Generalized q-Stirling Numbers and Their Interpolation Functions
Abstract
:1. Introduction, Definitions and Notations
2. New Generating Functions for q-Stirling Numbers of the Second Kind
3. Some Special Zeta Functions
4. Relations between Bernoulli Numbers of Order k and Stirling Numbers of the Second Kind
5. Conclusions
Acknowledgements
References
- Carlitz, L. q-Bernoulli numbers and polynomials. Duke Math. 1948, 15, 987–1000. [Google Scholar] [CrossRef]
- Milne, S.C. A q-analog of restricted growth functions, Dobinski’s equality, and Charlier polynomials. Trans. Amer. Math. Soc. 1978, 245, 89–118. [Google Scholar]
- Ehrenborg, R. Determinants involving q-Stirling numbers. Advan. Appl. Math. 2003, 31, 630–642. [Google Scholar] [CrossRef]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhauser/Springer: Basel, Switzerland, 2012. [Google Scholar]
- Gould, H.W. The q-Stirling numbers of first and second kinds. Duke Math. J. 1961, 28, 281–289. [Google Scholar] [CrossRef]
- Hsu, L.C.; Shiue, P.J.-S. A unified approach to generalized Stirling numbers. Adv. Appl. Math. 1998, 20, 366–384. [Google Scholar] [CrossRef]
- Katriel, J. Stirling numbers identity: Interconsistency of q-analogues. J. Phys. 1998, 31, 3559–3672. [Google Scholar]
- Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 19, 288–299. [Google Scholar]
- Kim, T. q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 2008, 15, 51–57. [Google Scholar] [CrossRef]
- Kwasniewski, A.K. q-Poisson, q-Dobinski, q-Rota and q-coherent states-a second fortieth anniversary memoir. Proc. Jangjeon Math. Soc. 2004, 7, 95–98. [Google Scholar]
- Kwasniewski, A.K. On psi-umbral extension of Stirling numbers and Dobinski-like formulas. Advan. Stud. Contemp. Math. 2006, 12, 73–100. [Google Scholar]
- Mansour, T.; Schork, M.; Shattuck, M. On a new family of generalized Stirling and Bell numbers. Electron. J. Comb. 2011, 18, 1–33. [Google Scholar]
- Mansour, T.; Schork, M.; Shattuck, M. The generalized Stirling and Bell numbers revisited. J. Integer Seq. 2012, 15, 1–47. [Google Scholar]
- Mansour, T.; Schork, M.; Shattuck, M. On the Stirling numbers associated with the meromorphic Weyl algebra. Appl. Math. Lett. 2012, 25, 1767–1771. [Google Scholar] [CrossRef]
- Ryoo, C.S.; Kim, T. A new identities on the q-Bernoulli numbers and polynomials. Adv. Stud. Contemp. Math. 2011, 21, 161–169. [Google Scholar]
- Simsek, Y. On q-Deformed Stirling numbers. Int. J. Math. Comput. 2012, 15, 70–80. [Google Scholar]
- Simsek, Y. Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their application. 2011. arxiv:1111.3848v2. Available online: http://arxiv.org/abs/1111.3848 (accessed on 5 February 2013).
- Simsek, Y. Interpolation Function of Generalized q-Bernstein Type Polynomials and Their Application, Curve and Surface; Springer Verlag: Berlin/Heidelberg, Germany, 2011; pp. 647–662. [Google Scholar]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inform. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Cakic, M.P.; Milovanovic, G.V. On generalized Stirling numbers and polynomials. Math. Balk. 2004, 18, 241–248. [Google Scholar]
- Choi, J.; Kim, T.; Kim, Y.H. A note on the extended q-Bernoulli numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2011, 21, 351–354. [Google Scholar]
- Kim, T. Non-Archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials. Russ. J. Math. Phys. 2003, 10, 91–98. [Google Scholar]
- Polya, G.; Szego, G. Problems and Theorems in Analysis I; Springer Verlag: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
- Rassias, T.M.; Srivastava, H.M. Some classes of infinite series associated with the Riemann zeta and polygamma functions and generalized harmonic numbers. Appl. Math. Comput. 2002, 131, 593–605. [Google Scholar] [CrossRef]
- Simsek, Y. q-Analogue of the twisted l-series and q-twisted Euler numbers. J. Number Theory 2005, 110, 267–278. [Google Scholar] [CrossRef]
- Simsek, Y. Twisted (h,q)-Bernoulli numbers and polynomials related to twisted (h,q)-zeta function and L-function. J. Math. Anal. Appl. 2006, 324, 790–804. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kim, T.; Simsek, Y. q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math. Phys. 2005, 12, 241–268. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ozden, H.; Cangul, I.N.; Simsek, Y. Generalized q-Stirling Numbers and Their Interpolation Functions. Axioms 2013, 2, 10-19. https://doi.org/10.3390/axioms2010010
Ozden H, Cangul IN, Simsek Y. Generalized q-Stirling Numbers and Their Interpolation Functions. Axioms. 2013; 2(1):10-19. https://doi.org/10.3390/axioms2010010
Chicago/Turabian StyleOzden, Hacer, Ismail Naci Cangul, and Yilmaz Simsek. 2013. "Generalized q-Stirling Numbers and Their Interpolation Functions" Axioms 2, no. 1: 10-19. https://doi.org/10.3390/axioms2010010
APA StyleOzden, H., Cangul, I. N., & Simsek, Y. (2013). Generalized q-Stirling Numbers and Their Interpolation Functions. Axioms, 2(1), 10-19. https://doi.org/10.3390/axioms2010010