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Abstract:

 I discuss old and new results on fixed points of local actions by Lie groups G on real and complex 2-manifolds, and zero sets of Lie algebras of vector fields. Results of E. Lima, J. Plante and C. Bonatti are reviewed.
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1. Introduction

Classical results of Poincaré [1] (1885), Hopf [2] (1925) and Lefschetz [3] (1937) yield the archetypal fixed point theorem for Lie group actions:




Theorem 1. 
Every flow on a compact manifold of non-zero Euler characteristic has a fixed point.



Here the Lie group is the group of real numbers.

The earliest papers I have found on fixed points for actions of other non-discrete Lie group are those of P. A. Smith [4] (1942) and H. Wang [5] (1952). Then came Armand Borel’s landmark paper of 1956:




Theorem 2 
(Borel [6]). If H is a solvable, irreducible affine algebraic group over an algebraically closed field [image: there is no content], every algebraic action of H on a complete algebraic variety over [image: there is no content]has a fixed point.



Over the field of complex numbers, completeness is equivalent to compactness in the classical topology, and complete nonsingular varieties are compact Kähler manifolds.

In 1973, A. Sommese [7] extended Borel’s theorem to solvable holomorphic actions on compact Kähler manifolds with first Betti number 0. In contrast to the results below, these have no explicit restrictions on dimensions or Euler characteristics.



2. Actions and Local Actions

If [image: there is no content] denotes a map, its domain is [image: there is no content] and its range is [image: there is no content].

Let [image: there is no content] denote maps. Regardless of their domains and ranges, the composition [image: there is no content] is defined as the map [image: there is no content] whose domain, perhaps empty, is [image: there is no content]. The associative law holds for these compositions: The maps [image: there is no content] and [image: there is no content] have the same domain



D:={x∈Df:f(x)∈Dg,g(f(x))∈Df},








and


[image: there is no content]








Henceforth M denotes a manifold with boundary ∂M, and G denotes a connected Lie group with Lie algebra 𝔤.

A local homeomorphism f on M is a homeomorphism between open subsets of M. The set of these homeomorphisms is denoted by [image: there is no content].

A local action of G on M is a triple [image: there is no content], where [image: there is no content] is a function having the following properties:


	The set [image: there is no content] is an open neighborhood of [image: there is no content].


	The evaluation map



evα:Ω(α)→M,(g,p)↦α(g)·p








is continuous.


	[image: there is no content] is the identity map of M.


	The maps [image: there is no content] and [image: there is no content] agree on the intersection of their domains.


	[image: there is no content].




Notation of α may be omitted.
When [image: there is no content] the local action is a global action. If G is simply connected and M is compact, every local action extends to a unique global action.

When α has been specified, we define the fixed-point sets



Fix(g):={x∈Dg:g(x)=x},Fix(G):=⋂g∈GFix(g)








The local action is effective if [image: there is no content] for all [image: there is no content].
A local flow is a local action [image: there is no content]. In this case we set [image: there is no content] and identify Ψ with the indexed family of [image: there is no content] of local maps in M. If [image: there is no content] is a local action, to every [image: there is no content] there corresponds a local flow [image: there is no content] defined in the following. Consider X as a 1-parameter subgroup of G, i.e., a homomorphism [image: there is no content], and set [image: there is no content]. The local flow induced by a [image: there is no content] vector field X on M tangent to ∂M is denoted by [image: there is no content].

A block for a local flow Ψ (a Ψ-block) is a compact [image: there is no content] having a precompact open neighborhood [image: there is no content], termed isolating, such that [image: there is no content]. When this holds, the index [image: there is no content] of Ψ in U is defined as the fixed point index of [image: there is no content] for sufficiently small [image: there is no content], as defined by Dold [8] (see also Brown [9] and Granas and Dugundji [10]). This integer depends only on K, and we set [image: there is no content]. When [image: there is no content] then K is essential. If K is a block for the local flow [image: there is no content] of a vector field X, an equivalent definition of 𝗂K([image: there is no content]) as the Poincaré–Hopf index of X at K is given in Section 4.



3. Fixed Points of Local Actions on Surfaces

In the rest of this section M denotes a real closed surface (compact with empty boundary) and G is a connected Lie group acting continuously on M.

