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Abstract:

 A sequence [image: there is no content] in abstract additively-written Abelian group G is called a T-sequence if there is a Hausdorff group topology on G relative to which [image: there is no content]. We say that a subgroup H of an infinite compact Abelian group X is T-characterized if there is a T-sequence [image: there is no content] in the dual group of X, such that H={x∈X:([image: there is no content],x)→1}. We show that a closed subgroup H of X is T-characterized if and only if H is a [image: there is no content]-subgroup of X and the annihilator of H admits a Hausdorff minimally almost periodic group topology. All closed subgroups of an infinite compact Abelian group X are T-characterized if and only if X is metrizable and connected. We prove that every compact Abelian group X of infinite exponent has a T-characterized subgroup, which is not an [image: there is no content]-subgroup of X, that gives a negative answer to Problem 3.3 in Dikranjan and Gabriyelyan (Topol. Appl. 2013, 160, 2427–2442).
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1. Introduction

Notation and preliminaries: Let X be an Abelian topological group. We denote by [image: there is no content] the group of all continuous characters on X, and [image: there is no content] endowed with the compact-open topology is denoted by [image: there is no content]. The homomorphism [image: there is no content], [image: there is no content], is called the canonical homomorphism. Denote by n(X)=∩χ∈[image: there is no content]ker(χ)=ker(αX) the von Neumann radical of X. The group X is called minimally almost periodic ([image: there is no content]) if [image: there is no content], and X is called maximally almost periodic ([image: there is no content]) if [image: there is no content]. Let H be a subgroup of X. The annihilator of H we denote by [image: there is no content], i.e., [image: there is no content]={χ∈[image: there is no content]:(χ,h)=1 for every [image: there is no content].

Recall that an Abelian group G is of finite exponent or bounded if there exists a positive integer n, such that [image: there is no content] for every [image: there is no content]. The minimal integer n with this property is called the exponent of G and is denoted by [image: there is no content]. When G is not bounded, we write [image: there is no content] and say that G is of infinite exponent or unbounded. The direct sum of ω copies of an Abelian group G we denote by [image: there is no content].

Let [image: there is no content]=[image: there is no content] be a sequence in an Abelian group G. In general, no Hausdroff topology may exist in which [image: there is no content] converges to zero. A very important question of whether there exists a Hausdorff group topology τ on G, such that [image: there is no content] in [image: there is no content], especially for the integers, has been studied by many authors; see Graev [1], Nienhuys [2], and others. Protasov and Zelenyuk [3] obtained a criterion that gives a complete answer to this question. Following [3], we say that a sequence [image: there is no content] in an Abelian group G is a T-sequence if there is a Hausdorff group topology on G in which [image: there is no content] converges to zero. The finest group topology with this property we denote by τ[image: there is no content].

The counterpart of the above question for precompact group topologies on [image: there is no content] is studied by Raczkowski [4]. Following [5,6] and motivated by [4], we say that a sequence [image: there is no content] is a [image: there is no content]-sequence in an Abelian group G if there is a precompact Hausdorff group topology on G in which [image: there is no content] converges to zero. For a [image: there is no content]-sequence [image: there is no content], we denote by τb[image: there is no content] the finest precompact group topology on G in which [image: there is no content] converges to zero. Clearly, every [image: there is no content]-sequence is a T-sequence, but in general, the converse assertion does not hold.

While it is quite hard to check whether a given sequence is a T-sequence (see, for example, [3,7,8,9,10]), the case of [image: there is no content]-sequences is much simpler. Let X be an Abelian topological group and [image: there is no content] be a sequence in its dual group [image: there is no content]. Following [11], set:



s[image: there is no content](X)={x∈X:([image: there is no content],x)→1}.








In [5], the following simple criterion to be a [image: there is no content]-sequence was obtained:

Fact 1 ([5]). A sequence [image: there is no content] in a (discrete) Abelian group G is a [image: there is no content]-sequence if and only if the subgroup s[image: there is no content](X) of the (compact) dual [image: there is no content] is dense.

Motivated by Fact 1, Dikranjan et al. [11] introduced the following notion related to subgroups of the form s[image: there is no content](X) of a compact Abelian group X:

Definition 2 ([11]). Let H be a subgroup of a compact Abelian group X and [image: there is no content] be a sequence in [image: there is no content]. If H=s[image: there is no content](X), we say that [image: there is no content] characterizes H and that H is characterized (by [image: there is no content]).

Note that for the torus [image: there is no content], this notion was already defined in [12]. Characterized subgroups have been studied by many authors; see, for example, [11,12,13,14,15,16]. In particular, the main theorem of [15] (see also [14]) asserts that every countable subgroup of a compact metrizable Abelian group is characterized. It is natural to ask whether a closed subgroup of a compact Abelian group is characterized. The following easy criterion is given in [13]:

Fact 3 ([13]). A closed subgroup H of a compact Abelian group X is characterized if and only if H is a [image: there is no content]-subgroup. In particular, [image: there is no content] is metrizable, and the annihilator [image: there is no content] of H is countable.

The next fact follows easily from Definition 2:

Fact 4 ([17], see also [13]). Every characterized subgroup H of a compact Abelian group X is an [image: there is no content]-subgroup of X, and hence, H is a Borel subset of X.

Facts 3 and 4 inspired in [13] the study of the Borel hierarchy of characterized subgroups of compact Abelian groups. For a compact Abelian group X, denote by [image: there is no content] (respectively, [image: there is no content], [image: there is no content] and [image: there is no content]) the set of all characterized subgroups (respectively, [image: there is no content]-subgroups, [image: there is no content]-subgroups and [image: there is no content]-subgroups) of X. The next fact is Theorem E in [13]:

Fact 5 ([13]). For every infinite compact Abelian group X, the following inclusions hold:



SGδ(X)⫋Char(X)⫋SFσδ(X)andSFσ(X)¬⊆Char(X).








If in addition X has finite exponent, then:



[image: there is no content]



(1)




The inclusion Equation (1) inspired the following question:

Question 6 (Problem 3.3 in [13]). Does there exist a compact Abelian group X of infinite exponent all of whose characterized subgroups are [image: there is no content]-subsets of X?

Main results: It is important to emphasize that there is no restriction on the sequence [image: there is no content] in Definition 2. If a characterized subgroup H of a compact Abelian group X is dense, then, by Fact 1, a characterizing sequence is also a [image: there is no content]-sequence. However, if H is not dense, we cannot expect in general that a characterizing sequence of H is a T-sequence. Thus, it is natural to ask:

Question 7. For which characterized subgroups of compact Abelian groups can one find characterizing sequences that are also T-sequences?

This question is of independent interest, because every T-sequence [image: there is no content] naturally defines the group topology τ[image: there is no content] satisfying the following dual property:

Fact 8 ([18]). Let H be a subgroup of an infinite compact Abelian group X characterized by a T-sequence [image: there is no content]. Then, ([image: there is no content],τ[image: there is no content])∧=H(=s[image: there is no content](X)) and n([image: there is no content],τ[image: there is no content])=[image: there is no content] algebraically.

