequality holds.

M(x, z, t + s) =
t + s

t + s + du(x, z)
≥ 2ts

2ts + sdu(x, y) + 2tdu(y, z) + du(x, y)du(y, z)
=

=
2t

2t + du(x, y)
· s

s + du(y, z)
= M(x, y, t) ·M(y, z, s).

A simple computation brings us to the preceding inequality is fulfilled if and only if the next
one is

s(t + s)du(x, y) + 2t(t + s)du(y, z) + (t + s)du(x, y)du(y, z) ≥ 2tsdu(x, z).
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Now, by assumption, 0 < s ≤ du(y, z); then,

s(t + s)du(x, y) + 2t(t + s)du(y, z) + (t + s)du(x, y)du(y, z) ≥

≥ s(t + s)du(x, y) + 2t(t + s)du(y, z) + (t + s)du(x, y)s =

= 2s(t + s)du(x, y) + 2t(t + s)du(y, z) > 2tsdu(x, y) + 2tsdu(y, z) ≥ 2tsdu(x, z).

Then, (KM3) is also satisfied.
Even more, in an analogous way, (KM3) is proved when du(y, z) < s. Hence, (KM3) holds
for all cases when 0 < t + s ≤ du(x, z).

2. Assume du(x, z) ≤ t + s. Then, M(x, z, t + s) = Mdu(x, z, 2(t + s)). Now, taking into
account that, for all t, s > 0 we have, on the one hand, Mdu(x, z, 2(t+ s)) ≥ Mdu(x, y, 2t) ∗
Mdu(y, z, 2s), since Mdu is a fuzzy metric on X , and, on the other hand, by definition of M
and Lemma 1 successively M(x, y, t) ≤ Mdu(x, y, 2t) and M(y, z, s) ≤ Mdu(y, z, 2s), we
conclude that (KM3) is also satisfied when du(x, z) ≤ t + s.

Hence, (X ,M, ·) is a fuzzy metric space.
Consider the sequences {xn} and {yn}, where xn = 1

n and yn = 1 + (−1)n

n , respectively, for
all n ∈ N. Then,

du(xn, yn) =

{
1, if n is even;
1 − 2

n , if n is odd,
(4)

and so we have

M(xn, yn, 1) =

{ 1
1+1 , if n is even;

2
2+1− 2

n
, if n is odd. (5)

Obviously, the limit of the sequence {M(xn, yn, 1)} does not exist. Indeed,

lim inf
n

M(xn, yn, 1) =
1
2
̸= 2

3
= lim sup

n
M(xn, yn, 1).

The second question proposed above was actually answered in [26]. Indeed, Example
12 in [26] shows a fuzzy metric space in which we can find two Cauchy sequences {an}
and {bn} for which the limit of the sequence {M(an, bn, t)} exists, for all t > 0, but
the assignment t → lim

n
M(an, bn, t) is not a left-continuous function. For the sake of

completeness, we include it below.

Example 2. Let X =]0, 1], and denote again by du the usual metric on R restricted to X . We
define on X ×X×]0, ∞[ the fuzzy set M as follows:

M(x, y, t) =


Mdu(x, y, t), 0 < t ≤ du(x, y)
Mdu(x, y, 2t) · t−du(x,y)

1−du(x,y) +Mdu(x, y, t) · 1−t
1−du(x,y) , du(x, y) < t ≤ 1

Mdu(x, y, 2t), t > 1

Then, (X ,M, ·) is a fuzzy metric space. Concretely, it is a GV-fuzzy metric space (see [26]).
Additionally, the sequences {an} and {bn}, where an = 1

n and bn = 1, for n ∈ N, are Cauchy
sequences in (X ,M, ·), such that the limit of the real sequence {M(an, bn, t)} exists for all t > 0.
Nonetheless, the assignment t → lim

n
M(an, bn, t) is not left-continuous. Indeed,

lim
n

M(an, bn, t) =


t

t+1 , 0 < t < 1

2t
2t+1 , t ≥ 1

,

which is not a left-continuous function at t = 1.
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Now, we are able to approach the study of the significance of the completion of each
one of the restrictions required in the definition of a GV-fuzzy metric space. With this aim,
we define three new concepts of fuzzy metric spaces in which just one of the aforesaid
conditions is imposed. We have summarized them in the next definition.

Definition 8. For i = 1, 2, 3, we will say that a fuzzy metric space (X ,M, ∗) is a GVi-fuzzy
metric space if, for all x, y ∈ X and t > 0, M satisfies condition (GVi).

