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Abstract:

 In order to obtain the conditions for the existence of periodic and almost periodic solutions of Volterra difference equations, x(n+1)=f(n,x(n))+∑s=−∞nF(n,s,x(n+s),x(n)), we consider certain stability properties, which are referred to as (K, ρ)-weakly uniformly-asymptotic stability and (K, ρ)-uniformly asymptotic stability. Moreover, we discuss the relationship between the ρ-separation condition and the uniformly-asymptotic stability property in the ρ sense.
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1. Introduction

For ordinary and functional differential equations, the existence of almost periodic solutions of almost periodic systems has been studied by many authors. One of the most popular methods is to assume certain stability properties [1,2,3,4,5,6,7,8]. Song and Tian [9] showed the existence of periodic and almost periodic solutions for nonlinear Volterra difference equations by means of the (K, ρ)-stability condition. Their results were extended to discrete Volterra equations by Hamaya [3]. For the existence theorem of almost periodic solutions in ordinary differential equations, Sell [10] introduced a new stability concept referred to as the weakly uniformly-asymptotic stability. This stability property is weaker than the uniformly-asymptotic stability (cf. [8]). The existence of almost periodic solutions of ordinary difference equation by using globally quasi-uniformly asymptotic stability has been recently studied [11].

In this paper, we discuss the relationship between weakly uniformly-asymptotic stability and uniformly-asymptotic stability of periodic and almost periodic Volterra difference equations. We also show that for periodic Volterra difference equations, (K, ρ)-weakly uniformly-asymptotic stability and (K, ρ)-uniformly-asymptotic stability are equivalent. Moreover, we obtain the conditions for the existence of almost periodic solutions of Volterra difference equations by using this (K, ρ)-weakly uniformly-asymptotically-stable in the hull. The relationship between our weakly uniformly-asymptotic stability and globally quasi-uniformly-asymptotic stability described in [11] is very complicated; however, the definition of our stability is clearer and simpler than that in [11]. In the next section, as an application, we show the existence of almost periodic solutions for a Ricker-type Volterra difference equation with infinite delay by using the technique of an invariant set and luxury Lyapunov functionals. For the finite delay case, Xu [12] showed sufficient conditions for determining the invariant and attracting sets and the globally uniformly-asymptotic stability of Volterra difference equations, as well as providing useful examples to illustrate the results obtained above. Finally, we consider the relationship between the ρ-separation condition and (K, ρ)-uniformly-asymptotic stability property. It can be seen that the results of our theorem hold for the integrodifferential equations described in [3,4,5].

Let [image: there is no content] denote Euclidean m-space; [image: there is no content] is the set of integers; [image: there is no content]+ is the set of nonnegative integers; and [image: there is no content] will denote the Euclidean norm in [image: there is no content]. For any interval I⊂[image: there is no content], we denote by [image: there is no content] the set of all bounded functions mapping I into [image: there is no content] and set [image: there is no content]

Now, for any function x:(−∞,a)→[image: there is no content] and [image: there is no content], define a function xn:[image: there is no content]−={s|s∈[image: there is no content], −∞<s≤0}→[image: there is no content] by [image: there is no content] for s∈[image: there is no content]−. Let [image: there is no content] be a real linear space of functions mapping [image: there is no content]− into [image: there is no content] with sup-norm:



BS={ϕ|ϕ:[image: there is no content]−→[image: there is no content]with|ϕ|=sups∈[image: there is no content]−|ϕ(s)|<∞}








We introduce an almost periodic function f(n,x):[image: there is no content]×D→[image: there is no content], where D is an open set in [image: there is no content].

Definition 1. [image: there is no content] is said to be almost periodic in n uniformly for [image: there is no content], if for any [image: there is no content] and any compact set K in D, there exists a positive integer [image: there is no content], such that any interval of length [image: there is no content] contains an integer τ for which:



[image: there is no content]








for all n∈[image: there is no content] and all [image: there is no content]. Such a number τ in the above inequality is called an ϵ-translation number of [image: there is no content]
In order to formulate a property of almost periodic functions (this is equivalent to Definition 1), we discuss the concept of the normality of almost periodic functions. Namely, let [image: there is no content] be almost periodic in n uniformly for [image: there is no content]. Then, for any sequence {hk′}⊂[image: there is no content], there exist a subsequence [image: there is no content] of {hk′} and a function [image: there is no content], such that:



[image: there is no content]



(1)




uniformly on [image: there is no content][image: there is no content] as [image: there is no content], where K is a compact set in D. There are many properties of the discrete almost periodic functions [13], which are corresponding properties of the continuous almost periodic functions f(t,x)∈C(R×D,[image: there is no content]) [2,8]. We shall denote by [image: there is no content] the function space consisting of all translates of f, that is [image: there is no content], where:


fτ(n,x)=f(n+τ,x),τ∈[image: there is no content]



(2)




Let [image: there is no content] denote the uniform closure of [image: there is no content] in the sense of (2). [image: there is no content] is called the hull of [image: there is no content] In particular, we denote by [image: there is no content] the set of all limit functions [image: there is no content], such that for some sequence [image: there is no content], [image: there is no content] as [image: there is no content] and [image: there is no content] uniformly on [image: there is no content][image: there is no content] for any compact subset S in [image: there is no content]. By (1), if f:[image: there is no content]×D→[image: there is no content] is almost periodic in n uniformly for [image: there is no content], so is a function in [image: there is no content]. The following concept of asymptotic almost periodicity was introduced by Frechet in the case of continuous functions (cf. [2,8]).