This motivates us to introduce the following notion:

Definition 9. Let H be a subgroup of a compact Abelian group X. We say that H is a T-characterized subgroup of X if there exists a T-sequence [image: there is no content]=[image: there is no content] in [image: there is no content], such that H=s[image: there is no content](X).

Denote by [image: there is no content] the set of all T-characterized subgroups of a compact Abelian group X. Clearly, [image: there is no content]. Hence, if a T-characterized subgroup H of X is closed, it is a [image: there is no content]-subgroup of X by Fact 3. Note also that X is T-characterized by the zero sequence.

The main goal of the article is to obtain a complete description of closed T-characterized subgroups (see Theorem 10) and to study the Borel hierarchy of T-characterized subgroups (see Theorem 18) of compact Abelian groups. In particular, we obtain a complete answer to Question 7 for closed characterized subgroups and give a negative answer to Question 6.

Note that, if a compact Abelian group X is finite, then every T-sequence [image: there is no content] in [image: there is no content] is eventually equal to zero. Hence, s[image: there is no content](X)=X. Thus, X is the unique T-characterized subgroup of X. Therefore, in what follows, we shall consider only infinite compact groups.

The following theorem describes all closed subgroups of compact Abelian groups that are T-characterized.

Theorem 10. Let H be a proper closed subgroup of an infinite compact Abelian group X. Then, the following assertions are equivalent:


	(1)

	H is a T-characterized subgroup of X; 



	(2)

	H is a [image: there is no content]-subgroup of X, and the countable group [image: there is no content] admits a Hausdorff MinAPgroup topology; 



	(3)

	H is a [image: there is no content]-subgroup of X and one of the following holds:


	(a) 

	[image: there is no content] has infinite exponent;



	(b) 

	[image: there is no content] has finite exponent and contains a subgroup that is isomorphic to [image: there is no content]exp([image: there is no content])(ω).









Corollary 11. Let X be an infinite compact metrizable Abelian group. Then, the trivial subgroup [image: there is no content] is T-characterized if and only if [image: there is no content] admits a Hausdorff MinAP group topology.

As an immediate corollary of Fact 3 and Theorem 10, we obtain a complete answer to Question 7 for closed characterized subgroups.

Corollary 12. A proper closed characterized subgroup H of an infinite compact Abelian group X is T-characterized if and only if [image: there is no content] admits a Hausdorff MinAP group topology.

If H is an open proper subgroup of X, then [image: there is no content] is non-trivial and finite. Thus, every Hausdorff group topology on [image: there is no content] is discrete. Taking into account Fact 3, we obtain:

Corollary 13. Every open proper subgroup H of an infinite compact Abelian group X is a characterized non-T-characterized subgroup of X.

Nevertheless (see Example 1 below), there is a compact metrizable Abelian group X with a countable T-characterized subgroup H, such that its closure [image: there is no content] is open. Thus, it may happen that the closure of a T-characterized subgroup is not T-characterized.

It is natural to ask for which compact Abelian groups all of their closed [image: there is no content]-subgroups are T-characterized. The next theorem gives a complete answer to this question.

Theorem 14. Let X be an infinite compact Abelian group. The following assertions are equivalent:


	(1)

	All closed [image: there is no content]-subgroups of X are T-characterized;



	(2)

	X is connected.





By Corollary 2.8 of [13], the trivial subgroup [image: there is no content] of a compact Abelian group X is a [image: there is no content]-subgroup if and only if X is metrizable. Therefore, we obtain:

Corollary 15. All closed subgroups of an infinite compact Abelian group X are T-characterized if and only if X is metrizable and connected.

Theorems 10 and 14 are proven in Section 2.

In the next theorem, we give a negative answer to Question 6:

Theorem 16. Every compact Abelian group of infinite exponent has a dense T-characterized subgroup, which is not an [image: there is no content]-subgroup.

As a corollary of the inclusion Equation (1) and Theorem 16, we obtain:

Corollary 17. For an infinite compact Abelian group X, the following assertions are equivalent:


	(i)

	X has finite exponent;



	(ii)

	every characterized subgroup of X is an [image: there is no content]-subgroup;



	(iii)

	every T-characterized subgroup of X is an [image: there is no content]-subgroup.





Therefore, [image: there is no content] if and only if X has finite exponent.
In the next theorem, we summarize the obtained results about the Borel hierarchy of T-characterized subgroups of compact Abelian groups.

Theorem 18. Let X be an infinite compact Abelian group X. Then:


	(1)

	[image: there is no content];



	(2)

	[image: there is no content];



	(3)

	[image: there is no content]if and only if X is connected;



	(4)

	[image: there is no content];



	(5)

	[image: there is no content]if and only if X has finite exponent.





We prove Theorems 16 and 18 in Section 3.

The notions of [image: there is no content]-closed and [image: there is no content]-dense subgroups of a compact Abelian group X were defined in [11]. In the last section of the paper, in analogy to these notions, we define [image: there is no content]T-closed and [image: there is no content]T-dense subgroups of X. In particular, we show that every [image: there is no content]T-dense subgroup of a compact Abelian group X is dense if and only if X is connected (see Theorem 37).



2. The Proofs of Theorems 10 and 14

The subgroup of a group G generated by a subset A we denote by [image: there is no content].

Recall that a subgroup H of an Abelian topological group X is called dually closed in X if for every [image: there is no content], there exists a character χ∈[image: there is no content], such that [image: there is no content]. H is called dually embedded in X if every character of H can be extended to a character of X. Every open subgroup of X is dually closed and dually embedded in X by Lemma 3 of [19].

The next notion generalizes the notion of the maximal extension in the class of all compact Abelian groups introduced in [20].

Definition 19. Let [image: there is no content] be an arbitrary class of topological groups. Let (G,τ)∈[image: there is no content] and H be a subgroup of G. The group [image: there is no content] is called a maximal extension of [image: there is no content] in the class [image: there is no content] if [image: there is no content] for every group topology on G, such that [image: there is no content] and (G,σ)∈[image: there is no content].

Clearly, the maximal extension is unique if it exists. Note that in Definition 19, we do not assume that [image: there is no content] belongs to the class [image: there is no content].

If H is a subgroup of an Abelian group G and [image: there is no content] is a T-sequence (respectively, a [image: there is no content]-sequence) in H, we denote by τ[image: there is no content](H) (respectively, τb[image: there is no content](H)) the finest (respectively, precompact) group topology on H generated by [image: there is no content]. We use the following easy corollary of the definition of T-sequences.

Lemma 20. For a sequence [image: there is no content] in an Abelian group G, the following assertions are equivalent:


	(1)

	[image: there is no content]is a T-sequence in G;



	(2)

	[image: there is no content]is a T-sequence in every subgroup of G containing ⟨[image: there is no content]⟩;



	(3)

	[image: there is no content]is a T-sequence in ⟨[image: there is no content]⟩.





In this case, ⟨[image: there is no content]⟩ is open in τ[image: there is no content] (and hence, ⟨[image: there is no content]⟩ is dually closed and dually embedded in (G,τ[image: there is no content])), and (G,τ[image: there is no content]) is the maximal extension of (⟨[image: there is no content]⟩,τ[image: there is no content](⟨[image: there is no content]⟩) in the class [image: there is no content] of all Abelian topological groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let [image: there is no content] be a T-sequence in ⟨[image: there is no content]⟩. Let τ be the topology on G whose base is all translationsof τ[image: there is no content](⟨[image: there is no content]⟩)-open sets. Clearly, [image: there is no content] converges to zero in τ. Thus, [image: there is no content] is a T-sequence in G. Therefore, (3) implies (1).