As usual, a GVi-fuzzy metric completion of a GVi-fuzzy metric space (X ,M, ∗) is
a complete GVi-fuzzy metric space (Y ,N , ⋄) such that (X ,M, ∗) is isometric to a dense
subset of Y , for i = 1, 2, 3. If confusion does not arise, we will just say that, for i = 1, 2, 3, a
GVi-fuzzy metric space is completable if it admits a GVi-fuzzy metric completion.

3.1. Completion of GV1-Fuzzy Metric Spaces

This subsection is devoted to detailing the completion of fuzzy metric spaces that
satisfy condition GV1 in the definition of GV-fuzzy metric space. So, we focus on the
GV1-completion of a GV1-fuzzy metric space, i.e., a fuzzy metric space (X ,M, ∗), such
that M(x, y, t) > 0 for each x, y ∈ X and t > 0. The next example shows that, in general,
GV1-fuzzy metric spaces do not admit GV1-fuzzy metric completion.

Example 3. Let X =]0, 1], and define the fuzzy set M on X × X×]0, ∞[ by M(x, y, t) =

1 − du(x, y) (again, du denotes the usual metric of R restricted to X ). An easy computation
shows that (X ,M,L) is a GV1-fuzzy metric space, where L denotes the Lukasievicz t-norm, i.e.,
aLb = max{a + b − 1, 0} for each a, b ∈ [0, 1]. Below, we prove by contradiction that (X ,M,L)
does not admit a GV1-fuzzy metric completion.

Assume that (Y ,N , ⋄) is a GV1-fuzzy metric completion of (X ,M,L). Then, there exists an
isometry f : X → Y such that f (X ) is a dense subset of Y . Taking into account that the sequence
{xn} is a Cauchy sequence in X , where xn = 1

n for all n ∈ N, we conclude that { f (xn)} is a
Cauchy sequence in Y . So, { f (xn)} converges to some y ∈ Y . Therefore, for each t > 0 we obtain

M(xn, 1, 2t) = N ( f (xn), f (1), 2t) ≥ N ( f (xn), y, t) ⋄ N (y, f (1), t),

for all n ∈ N. Now, by definition, M(xn, 1, 2t) = 1 − du(xn, 1) = 1
n , and then 1

n ≥
N ( f (xn), y, t) ⋄ N (y, f (1), t) for all n ∈ N. Since lim

n
N ( f (xn), y, t) = 1, taking limits as

n tends to ∞ on both sides of the preceding inequality, we conclude that N (y, f (1), t) = 0 for all
t > 0, which contradicts the fact that (Y ,N , ⋄) is a GV1-fuzzy metric space.

On account of the preceding example, we will say that a GV1-fuzzy metric space
is completable if it admits a GV1-fuzzy metric completion. So, the following theorem
characterizes those GV1-fuzzy metric spaces which are completable.

Theorem 2. A GV1-fuzzy metric space (X ,M, ∗) is completable if and only if, for each pair of
Cauchy sequences {xn} and {yn} in X , we have that lim inf

n
M(xn, yn, t) > 0 for all t > 0.

Proof. For the direct implication, let (X ,M, ∗) be a completable GV1-fuzzy metric space.
Then, there exist a complete GV1-fuzzy metric space (Y ,N , ⋄), such that (X ,M, ∗) is
isometric to a dense subset of Y for the isometry f . Now, consider a pair of Cauchy
sequences {xn} and {yn} in X . Then, { f (xn)} and { f (yn)} are Cauchy sequences in Y ,
and so, since (Y ,N , ⋄) is complete, there exist x, y ∈ Y such that { f (xn)} and { f (yn)}
converge to x and y, respectively. Moreover, for each t > 0, we have
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M(xn, yn, t) = N ( f (xn), f (yn), t) ≥ N
(

f (xn), x,
t
3

)
⋄ N

(
x, y,

t
3

)
⋄ N

(
y, f (yn),

t
3

)
,

for all n ∈ N. Taking the lower limit as n tends to ∞ on the both sides of the previ-
ous inequality we have, due to lim inf

n
N

(
f (xn), x, t

3
)
= lim inf

n
N

(
y, f (yn), t

3
)
= 1, that

lim inf
n

M(xn, yn, t) ≥ N
(
x, y, t

3
)
> 0, since (Y ,N , ⋄) is a GV1-fuzzy metric space. So, the

direct implication has been showed.
Conversely, let (X ,M, ∗) be a GV1-fuzzy metric space such that for each pair of

Cauchy sequences {xn} and {yn} in X , we have that lim inf
n

M(xn, yn, t) > 0 for all t > 0.