An important role is played by the group [image: there is no content], the solvable group of real, upper triangulable [image: there is no content] matrices with positive diagonal entries. In his pioneering 1964 paper, E. Lima [11] constructed fixed-point free actions of [image: there is no content] on the compact 2-cell and the 2-sphere, but he also showed that every abelian Lie group action on a compact surface M of nonzero Euler characteristic [image: there is no content] has a fixed point. These results were extended in 1986 by Plante:


Theorem 3 
(Plante [12]). Let M be a compact surface whose boundary may be nonempty.


	(i) 

	[image: there is no content]has a fixed-point free action on M.



	(ii) 

	If [image: there is no content], every action on M by a connected nilpotent Lie group has a fixed point.







Many facts about existence of fixed points for continuous actions on closed surfaces can be derived from the results of M. Belliart summarized in the following theorem. If [image: there is no content] denotes a group of matrices, [image: there is no content] denotes the quotient of H by its center.




Theorem 4 
(Belliart [13]). There is a fixed-point free action of G on M iff one of the following conditions (a), (b), (c) holds:


	(a) 

	[image: there is no content]and G is solvable but not nilpotent.



	(b) 

	[image: there is no content]and G has [image: there is no content]as a quotient.



	(c) 

	[image: there is no content], G is semisimple, and either:


	(i) 

	G has [image: there is no content]as a quotient, or



	(ii) 

	[image: there is no content], [image: there is no content], and G has as a quotient one of the groups

PSL(3,R),PSL(2,C)or [image: there is no content].











A Lie algebra is supersolvable if it is faithfully represented as upper triangular real matrices. A Lie group is supersolvable if its Lie algebra is.




Theorem 5. 



	(i) 

	[image: there is no content]has an effective analytic action on M.



	(ii) 

	If G has an effective, fixed-point free analytic action on M, then [image: there is no content], with equality when G is a supersolvable and [image: there is no content].







Part (i) and the first conclusion in (ii) are due to Turiel [14]. The second conclusion in (ii) is due to Hirsch and Weinstein [15].

The following result gives upper and lower bounds on the number of fixed points of analytic actions of [image: there is no content]:


Proposition 1 
(Hirsch [16], Cor. 17, Thm 22).


	(i) 

	Let M have genus g. For every [image: there is no content]there is an effective analytic action β of [image: there is no content]on M such that:



#Fix(β)=2(g+k+1)ifMisorientable,g+kifMisnonorientableandg≥1.



(1)






	(ii) 

	If G is not supersolvable and has an effective analytic action on M,



[image: there is no content]

















Question. 
Can the right hand side of Equation (1) can be lowered?





4. Indices of Vector Fields

Let [image: there is no content] denote the vector space of vector fields (continuous sections of the tangent bundle) on a smooth manifold M, endowed with the compact open topology.

The zero set of [image: there is no content] is



[image: there is no content]








A block for X (an X-block) is a compact, relatively open set [image: there is no content]. Every sufficiently small open neighborhood [image: there is no content] of K is isolating for X, meaning its closure [image: there is no content] is compact and [image: there is no content]. This implies that U is isolating for every vector field Y sufficiently close to X.

Let K be an X-block. When K is finite, the Poincaré–Hopf index of X at K, and in U, is the integer iK[image: there is no content](X)=𝗂[image: there is no content](X,U) defined as follows. For each [image: there is no content] choose an open set [image: there is no content] meeting K only at p, such that W is the domain of a [image: there is no content] chart



ϕ:W≈W′⊂Rn,ϕ(p)=p′.








The transform of X by ϕ is


[image: there is no content]








There is a unique map of pairs


[image: there is no content]








that expresses [image: there is no content] by the formula


Xx′=x,Fp(x)∈{x}×Rn,(x∈W′).