Let us prove the last assertion. By the definition of τ[image: there is no content], we have also τ≤τ[image: there is no content], and hence, τ|⟨[image: there is no content]⟩=τ[image: there is no content](⟨[image: there is no content]⟩)≤τ[image: there is no content]|⟨[image: there is no content]⟩. Thus, ⟨[image: there is no content]⟩ is open in τ[image: there is no content], and hence, it is dually closed and dually embedded in (G,τ[image: there is no content]) by [19] (Lemma 3.3). On the other hand, τ[image: there is no content]|⟨[image: there is no content]⟩≤τ[image: there is no content](⟨[image: there is no content]⟩)=τ|⟨[image: there is no content]⟩ by the definition of τ[image: there is no content](⟨[image: there is no content]⟩). Therefore, τ[image: there is no content] is an extension of τ[image: there is no content](⟨[image: there is no content]⟩). Now, clearly, τ=τ[image: there is no content], and (G,τ[image: there is no content]) is the maximal extension of (⟨[image: there is no content]⟩,τ[image: there is no content](⟨[image: there is no content]⟩) in the class [image: there is no content].  ☐

For [image: there is no content]-sequences, we have the following:

Lemma 21. For a sequence [image: there is no content] in an Abelian group G, the following assertions are equivalent:


	(1)

	[image: there is no content] is a [image: there is no content]-sequence in G;



	(2)

	[image: there is no content] is a [image: there is no content]-sequence in every subgroup of G containing ⟨[image: there is no content]⟩;



	(3)

	[image: there is no content] is a [image: there is no content]-sequence in ⟨[image: there is no content]⟩.





In this case, the subgroup ⟨[image: there is no content]⟩ is dually closed and dually embedded in (G,τb[image: there is no content]), and (G,τb[image: there is no content]) is the maximal extension of (⟨[image: there is no content]⟩,τb[image: there is no content](⟨[image: there is no content]⟩)) in the class of all precompact Abelian groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let [image: there is no content] be a [image: there is no content]-sequence in ⟨[image: there is no content]⟩. Then, (⟨[image: there is no content]⟩,τb[image: there is no content](⟨[image: there is no content]⟩))∧ separates the points of ⟨[image: there is no content]⟩. Let τ be the topology on G whose base is all translations of τb[image: there is no content](⟨[image: there is no content]⟩)-open sets. Then, (⟨[image: there is no content]⟩,τb[image: there is no content](⟨[image: there is no content]⟩)) is an open subgroup of [image: there is no content]. It is easy to see that [image: there is no content]∧ separates the points of G. Since [image: there is no content] converges to zero in τ, it also converges to zero in [image: there is no content], where [image: there is no content] is the Bohr topology of [image: there is no content]. Thus, [image: there is no content] is a [image: there is no content]-sequence in G. Therefore, (3) implies (1).

The last assertion follows from Proposition 1.8 and Lemma 3.6 in [20].  ☐

For a sequence [image: there is no content]=[image: there is no content] of characters of a compact Abelian group X, set:



K[image: there is no content]=⋂[image: there is no content]ker([image: there is no content]).








The following assertions is proven in [13]:

Fact 22 (Lemma 2.2(i) of [13]). For every sequence [image: there is no content]=[image: there is no content] of characters of a compact Abelian group X, the subgroup K[image: there is no content] is a closed [image: there is no content]-subgroup of X and K[image: there is no content]=⟨[image: there is no content]⟩⊥.

The next two lemmas are natural analogues of Lemmas 2.2(ii) and 2.6 of [13].

Lemma 23. Let X be a compact Abelian group and [image: there is no content]=[image: there is no content] be a T-sequence in [image: there is no content]. Then, s[image: there is no content](X)/K[image: there is no content] is a T-characterized subgroup of X/K[image: there is no content].

Proof. Set H:=s[image: there is no content](X) and K:=K[image: there is no content]. Let [image: there is no content] be the quotient map. Then, the adjoint homomorphism [image: there is no content] is an isomorphism from [image: there is no content] onto [image: there is no content] in [image: there is no content]. For every [image: there is no content], define the character [image: there is no content] of [image: there is no content] as follows: ([image: there is no content],q(x))=([image: there is no content],x) ([image: there is no content] is well-defined, since K⊆ker([image: there is no content])). Then, [image: there is no content]˜={[image: there is no content]}[image: there is no content] is a sequence of characters of [image: there is no content], such that [image: there is no content]([image: there is no content])=[image: there is no content]. Since [image: there is no content]⊂[image: there is no content], [image: there is no content] is a T-sequence in [image: there is no content] by Lemma 20. Hence, [image: there is no content]˜ is a T-sequence in [image: there is no content] because [image: there is no content] is an isomorphism.

We claim that H/K=s[image: there is no content]˜(X/K). Indeed, for every [image: there is no content], by definition, we have ([image: there is no content],h+K)=([image: there is no content],h)→1. Thus, H/K⊆s[image: there is no content]˜(X/K). If x+K∈s[image: there is no content]˜(X/K), then ([image: there is no content],x+K)=([image: there is no content],x)→1. This yields [image: there is no content]. Thus, [image: there is no content].  ☐

Let [image: there is no content]=[image: there is no content] be a T-sequence in an Abelian group G. For every natural number m, set [image: there is no content]m={[image: there is no content]}[image: there is no content]. Clearly, [image: there is no content]m is a T-sequence in G, τ[image: there is no content]=τ[image: there is no content]m and s[image: there is no content](X)=s[image: there is no content]m(X) for every natural number m.

Lemma 24. Let K be a closed subgroup of a compact Abelian group X and [image: there is no content] be the quotient map. Then, [image: there is no content] is a T-characterized subgroup of [image: there is no content] if and only if q-1([image: there is no content]) is a T-characterized subgroup of X.

Proof. Let [image: there is no content] be a T-characterized subgroup of [image: there is no content], and let a T-sequence [image: there is no content]˜={[image: there is no content]}[image: there is no content]-characterized [image: there is no content]. Set H:=q-1([image: there is no content]). We have to show that H is a T-characterized subgroup of X.

Note that the adjoint homomorphism [image: there is no content] is an isomorphism from [image: there is no content] onto [image: there is no content] in [image: there is no content]. Set [image: there is no content]=[image: there is no content], where [image: there is no content]=[image: there is no content]([image: there is no content]). Since [image: there is no content] is injective, [image: there is no content] is a T-sequence in [image: there is no content]. By Lemma 20, [image: there is no content] is a T-sequence in [image: there is no content]. Therefore, it is enough to show that H=s[image: there is no content](X). This follows from the following chain of equivalences. By definition, x∈s[image: there is no content](X) if and only if:



([image: there is no content],x)→1⇔([image: there is no content],q(x))→1⇔q(x)∈[image: there is no content]=H/K⇔x∈H.








The last equivalence is due to the inclusion [image: there is no content].