Consider the fuzzy metric completion (X̃ ,M̃, ∗) provided in Section 2. Obviously, if we
show that (X̃ ,M̃, ∗) is a GV1-fuzzy metric space, the proof is over. Then, we need to show
that, for each {ãn}, {b̃n} ∈ X̃ , we have that M̃({ãn}, {b̃n}, t) > 0 for all t > 0. So, let
{ãn}, {b̃n} ∈ X̃ , and fix an arbitrary t > 0. Therefore, by Formula (1), we have

M̃({ãn}, {b̃n}, t) = sup
0<s<t

lim inf
n

M(an, bn, s),

and taking into account that {an} and {bn} is a pair of Cauchy sequences, by our assump-
tion, we obtain lim inf

n
M(an, bn, s) > 0 for all s ∈]0, t[. Hence, M̃({ãn}, {b̃n}, t) > 0, and

we conclude that (X̃ ,M̃, ∗) is a GV1-fuzzy metric space.

3.2. Completion of GV2-Fuzzy Metric Spaces

In this subsection, we are focused in carrying out the study provided in the previous
one for fuzzy metrics that satisfy now condition (GV2) of the notion of GV-fuzzy metric
space. Concretely, for GV2-fuzzy metric spaces, we are referring to fuzzy metric spaces
(X ,M, ∗) satisfying M(x, y, t) < 1 for each x, y ∈ X , with x ̸= y, and t > 0. Again, in
general, GV2-fuzzy metric spaces do not admit GV2-fuzzy metric completion, as the next
example, which was given in [25], shows.

Example 4. Consider two strictly increasing sequences {an} and {bn} of positive real numbers
converging to 1 with respect to the usual topology of R, such that {an : n ∈ N} ∩ {bn : n ∈ N} =

∅. Define the fuzzy set M on X ×X×]0, ∞[, where X = {an : n ∈ N} ∪ {bn : n ∈ N}, as
follows:

M(x, y, t) =


1, if x = y;
min{x, y}, if x, y ∈ A or x, y ∈ B;
min{x, y, t}, otherwise.

(6)

On account of Example 2 in [25] (X ,M,∧) is a GV-fuzzy metric space, where ∧ denotes
the minimum t-norm (i.e., a ∧ b = min{a, b} for each a, b ∈ [0, 1]). Therefore, (X ,M,∧) is a
GV2-fuzzy metric space.

We will show by contradiction that (X ,M,∧) does not admit GV2-fuzzy metric completion.
So, assume there exists a complete GV2-fuzzy metric space (Y ,N , ⋄) such that (X ,M, ∗) is
isometric to a dense subset of Y. So, there exists an isometry f : X → Y such that f (X ) is a dense
subset of Y . Taking into account that {an} and {bn} are Cauchy sequences in (X ,M,∧) (it is
easy to verify), then { f (an)} and { f (bn)} are so in (Y ,N , ⋄). Therefore, there exists a, b ∈ Y
such that { f (an)} and { f (bn)} converge to a and b, respectively.

Observe that, by definition of M, for each ε ∈]0, 1[ we can find n0 ∈ N such that
M(an, bn, 1) > 1 − ε for all n ≥ n0. Moreover, given 0 < t < 1, there exists n1 ∈ N such
that M(an, bn, t) = t for all n ≥ n1. Therefore, we conclude that

lim
n

M(an, bn, t) =

{
t, if 0 < t < 1;
1, otherwise.



Axioms 2025, 14, 89 9 of 13

On the one hand, fix 0 < t < 1 and let t < s < 1. Then,

M(an, bn, s) = N ( f (an), f (bn), s) ≥ N
(

a, f (an),
s − t

2

)
⋄ N (a, b, t) ⋄ N

(
f (bn), b,

s − t
2

)
and, taking limits as n tends to ∞ on both sides of the preceding inequality, we obtain N (a, b, t) ≤
s < 1.

On the other hand, we fix t > 1 and have

N (a, b, t) ≥ N
(

a, f (an),
t − 1

2

)
⋄ N ( f (an), f (bn), 1) ⋄ N

(
f (bn), b,

t − 1
2

)
=

= N
(

a, f (an),
t − 1

2

)
⋄M(an, bn, 1) ⋄ N

(
f (bn), b,

t − 1
2

)
.