Definition 2. [image: there is no content] is said to be asymptotically almost periodic if it is a sum of an almost periodic function [image: there is no content] and a function [image: there is no content] defined on I*=[a,∞)⊂[image: there is no content]+={l∈[image: there is no content]|[image: there is no content], which tends to zero as [image: there is no content], that is,



[image: there is no content]








[image: there is no content] is asymptotically almost periodic if and only if for any sequence [image: there is no content], such that [image: there is no content] as [image: there is no content], there exists a subsequence [image: there is no content] for which [image: there is no content] converges uniformly on [image: there is no content].


2. Preliminaries

We consider a system of Volterra difference equations:



[image: there is no content]



(3)




where f:[image: there is no content]×[image: there is no content]→[image: there is no content] is continuous in the second variable x∈[image: there is no content] and F:[image: there is no content]×[image: there is no content]−×[image: there is no content]×[image: there is no content] is continuous for x∈[image: there is no content] and y∈[image: there is no content].
We impose the following assumptions on Equation (3):

(H1) [image: there is no content] and [image: there is no content] are ω-periodic functions, such that there is an [image: there is no content], such that [image: there is no content] for all n∈[image: there is no content], x∈[image: there is no content] and [image: there is no content] for all n∈[image: there is no content], s∈[image: there is no content]−, x∈[image: there is no content] and y∈[image: there is no content].

(H2) [image: there is no content] is almost periodic in n uniformly for x∈[image: there is no content], and [image: there is no content] is almost periodic in n uniformly for [image: there is no content], that is for any [image: there is no content] and any compact set [image: there is no content], there exists an integer [image: there is no content], such that any interval of length [image: there is no content] contains a τ for which:



[image: there is no content]








for all n∈[image: there is no content] and all [image: there is no content].
(H3) For any [image: there is no content] and any [image: there is no content], there exists an [image: there is no content], such that:



[image: there is no content]








for all n∈[image: there is no content], whenever [image: there is no content] for all [image: there is no content].
(H4) Equation (3) has a bounded unique solution [image: there is no content] defined on [image: there is no content]+, which passes through [image: there is no content], that is [image: there is no content] and [image: there is no content]

Now, we introduce ρ-stability properties with respect to the compact set K.

Let K be the compact set in [image: there is no content], such that [image: there is no content] for all n∈[image: there is no content], where [image: there is no content] for [image: there is no content]. For any [image: there is no content], we set:



[image: there is no content]








where:


[image: there is no content]








Clearly, [image: there is no content] as [image: there is no content] if and only if [image: there is no content] uniformly on any compact subset of [image: there is no content]− as [image: there is no content]

We denote by [image: there is no content] the space of bounded functions ϕ:[image: there is no content]−→[image: there is no content] with ρ.

In what follows, we need the following 10 definitions of stability.

Definition 3. The bounded solution [image: there is no content] of Equation (3) is said to be:

(i) (K, ρ)-uniformly stable (in short, (K, ρ)-US) if for any [image: there is no content], there exists a [image: there is no content], such that if [image: there is no content], [image: there is no content], then [image: there is no content] for all [image: there is no content], where [image: there is no content] is a solution of (3) through [image: there is no content], such that [image: there is no content] for all [image: there is no content]. In the case above where [image: there is no content] depends on the initial time [image: there is no content], this only gives the definition of the (K, ρ)-stable of [image: there is no content] (in short, (K, ρ)-S).

(ii) (K, ρ)-equi-asymptotically stable (in short, (K, ρ)-EAS) if it is (K, ρ)-S and for any [image: there is no content], there exists a [image: there is no content] and a [image: there is no content], such that if [image: there is no content], [image: there is no content], then [image: there is no content] for all [image: there is no content], where [image: there is no content] is a solution of (3) through [image: there is no content], such that [image: there is no content] for all [image: there is no content].

(iii) (K, ρ)-weakly uniformly-asymptotically stable (in short, (K, ρ)-WUAS) if it is (K, ρ)-US and there exists a [image: there is no content], such that if [image: there is no content], [image: there is no content], then [image: there is no content] as [image: there is no content], where [image: there is no content] is a solution of (3) through [image: there is no content], such that [image: there is no content] for all [image: there is no content].

(iv) (K, ρ)-uniformly-asymptotically stable (in short, (K, ρ)-UAS) if it is (K, ρ)-US and is (K, ρ)-quasi-uniformly-asymptotically stable, that is, if the [image: there is no content] and the T in the above (iii) are independent of [image: there is no content]: for any [image: there is no content] there exists a [image: there is no content] and a [image: there is no content], such that if [image: there is no content], [image: there is no content], then [image: there is no content] for all n≥[image: there is no content]+T(ϵ), where [image: there is no content] is a solution of (3) through [image: there is no content], such that [image: there is no content] for all [image: there is no content].