Conversely, let H:=q-1([image: there is no content]) be a T-characterized subgroup of X and a T-sequence [image: there is no content]=[image: there is no content]-characterized H. Proposition 2.5 of [13] implies that we can find [image: there is no content], such that K⊆K[image: there is no content]m. Therefore, taking into account that H=s[image: there is no content](X)=s[image: there is no content]m(X) for every natural number m, without loss of generality, we can assume that K⊆K[image: there is no content]. By Lemma 23, H/K[image: there is no content] is a T-characterized subgroup of X/K[image: there is no content]. Denote by [image: there is no content] the quotient homomorphism from [image: there is no content] onto X/K[image: there is no content]. Then, [image: there is no content]=qu-1(H/K[image: there is no content]) is T-characterized in [image: there is no content] by the previous paragraph of the proof.  ☐

The next theorem is an analogue of Theorem B of [13], and it reduces the study of T-characterized subgroups of compact Abelian groups to the study of T-characterized ones of compact Abelian metrizable groups:

Theorem 25. A subgroup H of a compact Abelian group X is T-characterized if and only if H contains a closed [image: there is no content]-subgroup K of X, such that [image: there is no content] is a T-characterized subgroup of the compact metrizable group [image: there is no content].

Proof. Let H be T-characterized in X by a T-sequence [image: there is no content]=[image: there is no content] in [image: there is no content]. Set K:=K[image: there is no content]. Since K is a closed [image: there is no content]-subgroup of X by Fact 22, [image: there is no content] is metrizable. By Lemma 23, [image: there is no content] is a T-characterized subgroup of [image: there is no content].

Conversely, let H contain a closed [image: there is no content]-subgroup K of X, such that [image: there is no content] is a T-characterized subgroup of the compact metrizable group [image: there is no content]. Then, H is a T-characterized subgroup of X by Lemma 24.  ☐

As was noticed in [21] before Definition 2.33, for every T-sequence [image: there is no content] in an infinite Abelian group G, the subgroup ⟨[image: there is no content]⟩ is open in (G,τ[image: there is no content]) (see also Lemma 20), and hence, by Lemmas 1.4 and 2.2 of [22], the following sequences are exact:



0→(⟨[image: there is no content]⟩,τ[image: there is no content])→(G,τ[image: there is no content])→G/⟨[image: there is no content]⟩→0,0→G/⟨[image: there is no content]⟩∧→(G,τ[image: there is no content])∧→(⟨[image: there is no content]⟩,τ[image: there is no content]|⟨[image: there is no content]⟩)∧→0,



(2)




where G/⟨[image: there is no content]⟩∧≅⟨[image: there is no content]⟩⊥ is a compact subgroup of (G,τ[image: there is no content])∧ and (⟨[image: there is no content]⟩,τ[image: there is no content])∧≅(G,τ[image: there is no content])∧/⟨[image: there is no content]⟩⊥.
Let [image: there is no content]=[image: there is no content] be a T-sequence in an Abelian group G. It is known [10] that τ[image: there is no content] is sequential, and hence, (G,τ[image: there is no content]) is a k-space. Therefore, the natural homomorphism α:=α(G,τ[image: there is no content]):(G,τ[image: there is no content])→(G,τ[image: there is no content])∧∧ is continuous by [23] (5.12). Let us recall that (G,τ[image: there is no content]) is MinAP if and only if (G,τ[image: there is no content])=ker(α).

To prove Theorem 10, we need the following:

Fact 26 ([16]). For each T-sequence [image: there is no content] in a countably infinite Abelian group G, the group (G,τ[image: there is no content])∧ is Polish.

Now, we are in a position to prove Theorem 10.

Proof of Theorem 10. [image: there is no content] Let H be a proper closed T-characterized subgroup of X and a T-sequence [image: there is no content]=[image: there is no content]-characterizedH. Since H is also characterized, it is a [image: there is no content]-subgroup of X by Fact 3. We have to show that [image: there is no content] admits a MinAP group topology.

Our idea of the proof is the following. Set G:=[image: there is no content]. By Fact 8, [image: there is no content] is the von Neumann radical of (G,τ[image: there is no content]). Now, assume that we found another T-sequence [image: there is no content] that characterizes H and such that ⟨[image: there is no content]⟩=[image: there is no content] (maybe [image: there is no content]=[image: there is no content]). By Fact 8, we have n(G,τ[image: there is no content])=[image: there is no content]=⟨[image: there is no content]⟩. Lemma 20 implies that the subgroup (⟨[image: there is no content]⟩,τ[image: there is no content]|⟨[image: there is no content]⟩) of (G,τ[image: there is no content]) is open, and hence, it is dually closed and dually embedded in (G,τ[image: there is no content]). Hence, n(⟨[image: there is no content]⟩,τ[image: there is no content]|⟨[image: there is no content]⟩)=n(G,τ[image: there is no content])(=⟨[image: there is no content]⟩) by Lemma 4 of [16]. Therefore, (⟨[image: there is no content]⟩,τ[image: there is no content]|⟨[image: there is no content]⟩) is MinAP. Thus, [image: there is no content]=⟨[image: there is no content]⟩ admits a MinAP group topology, as desired.

We find such a T-sequence [image: there is no content] in four steps (in fact, we show that [image: there is no content] has the form [image: there is no content]m for some [image: there is no content]).

Step 1. Let q:X→X/K[image: there is no content] be the quotient map. For every [image: there is no content], define the character [image: there is no content] of X/K[image: there is no content] by the equality [image: there is no content]=[image: there is no content]∘q (this is possible since K[image: there is no content]⊆ker([image: there is no content])). As was shown in the proof of Lemma 23, the sequence [image: there is no content]˜={[image: there is no content]}[image: there is no content] is a T-sequence, which characterizes H/K[image: there is no content] in X/K[image: there is no content]. Set [image: there is no content]:=X/K[image: there is no content] and [image: there is no content]:=H/K[image: there is no content]. Therefore, [image: there is no content]=s[image: there is no content]˜([image: there is no content]). By [24] (5.34 and 24.11) and since K[image: there is no content]⊆H, we have:



[image: there is no content]≅(X/H)∧≅[image: there is no content]/[image: there is no content]∧≅[image: there is no content]⊥.



(3)




By Fact 3, [image: there is no content] is metrizable. Hence, [image: there is no content] is also compact and metrizable, and [image: there is no content]:=[image: there is no content]^ is a countable Abelian group by [24] (24.15). Since H is a proper closed subgroup of X, Equation (3) implies that [image: there is no content] is non-zero.

We claim that [image: there is no content] is countably infinite. Indeed, suppose for a contradiction that [image: there is no content] is finite. Then, X/K[image: there is no content]=[image: there is no content] is also finite. Now, Fact 22 implies that ⟨[image: there is no content]⟩ is a finite subgroup of G. Since [image: there is no content] is a T-sequence, [image: there is no content] must be eventually equal to zero. Hence, H=s[image: there is no content](X)=X is not a proper subgroup of X, a contradiction.

Step 2. We claim that there is a natural number m, such that the group (⟨[image: there is no content]˜m⟩,τ[image: there is no content]˜|⟨[image: there is no content]˜m⟩)=(⟨[image: there is no content]˜m⟩,τ[image: there is no content]˜m|⟨[image: there is no content]˜m⟩) is MinAP.