Again, taking limits as n tends to ∞ on the above inequality, we obtain N (a, b, t) = 1. It
leads us to a contradiction since, in such a case, N does not satisfy axiom (GV2). Observe that
axiom (GV2) implies that if N (a, b, t0) = 1 for some t0 > 0, then N (a, b, t) = 1 for all t > 0.

The next theorem characterizes those GV2-fuzzy metric spaces that admit a GV2-fuzzy
metric completion.

Theorem 3. A GV2-fuzzy metric space (X ,M, ∗) is completable if and only if, for each pair
of Cauchy sequences {xn} and {yn} in X , the condition (c1) in Theorem 1 is satisfied, i.e.,
lim

n
M(xn, yn, t0) = 1 for some t0 > 0 implies lim

n
M(xn, yn, t) = 1 for all t > 0.

Proof. For the direct implication, suppose that (X ,M, ∗) is a GV2-fuzzy metric space that
admits completion, and consider an arbitrary pair of Cauchy sequences in X , {xn} and
{yn}, such that lim

n
M(xn, yn, t0) = 1 for some t0 > 0. Taking into account that, for each

n ∈ N, it is satisfied M(xn, yn, t) ≥ M(xn, yx, t0) for all t > t0, we just have to see that
lim

n
M(xn, yn, t) = 1 for all t ∈]0, t0[.

First, of all, by our assumption, (X ,M, ∗) admits GV2-fuzzy metric completion, so
there exists a complete GV2-fuzzy metric (Y ,N , ⋄) such that (X ,M, ∗) is isometric to a
dense subset of Y . Assume that f : X → Y is an isometry satisfying f (X ) is a dense subset
of Y . Then, { f (xn)} and { f (yn)} are Cauchy sequences in Y , so they are convergent in Y
to some x and y, respectively. Then, we fixe δ > 0 and obtain

N (x, y, t0 + δ) ≥ N
(

x, f (xn),
δ

2

)
⋄ N ( f (xn), f (yn), t0) ⋄ N

(
f (yn), y,

δ

2

)
=

= N
(

x, f (xn),
δ

2

)
⋄M(xn, yn, t0) ⋄ N

(
f (yn), y,

δ

2

)
,

and taking limits as n tends to ∞ on the both sides of the inequality we obtain N (x, y, t0 +

δ) = 1. Therefore, since (Y ,N , ⋄) is a GV2-fuzzy metric space, by axiom (GV2), we
conclude that N (x, y, s) = 1 for all s > 0 and, consequently, x = y. So, we can write

M(xn, yn, t) = N ( f (xn), f (yn), t) ≥ N
(

f (xn), x,
t
2

)
⋄ N

(
y, f (yn),

t
2

)
.

By taking limits as n tends to ∞ on the preceding inequality, we obtain lim
n

M(xn, yn, t) =
1 and, so, the direct implication is proved.

Conversely, suppose that for each pair of Cauchy sequences in (X ,M, ∗) satisfies
Condition (c1) in Theorem 1. Consider the fuzzy metric completion (X̃ ,M̃, ∗) provided in
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Section 2. We must show that, for each {ãn}, {b̃n} ∈ X̃ , with {ãn} ̸= {b̃n}, we have that
M̃({ãn}, {b̃n}, t) < 1 for all t > 0. We will make this demonstration by contradiction.

Assume that there exist {ãn},{b̃n} ∈ X̃ , with {ãn} ≠ {b̃n}, such that M̃({ãn},{b̃n}, t0) =

1 for some t0 > 0. Then,

1 = M̃({ãn}, {b̃n}, t0) = sup
0<s<t0

lim inf
n

M(an, bn, s).

Taking into account that, for each x, y ∈ X , we have M(x, y, s) ≤ M(x, y, t), whenever
0 < s < t, we obtain lim inf

n
M(an, bn, t0) = 1. Therefore, by definition of lower limit, we

obtain lim
n

M(an, bn, t0) = 1. Now, our assumption ensures that lim
n

M(an, bn, t) = 1 for

all t > 0. Thus, sup
0<s<t

lim inf
n

M(an, bn, s) = 1, for all t > 0, and, by definition of ∼, we

conclude that {an} ∼ {bn}, a contradiction with our assumption on {ãn} ̸= {b̃n}. Hence,
(X̃ ,M̃, ∗) is a GV2-fuzzy metric space.