Noting that [image: there is no content], we define 𝗂p[image: there is no content](X)∈Z as the degree of the map defined for any sufficiently small [image: there is no content] as



Sn−1→Sn−1,u↦Fp(∊u)∥Fp(∊u)∥








where [image: there is no content] is the norm defined by any Riemannian metric on M. This degree is independent of ∊ and the chart ϕ, by standard properties of the degree function. Therefore the integer


𝗂K[image: there is no content](X)=i[image: there is no content](X,U):=∑[image: there is no content]ip[image: there is no content](X)ifK≠⌀,0ifK=⌀.








is well defined and depends only on X and K.
The index of an arbitrary X-block K is the integer [image: there is no content] defined as the Poincaré–Hopf index of any sufficiently close approximation to X having only finitely many zeros in U [17].

This number is independent of U and is stable under perturbations of X. The X-block K is essential when [image: there is no content]. This implies [image: there is no content] because every isolating neighborhood of K meets [image: there is no content].




Theorem 6 
(Poincaré–Hopf). If M is compact, [image: there is no content]for all continuous vector fields X on M.



For calculations of the index in more general settings see Morse [18], Pugh [19], Gottlieb [20], Jubin [21].




Theorem 7 
(Bonatti [22]). Assume M is a real manifold of dimension [image: there is no content]with empty boundary, and [image: there is no content]are analytic vector fields on M such that [image: there is no content]. Then [image: there is no content]meets every essential X-block [23].



This implies certain local actions of 2-dimensional abelian Lie groups have fixed points. The results below are analogs for local actions of nonabelian Lie groups.




Theorem 8 
(Hirsch [24]). Let M be a real surface, perhaps non-compact or having non-empty boundary. Let G be a connected nilpotent Lie group and [image: there is no content]an effective local action. Assume given a continuous local action of G on M, and let K be an essential block for the local flow induced by a 1-parameter subgroup. Then [image: there is no content].



This implies Plante’s result, Theorem 3(ii).




Corollary 1. 
Let [image: there is no content]and X be as in Theorem 8.


	(i) 

	If [image: there is no content]is a compact attractor for [image: there is no content]and [image: there is no content], then [image: there is no content].



	(ii) 

	If [image: there is no content]has n essential blocks, then [image: there is no content] has n components.







The counter-example in Theorem 3(i) show that fixed point results for broader classes of Lie groups, including supersolvable groups, need stronger hypotheses.

Henceforth M denotes either a real or complex 2-manifold, the corresponding ground field being [image: there is no content] or [image: there is no content]. Let [image: there is no content] denote the Lie algebra of vector fields on M that are analytic over [image: there is no content]. If [image: there is no content], [image: there is no content] denotes the induced local flow on the tangent vector bundle of M.

Assume [image: there is no content]. We say that Y tracks X if there exists a continuous map



f:M→F,f−1(0)=[image: there is no content],[Y,X]=fX.








Equivalently: if [image: there is no content] and [image: there is no content] there exists [image: there is no content] such that:


[image: there is no content]








For real M this means [image: there is no content] sends orbits of X|D[image: there is no content] to orbits of X|R[image: there is no content].
Let [image: there is no content] denote a Lie algebra of vector fields. We say that [image: there is no content]tracks X provided each [image: there is no content] tracks X.




Example 1. 
If X spans an ideal in [image: there is no content] then [image: there is no content] tracks X, and the converse holds if [image: there is no content] is finite dimensional.






Example 2. 
The set [image: there is no content] is a Lie algebra that tracks X.



The following result will be proved in a forthcoming paper [25]; a preliminary version is in [26].




Theorem 9. 
Assume [image: there is no content], K is an essential X-bloc, and [image: there is no content]tracks X. Let one of the following conditions hold:


	(a) 

	M is complex,



	(b) 

	M is real and [image: there is no content]is supersolvable.





Then [image: there is no content].






Example 3. 
Here is a simple example in which the hypotheses hold. For M take complex projective 3-space. Let G be the solvable complex Lie group of unimodular 4× 4 upper triangular complex matrices. The natural action of G on [image: there is no content] induces an effective holomorphic action of G on M, mapping the Lie algebra of G isomorphically onto a Lie algebra [image: there is no content]. Let [image: there is no content] have the block [image: there is no content] in its upper right hand corner and all other elements equal to zero. X spans an ideal, the triple commutator subalgebra [image: there is no content]. The X-block [image: there is no content], a copy of [image: there is no content], is essential because [image: there is no content]; and [image: there is no content] is a singleton in [image: there is no content].
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