Indeed, since [image: there is no content] is countably infinite, we can apply Fact 8. Therefore, [image: there is no content]=([image: there is no content],τ[image: there is no content]˜)∧ algebraically. Since [image: there is no content] and ([image: there is no content],τ[image: there is no content]˜)∧ are Polish groups (see Fact 26), [image: there is no content] and ([image: there is no content],τ[image: there is no content]˜)∧ are topologically isomorphic by the uniqueness of the Polish group topology. Hence ([image: there is no content],τ[image: there is no content]˜)∧∧=[image: there is no content]∧ is discrete. As was noticed before the proof, the natural homomorphism α˜:([image: there is no content],τ[image: there is no content]˜)→([image: there is no content],τ[image: there is no content]˜)∧∧ is continuous. Since ([image: there is no content],τ[image: there is no content]˜)∧∧ is discrete, we obtain that the von Neumann radical [image: there is no content] of ([image: there is no content],τ[image: there is no content]˜) is open in τ[image: there is no content]˜. Therefore, there exists a natural number m, such that [image: there is no content]∈ker(α˜) for every [image: there is no content]. Hence, ⟨[image: there is no content]˜m⟩⊆ker(α˜). Lemma 20 implies that the subgroup ⟨[image: there is no content]˜m⟩ is open in ([image: there is no content],τ[image: there is no content]˜), and hence, it is dually closed and dually embedded in ([image: there is no content],τ[image: there is no content]˜). Now, Lemma 4 of [16] yields ⟨[image: there is no content]˜m⟩=ker(α˜), and (⟨[image: there is no content]˜m⟩,τ[image: there is no content]˜|⟨[image: there is no content]˜m⟩) is MinAP.

Step 3. Set [image: there is no content]={vn}[image: there is no content], where [image: there is no content] for every [image: there is no content]. Clearly, [image: there is no content] is a T-sequence in G characterizing H, τ[image: there is no content]=τ[image: there is no content] and K[image: there is no content]⊆K[image: there is no content]. Let t:X→X/K[image: there is no content] and r:X/K[image: there is no content]→X/K[image: there is no content] be the quotient maps. Analogously to Step 1 and the proof of Lemma 23, the sequence [image: there is no content]˜={v˜n}[image: there is no content] is a T-sequence in X/K[image: there is no content]^, which characterizes H/K[image: there is no content] in X/K[image: there is no content], where [image: there is no content]. Since [image: there is no content], we have:



vn=v˜n∘t=[image: there is no content](v˜n)=[image: there is no content][image: there is no content](v˜n),








where [image: there is no content], [image: there is no content] and [image: there is no content] are the adjoint homomorphisms to t, r and q, respectively.
Since [image: there is no content] and [image: there is no content] are embeddings, we have [image: there is no content](v˜n)=u˜n+m. In particular, ⟨[image: there is no content]⟩≅⟨[image: there is no content]˜⟩≅⟨[image: there is no content]˜m⟩and:



(⟨[image: there is no content]˜m⟩,τ[image: there is no content]˜|⟨[image: there is no content]˜m⟩)=(⟨[image: there is no content]˜m⟩,τ[image: there is no content]˜m|⟨[image: there is no content]˜m⟩)≅(⟨[image: there is no content]˜⟩,τ[image: there is no content]˜|⟨[image: there is no content]˜⟩)≅(⟨[image: there is no content]⟩,τ[image: there is no content]|⟨[image: there is no content]⟩).








By Step 2, (⟨[image: there is no content]˜m⟩,τ[image: there is no content]˜m|⟨[image: there is no content]˜m⟩) is MinAP. Hence, (⟨[image: there is no content]⟩,τ[image: there is no content]|⟨[image: there is no content]⟩) is MinAP, as well.

Step 4. By the second exact sequence in Equation (2) applying to [image: there is no content], Fact 8, and since (⟨[image: there is no content]⟩,τ[image: there is no content]|⟨[image: there is no content]⟩) is MinAP (by Step 3), we have H=s[image: there is no content](X)=(G,τ[image: there is no content])∧=G/⟨[image: there is no content]⟩∧=⟨[image: there is no content]⟩⊥ algebraically. Thus, [image: there is no content]=⟨[image: there is no content]⟩, and hence, [image: there is no content] admits a MinAP group topology generated by the T-sequence [image: there is no content].

[image: there is no content]: Since H is a [image: there is no content]-subgroup of X, H is closed by [13] (Proposition 2.4) and [image: there is no content] is metrizable (due to the well-known fact that a compact group of countable pseudo-character is metrizable). Hence, [image: there is no content]=(X/H)∧ is countable. Since [image: there is no content] admits a MinAP group topology, [image: there is no content] must be countably infinite. By Theorem 3.8 of [9], [image: there is no content] admits a MinAP group topology generated by a T-sequence [image: there is no content]˜={[image: there is no content]}[image: there is no content]. By Fact 8, this means that s[image: there is no content]˜(X/H)=[image: there is no content]. Let [image: there is no content] be the quotient map. Set [image: there is no content]=[image: there is no content]∘q=[image: there is no content]([image: there is no content]). Since [image: there is no content] is injective, [image: there is no content] is a T-sequence in [image: there is no content] by Lemma 20. We have to show that H=s[image: there is no content](X). By definition, x∈s[image: there is no content](X) if and only if:



([image: there is no content],x)=([image: there is no content],q(x))→1⇔q(x)∈s[image: there is no content]˜(X/H)⇔q(x)=0⇔x∈H.








(2)⇔(3) follows from Theorem 3.8 of [9]. The theorem is proven.  ☐

Proof of Theorem 14. [image: there is no content]: Suppose for a contradiction that X is not connected. Then, by [24] (24.25), the dual group G=[image: there is no content] has a non-zero element g of finite order. Then, the subgroup [image: there is no content] of X has finite index. Hence, H is an open subgroup of X. Thus, H is not T-characterized by Corollary 13. This contradiction shows that X must be connected.

[image: there is no content]: Let H be a proper [image: there is no content]-subgroup of X. Then, H is closed by [13] (Proposition 2.4), and [image: there is no content] is connected and non-zero. Hence, [image: there is no content]≅(X/H)∧ is countably infinite and torsion free by [24] (24.25). Thus, [image: there is no content] has infinite exponent. Therefore, by Theorem 10, H is T-characterized.  ☐

The next proposition is a simple corollary of Theorem B in [13].

Proposition 27. The closure [image: there is no content] of a characterized (in particular, T-characterized) subgroup H of a compact Abelian group X is a characterized subgroup of X.

Proof. By Theorem B of [13], H contains a compact [image: there is no content]-subgroup K of X. Then, [image: there is no content] is also a [image: there is no content]-subgroup of X. Thus, [image: there is no content] is a characterized subgroup of X by Theorem B of [13].  ☐

In general, we cannot assert that the closure [image: there is no content] of a T-characterized subgroup H of a compact Abelian group X is also T-characterized, as the next example shows.