3.3. Completion of GV3-Fuzzy Metric Spaces

Finally, in this subsection we study the completion of GV3-fuzzy metric spaces, i.e.,
those fuzzy metrics where the function Mxy : R+ →]0, 1] defined by Mxy(t) = M(x, y, t)
for each t > 0, is (right-)continuous. First, we will show, below, that the GV3-fuzzy metric
space of Example 2 does not admit GV3-completion.

Example 5. Let (X ,M, ∗) be the GV-fuzzy metric space of Example 2. Then, it is a GV3-fuzzy
metric space. Suppose that (X ,M, ∗) admits a GV3-fuzzy metric completion, then there exists a
complete GV3-fuzzy metric space (Y ,N , ⋄), such that (X ,M, ∗) is isometric to a dense subset of
Y. Let an isometry f : X → Y , such that f (X ) is a dense subset of Y .

Taking into account that {an} and {bn}, where an = 1
n and bn = 1, for n ∈ N, are Cauchy

sequences in (X ,M, ·), we conclude that { f (an)} and { f (bn)} are Cauchy sequences in (Y ,N , ⋄).
Therefore, there exist a, b ∈ Y such that { f (an)} and { f (bn)} converge to a and b, respectively.
So, fix t > 0 and consider an arbitrary δ ∈]0, t[. Then, on the one hand,

N (a, b, t + δ) ≥ N
(

a, f (an),
δ

2

)
⋄ N ( f (an), f (bn), t) ⋄ N

(
f (bn), b,

δ

2

)
=

= N
(

a, f (an),
δ

2

)
⋄M(an, bn, t) ⋄ N

(
f (bn), b,

δ

2

)
.

Taking limits on the previous inequality we obtain that N (a, b, t + δ) ≥ lim
n

M(an, bn, t),

for each δ ∈]0, t[.
On the other hand,

M(an, bn, t) = N ( f (an), f (bn), t) ≥

≥ N
(

f (an), a,
δ

2

)
⋄ N (a, b, t − δ) ⋄ N

(
b, f (bn),

δ

2

)
.

Taking limits now in both sides of the above inequality, we obtain lim
n

M(an, bn, t) ≥ N (a, b, t−
δ) for each δ ∈]0, t[. So,

N (a, b, t + δ) ≥ lim
n

M(an, bn, t) ≥ N (a, b, t − δ), for all δ ∈]0, t[.

On account that (Y ,N , ⋄) is a GV3-fuzzy metric space, we have that the function Nab :
R+ → [0, 1] is both left-continuous and right-continuous, where Nab(t) = N (a, b, t) for all
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t > 0. Thus, we conclude that N (a, b, t) = lim
n

M(an, bn, t) for each t > 0. This fact becomes a
contradiction, since

N (a, b, t) = lim
n

M(an, bn, t) =


t

t+1 , 0 < t < 1

2t
2t+1 , t ≥ 1

,

which is not a left-continuous function.

After showing that GV3-fuzzy metrics do not admit, in general, GV3-fuzzy metric
completion, we provide a characterization of completable GV3-fuzzy metric spaces in the
next theorem.

Theorem 4. A GV3-fuzzy metric space (X ,M, ∗) is completable if and only if, for each pair of
Cauchy sequences {xn} and {yn} in X , the assignment t → lim inf

n
M(xn, yn, t) for each t > 0 is

a continuous function.

Proof. Suppose that (X ,M, ∗) is a completable GV3-fuzzy metric space. Then, there exists
a complete GV3-fuzzy metric space (Y ,N , ⋄), such that (X ,M, ∗) is isometric to a dense
subset of Y . Denote by f such an isometry, and consider a pair of Cauchy sequences {xn}
and {yn} in X . Then, { f (xn)} and { f (yn)} are also Cauchy sequences in Y and, since
(Y ,N , ⋄) is complete, we can find x, y ∈ Y such that { f (xn)} and { f (yn)} converge to x
and y, respectively. We will see that lim inf

n
M(xn, yn, t) = N (x, y, t) for all t > 0.

Fix t > 0 and let an arbitrary δ ∈]0, t[. On the one hand,

N (x, y, t + δ) ≥ N
(

x, f (xn),
δ

2

)
⋄ N ( f (xn), f (yn), t) ⋄ N

(
f (yn), y,

δ

2

)
=

= N
(

x, f (xn),
δ

2

)
⋄M(xn, yn, t) ⋄ N

(
f (yn), y,

δ

2

)
,

and taking the lower limit in the preceding inequality, we obtain N (x, y, t + δ) ≥
lim inf

n
M(xn, yn, t). On the other hand,

M(xn, yn, t) = N ( f (xn, f (yn), t) ≥

≥ N
(

f (xn), x,
δ

2

)
⋄ N (x, y, t − δ) ⋄ N

(
x, f (xn),

δ

2

)
.

Taking limits on both sides of the previous inequality, we obtain lim inf
n

M(xn, yn, t) ≥
N (x, y, t − δ). So, N (x, y, t + δ) ≥ lim inf

n
M(xn, yn, t) ≥ N (x, y, t − δ) for all δ ∈]0, t[. Due

to the function Nxy : R+ → [0, 1] being continuous, where Nxy(t) = N (x, y, t) for all
t > 0, we conclude that lim inf

n
M(xn, yn, t) = N (x, y, t). Additionally, taking into account

that t > 0 was arbitrary, we obtain such an equality for all t > 0. Hence, the assignment
t → lim inf

n
M(xn, yn, t) for each t > 0 is a continuous function due to Nxy.

Conversely, let (X ,M, ∗) be a GV3-fuzzy metric space such that for each pair of
Cauchy sequences {xn} and {yn} in X , the assignment t → lim inf

n
M(xn, yn, s) for each

t > 0 is a continuous function. We will see that the fuzzy metric completion (X̃ ,M̃, ∗) of
(X ,M, ∗) provided in Section 2 is a GV3-fuzzy metric space. With this aim, let {ãn}, {b̃n} ∈
X̃ , and we will show that the function M̃{ãn},{b̃n} : R+ → [0, 1] is right-continuous, where
M̃{ãn},{b̃n}(t) = M̃({ãn}, {b̃n}, t) for all t > 0.
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Recall that M̃({ãn}, {b̃n}, t) = sup
0<s<t

lim inf
n

M(an, bn, s) for all t > 0. Moreover, by

our assumption, the assignment t → lim inf
n

M(an, bn, t) for each t > 0 is a continuous

function and, due to for each x, y ∈ X , we have M(x, y, s) ≤ M(x, y, t) when 0 < s < t,
and we obtain sup

0<s<t
lim inf

n
M(an, bn, s) = lim inf

n
M(an, bn, t) for all t > 0. Therefore, we

conclude that M̃{ãn},{b̃n}(t) = lim inf
n

M(an, bn, t) for all t > 0, and so the above function

M̃{ãn},{b̃n} : R+ → [0, 1] is (right-)continuous.

4. Conclusions and Future Work
This paper analyses in more detail the completion of fuzzy metric spaces in the sense

of George and Veeramani. Specifically, we study how each axiom imposed in the definition
of George and Veeramani, separately, affects to the completion of a fuzzy metric space. The
main results provided in the paper conclude that each one of the aforesaid axioms is straight
related with one condition included in the characterization of completable fuzzy metrics
provided in [26] (see Theorem 1). Moreover, different examples justify and illustrate
the study performed. In addition, attending to Theorems 2–4 we obtain the following
immediate corollary, which provides a slightly different characterization of completable
GV-fuzzy metric spaces.

Corollary 1. A GV-fuzzy metric space (X ,M, ∗) is completable if and only if, for each pair of
Cauchy sequences {xn} and {yn} in X ,the following three conditions are fulfilled:

(c1) lim
n

M(xn, yn, t0) = 1 for some t0 > 0 implies lim
n

M(xn, yn, t) = 1 for all t > 0.

(c2’) lim inf
n

M(xn, yn, t) > 0 for all t > 0.

(c3’) The assignment t → lim inf
n

M(xn, yn, t) for each t > 0 is a continuous function on ]0, ∞[,
provided with the usual topology of R.

Concerning the future work to continue the research performed in this article, we
propose two distinguished lines. On the one hand, the study of the completion of fuzzy
metric spaces, both for the Kramosil and Michalek sense, as well as for the George and
Veeramani’s one, when different notions of convergence or Cauchyness are under consider-
ation. On the other hand, it could be an interesting issue to study the impact of each one
of the restrictions imposed by George and Veeramani in their definition of fuzzy metric
space when considering another ones of the differences between fuzzy metrics GV-fuzzy
metrics. For instance, in [4], it was proved that in a GV-fuzzy metric space each closed ball
is a closed set, whereas Example 3.8 in [28] provided a fuzzy metric space for which such a
property is not satisfied.
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