Example 1. Let X=[image: there is no content](2)×[image: there is no content] and G=[image: there is no content]=[image: there is no content](2)×[image: there is no content]. It is known (see the end of [image: there is no content] in [7]) that there is a T-sequence [image: there is no content] in G, such that the von Neumann radical n(G,τ[image: there is no content]) of (G,τ[image: there is no content]) is [image: there is no content](2)×{0}, the subgroup H:=s[image: there is no content](X) is countable and [image: there is no content]=[image: there is no content]×[image: there is no content]. Therefore, the closure [image: there is no content] of the countable T-characterized subgroup H of X is open. Thus, [image: there is no content] is not T-characterized by Corollary 13.

We do not know the answers to the following questions:

Problem 28. Let H be a characterized subgroup of a compact Abelian group X, such that its closure [image: there is no content] is T-characterized. Is H a T-characterized subgroup of X?

Problem 29. Does there exists a metrizable Abelian compact group that has a countable non-T-characterized subgroup?



3. The Proofs of Theorems 16 and 18

Recall that a Borel subgroup H of a Polish group X is called polishable if there exists a Polish group topology τ on H, such that the inclusion map [image: there is no content] is continuous. Let H be a T-characterized subgroup of a compact metrizable Abelian group X by a T-sequence [image: there is no content]=[image: there is no content]. Then, by [16] (Theorem 1), H is polishable by the metric:



ρ(x,y)=d(x,y)+sup{|([image: there is no content],x)-([image: there is no content],y)|,n∈ω},



(4)




where d is the initial metric on X. Clearly, the topology generated by the metric ρ on H is finer than the induced one from X.
To prove Theorem 16 we need the following three lemmas.

For a real number x, we write [image: there is no content] for the integral part of x and [image: there is no content] for the distance from x to the nearest integer. We also use the following inequality proven in [25]:



π|φ|≤|1-e2πiφ|≤2π|φ|,φ∈-12,12.



(5)




Lemma 30. Let {an}[image: there is no content]⊂N be such that [image: there is no content] and [image: there is no content]. Set [image: there is no content]=∏k≤nan for every [image: there is no content]. Then, [image: there is no content]=[image: there is no content] is a T-sequence in X=[image: there is no content], and the T-characterized subgroup H=s[image: there is no content]([image: there is no content]) of [image: there is no content] is a dense non-[image: there is no content]-subset of [image: there is no content].

Proof. We consider the circle group [image: there is no content] as R/[image: there is no content] and write it additively. Therefore, [image: there is no content] for every x∈[image: there is no content]. Recall that every x∈[image: there is no content] has the unique representation in the form:



x=∑n=0∞cn[image: there is no content],



(6)




where [image: there is no content] and [image: there is no content] for infinitely many indices n.
It is known [26] (see also (12) in the proof of Lemma 1 of [25]) that x with representation Equation (6) belongs to H if and only if:



limn→∞cnan(mod1)=0.



(7)




Hence, H is a dense subgroup of [image: there is no content]. Thus, [image: there is no content] is even a [image: there is no content]-sequence in [image: there is no content] by Fact 1.

We have to show that H is not an [image: there is no content]-subset of [image: there is no content]. Suppose for a contradiction that H is an [image: there is no content]-subset of [image: there is no content]. Then, [image: there is no content], where [image: there is no content] is a compact subset of [image: there is no content] for every [image: there is no content]. Since H is a subgroup of [image: there is no content], without loss of generality, we can assume that [image: there is no content]-[image: there is no content]⊆Fn+1. Since all [image: there is no content] are closed in [image: there is no content], as well, the Baire theorem implies that there are [image: there is no content] and [image: there is no content], such that [image: there is no content].

Fix arbitrarily [image: there is no content], such that [image: there is no content]. For every natural number [image: there is no content], set:



[image: there is no content]:=∑n=lk1[image: there is no content]·(an-1)ε20.








Then, for every [image: there is no content], we have:



[image: there is no content]=∑n=lk1[image: there is no content]·(an-1)ε20<∑n=lk1un-1·ε20<1ul-1∑n=0k-l12n<2ul-1<ε20<12.








This inequality and Equation (5) imply that:



d(0,[image: there is no content])=∥[image: there is no content]∥=[image: there is no content]<ε20, for every k>l.



(8)




For every [image: there is no content] and every natural number [image: there is no content], we estimate [image: there is no content] as follows.

Case 1. Let [image: there is no content]. Set [image: there is no content]. By the definition of [image: there is no content], we have:



2π(us·[image: there is no content])(mod1)=2πus∑n=lk1[image: there is no content]·(an-1)ε20(mod1)<2π∑n=qkus[image: there is no content]·(an-1)ε20<πε101+1as+1+1as+1as+2+1as+1as+2as+3+⋯<πε101+12+122+123+⋯=πε10·2<2ε3<12.








This inequality and Equation (5) imply:



|1-(us,[image: there is no content])|=1-exp2πi·(us·[image: there is no content])(mod1)<2ε3.



(9)




Case 2. Let [image: there is no content]. By the definition of [image: there is no content], we have:



|1-(us,[image: there is no content])|=0.



(10)




In particular, Equation (10) implies that [image: there is no content]∈H for every [image: there is no content].

Now, for every [image: there is no content], Equations (4) and (8)–(10) imply:



ρ(0,[image: there is no content])<ε20+2ε3<ε.








Thus, [image: there is no content]∈[image: there is no content] for every natural number [image: there is no content]. Clearly,



[image: there is no content]→x:=∑n=l∞1[image: there is no content]·(an-1)ε20in[image: there is no content].








Since [image: there is no content] is a compact subset of [image: there is no content], we have x∈[image: there is no content]. Hence, [image: there is no content]. On the other hand, we have:



limn→∞1an·(an-1)ε20(mod1)=ε20≠0.








Therefore, Equation (7) implies that [image: there is no content]. This contradiction shows that H=s[image: there is no content]([image: there is no content]) is not an [image: there is no content]-subset of [image: there is no content].  ☐

For a prime number p, the group [image: there is no content](p∞) is regarded as the collection of fractions [image: there is no content]. Let [image: there is no content] be the compact group of p-adic integers. It is well known that [image: there is no content]^=[image: there is no content](p∞).

Lemma 31. Let X=[image: there is no content]. For an increasing sequence of natural numbers [image: there is no content], such that [image: there is no content], set:



uk=1pnk+1∈[image: there is no content](p∞).








Then, the sequence [image: there is no content]={uk}[image: there is no content] is a T-sequence in [image: there is no content](p∞), and the T-characterized subgroup H=s[image: there is no content]([image: there is no content]) is a dense non-[image: there is no content]-subset of [image: there is no content].

Proof. Let ω=(an)[image: there is no content]∈[image: there is no content], where [image: there is no content] for every [image: there is no content]. Recall that, for every [image: there is no content], [24] (25.2) implies:



[image: there is no content]



(11)




Further, by [24] (10.4), if [image: there is no content], then [image: there is no content], where n is the minimal index, such that [image: there is no content].

Following [27] (2.2), for every ω=(an)∈[image: there is no content] and every natural number [image: there is no content], set:



[image: there is no content]








where:


[image: there is no content]








and otherwise:


[image: there is no content]








In [27] (2.2), it is shown that:



ω∈s[image: there is no content]([image: there is no content]) if and only if nk-mk→∞.



(12)




Therefore, H:=s[image: there is no content]([image: there is no content]) contains the identity [image: there is no content] of [image: there is no content]. By [24] (Remark 10.6), [image: there is no content] is dense in [image: there is no content]. Hence, H is dense in [image: there is no content], as well. Now, Fact 1 implies that [image: there is no content] is a T-sequence in [image: there is no content](p∞).

We have to show that H is not an [image: there is no content]-subset of [image: there is no content]. Suppose for a contradiction that [image: there is no content] is an [image: there is no content]-subset of [image: there is no content], where [image: there is no content] is a compact subset of [image: there is no content] for every [image: there is no content]. Since H is a subgroup of [image: there is no content], without loss of generality, we can assume that [image: there is no content]-[image: there is no content]⊆Fn+1. Since all [image: there is no content] are closed in [image: there is no content], as well, the Baire theorem implies that there are [image: there is no content] and [image: there is no content], such that [image: there is no content].

Fix a natural number s, such that [image: there is no content]. Choose a natural number [image: there is no content], such that, for every natural number [image: there is no content], we have:



[image: there is no content]



(13)




For every [image: there is no content], set:



[image: there is no content]








Then, for every [image: there is no content], Equation (13) implies that [image: there is no content] is well defined and:



d(0,[image: there is no content])=12nl+1-s<12nl≤12l<12s<ε20.



(14)




Note that:



[image: there is no content]



(15)




For every [image: there is no content] and every [image: there is no content], we estimate |1-(uk,[image: there is no content])| as follows.

Case 1. Let [image: there is no content]. By Equations (11) and (13) and the definition of [image: there is no content], we have:



|1-(uk,[image: there is no content])|=0.



(16)




Case 2. Let [image: there is no content]. Then, Equation (15) yields:



[image: there is no content]








This inequality and the inequality Equations (5) and (11) imply:



|1-(uk,[image: there is no content])|=1-exp2πipnk+1pnl+1-s+⋯+pnk-s<ε2.



(17)




Case 3. Let [image: there is no content]. By Equation (15), we have:



2πpnk+1pnl+1-s+⋯+pnl+r-s<2πpnk+1·pnl+r-s+1<2πpnk+1·pnk-s+1=2πps≤2π2s<ε2.








These inequalities, Equations (5) and (11) immediately yield:



|1-(uk,[image: there is no content])|=1-exp2πipnk+1pnl+1-s+⋯+pnl+r-s<ε2,



(18)




and:


|1-(uk,[image: there is no content])|<2πpnk+1·pnl+r-s+1→0, as k→∞.



(19)




Therefore, Equation (19) implies that [image: there is no content]∈H for every [image: there is no content].

For every [image: there is no content], by Equations (4), (14) and (16)–(18), we have:



ρ(0,[image: there is no content])=d(0,[image: there is no content])+sup1-(uk,[image: there is no content]),k∈ω<ε20+ε2<ε.








Thus, [image: there is no content]∈[image: there is no content] for every [image: there is no content]. Evidently,



[image: there is no content]→ω˜=(a˜n) in [image: there is no content], where a˜n=1, if n=nl+i-s for some i∈N,0,otherwise.








Since [image: there is no content] is a compact subset of [image: there is no content], we have ω˜∈[image: there is no content]. Hence, [image: there is no content]. On the other hand, it is clear that [image: there is no content] for every [image: there is no content]. Thus, for every [image: there is no content], [image: there is no content]. Now, Equation (12) implies that [image: there is no content]. This contradiction shows that H is not an [image: there is no content]-subset of [image: there is no content].  ☐

Lemma 32. Let X=∏[image: there is no content][image: there is no content](bn), where [image: there is no content] and G:=[image: there is no content]=⨁[image: there is no content][image: there is no content](bn). Set [image: there is no content]=[image: there is no content], where [image: there is no content]=1∈[image: there is no content](bn)∧⊂G for every [image: there is no content]. Then, [image: there is no content] is a T-sequence in G, and the T-characterized subgroup H=s[image: there is no content](X) is a dense non-[image: there is no content]-subset of X.

Proof. Set H:=s[image: there is no content](X). In [27] (2.3), it is shown that:



ω=(an)∈s[image: there is no content](X) if and only if anbn→0.



(20)




Therefore, ⨁[image: there is no content][image: there is no content](bn)⊆H. Thus, H is dense in X. Now, Fact 1 implies that [image: there is no content] is a T-sequence in G.

We have to show that H is not an [image: there is no content]-subset of X. Suppose for a contradiction that [image: there is no content] is an [image: there is no content]-subset of X, where [image: there is no content] is a compact subset of X for every [image: there is no content]. Since H is a subgroup of X, without loss of generality, we can assume that [image: there is no content]-[image: there is no content]⊆Fn+1. Since all [image: there is no content] are closed in [image: there is no content], as well, the Baire theorem yields that there are [image: there is no content] and [image: there is no content], such that [image: there is no content]⊇{ω∈X:ρ(0,ω)≤ε}.

Note that [image: there is no content], where 0≠ω=(an)[image: there is no content]∈X and l is the minimal index, such that [image: there is no content]. Choose l, such that [image: there is no content]. For every natural number [image: there is no content], set:



[image: there is no content]








Since ([image: there is no content],ωk)=1 for every [image: there is no content], we obtain that [image: there is no content] for every [image: there is no content]. For every [image: there is no content], we have:



[image: there is no content]








This inequality and the inequality Equations (4) and (5) imply:



ρ(0,ωk)=d(0,ωk)+sup1-([image: there is no content],ωk),n∈ω≤12l+max1-exp2πi1bnεbn20,l≤n≤k≤ε3+2π·max1bnεbn20,l≤n≤k<ε3+2πε20<ε.








Thus, ωk∈[image: there is no content] for every natural number [image: there is no content]. Evidently,



ωk→ω˜=a˜n[image: there is no content] in X, where a˜n=0, if 0≤n<l,εbn20, if l≤n.








Since [image: there is no content] is a compact subset of X, we have ω˜∈[image: there is no content]. Hence, [image: there is no content]. On the other hand, since [image: there is no content], we have:



[image: there is no content]








Thus, [image: there is no content] by Equation (20). This contradiction shows that H is not an [image: there is no content]-subset of X.  ☐

Now, we are in a position to prove Theorems 16 and 18.

Proof of Theorem 16. Let X be a compact Abelian group of infinite exponent. Then, G:=[image: there is no content] also has infinite exponent. It is well-known that G contains a countably-infinite subgroup S of one of the following form:


	(a)

	S≅[image: there is no content];



	(b)

	S≅[image: there is no content](p∞);



	(c)

	S≅⨁[image: there is no content][image: there is no content](bn), where [image: there is no content].





Fix such a subgroup S. Set [image: there is no content] and [image: there is no content], where [image: there is no content] denotes the group S endowed with the discrete topology. Since S is countable, Y is metrizable. Hence, [image: there is no content] is a [image: there is no content]-subgroup of Y. Thus, K is a [image: there is no content]-subgroup of X. Let [image: there is no content] be the quotient map. By Lemmas 30–32, the compact group Y has a dense T-characterized subgroup [image: there is no content], which is not an [image: there is no content]-subset of Y. Lemma 24 implies that H:=q-1([image: there is no content]) is a dense T-characterized subgroup of X. Since the continuous image of an [image: there is no content]-subset of a compact group is an [image: there is no content]-subset, as well, we obtain that H is not an [image: there is no content]-subset of X. Thus, the subgroup H of X is T-characterized, but it is not an [image: there is no content]-subset of X. The theorem is proven.  ☐

Proof of Theorem 18. (1) Follows from Fact 5.

(2) By Lemma 3.6 in [13], every infinite compact Abelian group X contains a dense characterized subgroup H. By Fact 1, H is T-characterized. Since every [image: there is no content]-subgroup of X is closed in X by Proposition 2.4 of [13], H is not a [image: there is no content]-subgroup of X.

(3) Follows from Theorem 14 and the aforementioned Proposition 2.4 of [13].

(4) Follows from Fact 5.

(5) Follows from Corollary 17.  ☐

It is trivial that [image: there is no content] for every compact Abelian group X. For the circle group [image: there is no content], we have:

Proposition 33. CharT([image: there is no content])=Char([image: there is no content]).

Proof. We have to show only that Char([image: there is no content])⊆CharT([image: there is no content]). Let H=s[image: there is no content]([image: there is no content])∈Char([image: there is no content]) for some sequence [image: there is no content] in [image: there is no content].

If H is infinite, then H is dense in [image: there is no content]. Therefore, [image: there is no content] is a T-sequence in [image: there is no content] by Fact 1. Thus, H∈CharT([image: there is no content]).

If H is finite, then H is closed in [image: there is no content]. Clearly, [image: there is no content] has infinite exponent. Thus, H∈CharT([image: there is no content]) by Theorem 10.  ☐

Note that, if a compact Abelian group X satisfies the equality [image: there is no content], then X is connected by Fact 3 and Theorem 14. This fact and Proposition 33 justify the next problem:

Problem 34. Does there exists a connected compact Abelian group X, such that [image: there is no content]? Is it true that [image: there is no content] if and only if X is connected?

For a compact Abelian group X, the set of all subgroups of X that are both [image: there is no content]- and [image: there is no content]-subsets of X we denote by [image: there is no content]. To complete the study of the Borel hierarchy of (T-)characterized subgroups of X, we have to answer the next question.

Problem 35. Describe compact Abelian groups X of infinite exponent for which [image: there is no content]. For which compact Abelian groups X of infinite exponent there exists a T-characterized subgroup H that does not belong to [image: there is no content]?



4. [image: there is no content]T-Closed and [image: there is no content]T-Dense Subgroups of Compact Abelian Groups

The following closure operator [image: there is no content] of the category of Abelian topological groups is defined in [11]. Let X be an Abelian topological group and H its arbitrary subgroup. The closure operator [image: there is no content]=[image: there is no content]X is defined as follows:



[image: there is no content]X(H):=⋂[image: there is no content]∈[image: there is no content]Ns[image: there is no content](X):H≤s[image: there is no content](X),








and we say that H is [image: there is no content]-closed if H=[image: there is no content](H), and H is [image: there is no content]-dense if [image: there is no content](H)=X.
The set of all T-sequences in the dual group [image: there is no content] of a compact Abelian group X we denote by Ts([image: there is no content]). Clearly, Ts([image: there is no content])⫋[image: there is no content]N. Let H be a subgroup of X. In analogy to the closure operator [image: there is no content], [image: there is no content]-closure and [image: there is no content]-density, the operator [image: there is no content]T is defined as follows:



[image: there is no content]T(H):=⋂[image: there is no content]∈Ts([image: there is no content])s[image: there is no content](X):H≤s[image: there is no content](X),








and we say that H is [image: there is no content]T-closed if H=[image: there is no content]T(H), and H is [image: there is no content]T-dense if [image: there is no content]T(H)=X.
In this section, we study some properties of [image: there is no content]T-closed and [image: there is no content]T-dense subgroups of a compact Abelian group X. Note that every [image: there is no content]-dense subgroup of X is dense by Lemma 2.12 of [11], but for [image: there is no content]T-dense subgroups, the situation changes:

Proposition 36. Let X be a compact Abelian group.


	(1)

	If H is a [image: there is no content]T-dense subgroup of X, then the closure [image: there is no content] of H is an open subgroup of X.



	(2)

	Every open subgroup of a compact Abelian group X is [image: there is no content]T-dense.





Proof. (1) Suppose for a contradiction that [image: there is no content] is not open in X. Then, X/[image: there is no content] is an infinite compact group. By Lemma 3.6 of [13], X/[image: there is no content] has a proper dense characterized subgroup S. Fact 1 implies that S is a T-characterized subgroup of X/[image: there is no content]. Let q:X→X/[image: there is no content] be the quotient map. Then, Lemma 24 yields that [image: there is no content] is a T-characterized dense subgroup of X containing H. Since [image: there is no content], we obtain that H is not [image: there is no content]T-dense in X, a contradiction.

(2) Let H be an open subgroup of X. If [image: there is no content], the assertion is trivial. Assume that H is a proper subgroup (so X is disconnected). Let [image: there is no content] be an arbitrary T-sequence, such that H⊆s[image: there is no content](X). Since H is open, s[image: there is no content](X) is open, as well. Now, Corollary 13 implies that s[image: there is no content](X)=X. Thus, H is [image: there is no content]T-dense in X.  ☐

Proposition 36(2) shows that [image: there is no content]T-density may essentially differ from the usual [image: there is no content]-density. In the next theorem, we characterize all compact Abelian groups for which all [image: there is no content]T-dense subgroups are also dense.

Theorem 37. All [image: there is no content]T-dense subgroups of a compact Abelian group X are dense if and only if X is connected.

Proof. Assume that all [image: there is no content]T-dense subgroup of X are dense. Proposition 36(2) implies that X has no open proper subgroups. Thus, X is connected by [24] (7.9).

Conversely, let X be connected and H be a [image: there is no content]T-dense subgroup of X. Proposition 36(1) implies that the closure [image: there is no content] of H is an open subgroup of X. Since X is connected, we obtain that [image: there is no content]=X. Thus, H is dense in X.  ☐

For [image: there is no content]T-closed subgroups, we have:

Proposition 38. Let X be a compact Abelian group.


	(1)

	Every proper open subgroup H of X is a [image: there is no content]-closed non-[image: there is no content]T-closed subgroup.



	(2)

	If every [image: there is no content]-closed subgroup of X is [image: there is no content]T-closed, then X is connected.





Proof. (1) The subgroup H is [image: there is no content]T-dense in X by Proposition 36. Therefore, H is not [image: there is no content]T-closed. On the other hand, H is [image: there is no content]-closed in X by Theorem A of [13].

(2) Item (1) implies that X has no open subgroups. Thus, X is connected by [24] (7.9).  ☐

We do not know whether the converse in Proposition 38(2) holds true:

Problem 39. Let a compact Abelian group X be connected. Is it true that every [image: there is no content]-closed subgroup of X is also [image: there is no content]T-closed?
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