(v) (K, ρ)-globally equi-asymptotically-stable (in short, (K, ρ)-GEAS) if it is (K, ρ)-S and for any [image: there is no content] and any [image: there is no content], there exists a T([image: there is no content],ϵ,α)>0, such that if [image: there is no content], ρ(x[image: there is no content],u[image: there is no content])<α, then [image: there is no content] for all n≥[image: there is no content]+T([image: there is no content],ϵ,α), where [image: there is no content] is a solution of (3) through [image: there is no content], such that [image: there is no content] for all [image: there is no content].

(vi) (K, ρ)-globally weakly uniformly-asymptotically stable (in short, (K, ρ)-GWUAS) if it is (K, ρ)-US and [image: there is no content] as [image: there is no content], where [image: there is no content] is a solution of (3) through [image: there is no content], such that [image: there is no content] for all [image: there is no content].

(vii) (K, ρ)-globally uniformly-asymptotically stable (in short, (K, ρ)-GUAS) if it is (K, ρ)-US and is (K, ρ)-globally quasi-uniformly-asymptotically stable, that is, if the T in the above (vi) are independent of [image: there is no content]: for any [image: there is no content] and [image: there is no content], there exists a [image: there is no content], such that if [image: there is no content], ρ(x[image: there is no content],u[image: there is no content])<α, then [image: there is no content] for all n≥[image: there is no content]+T(ϵ,α), where [image: there is no content] is a solution of (3) through [image: there is no content], such that [image: there is no content] for all [image: there is no content].

(viii) (K, ρ)-totally stable (in short, (K, ρ)-TS) if for any [image: there is no content], there exists a [image: there is no content] and such that if [image: there is no content], [image: there is no content] and h∈BS([[image: there is no content],∞)), which satisfies |h|[[image: there is no content],∞)<δ(ϵ), then [image: there is no content] for all [image: there is no content], where [image: there is no content] is a solution of:



[image: there is no content]








through [image: there is no content], such that [image: there is no content] for all [image: there is no content]. In the case where [image: there is no content], this gives the definition of the (K, ρ)-US of [image: there is no content].
(ix) (K, ρ)-attracting in [image: there is no content] (cf. [12], in short, (K, ρ)-A in [image: there is no content]), if there exists a [image: there is no content], such that if [image: there is no content] and any [image: there is no content], ρ(x[image: there is no content],v[image: there is no content])<[image: there is no content], then [image: there is no content] as [image: there is no content], where [image: there is no content] is a solution of:



[image: there is no content]



(4)




through ([image: there is no content],ψ), such that x[image: there is no content](s)=ψ(s)∈K for all [image: there is no content].
(x) (K, ρ)-weakly uniformly-asymptotically stable in [image: there is no content] (in short, (K, ρ)-WUAS in [image: there is no content]), if it is (K, ρ)-US in [image: there is no content], that is if for any [image: there is no content], there exists a [image: there is no content], such that if [image: there is no content] and any [image: there is no content], ρ(x[image: there is no content],v[image: there is no content])<δ(ϵ), then [image: there is no content] for all [image: there is no content], where [image: there is no content] is a solution of (4) through ([image: there is no content],ψ), such that x[image: there is no content](s)=ψ(s)∈K for all [image: there is no content] and (K, ρ)-A in [image: there is no content].

When we restrict the solutions x to the ones in K, i.e., [image: there is no content] for all [image: there is no content], then we can say that [image: there is no content] is (K, ρ)-relatively weakly uniformly-asymptotically stable in [image: there is no content] (i.e., (K, ρ)-RWUAS in [image: there is no content], and so on). For (iii) and (iv) in Definition 3, (K, ρ)-WUAS is weaker than (K, ρ)-UAS, as shown in Example 3.1 in [8].



3. Stability of Bounded Solutions in Periodic and Almost Periodic Systems

Theorem 1. Under the Assumptions (H3) and (H4), if the bounded solution [image: there is no content] of Equation (3) is (K, ρ)-WUAS, then it is (K, ρ)-EAS.

Proof. Since solution [image: there is no content] of Equation (3) is (K, ρ)-US, [image: there is no content] is (K, ρ)-S. Suppose that there is no such T in (ii) of Definition 3. Then, there exist some ϵ>0,[image: there is no content]≥0 and sequences [image: there is no content],[image: there is no content], such that ρ(u[image: there is no content],x[image: there is no content]k)≤[image: there is no content],nk→∞ as [image: there is no content] and:



[image: there is no content]



(5)




where [image: there is no content] is a solution of Equation (3) through ([image: there is no content],x[image: there is no content]k). On any interval [[image: there is no content],[image: there is no content]+l], l∈[image: there is no content]+, the sequence [image: there is no content] is uniformly bounded, since x[image: there is no content]k(s)→x[image: there is no content](s) uniformly on any compact set in {s∈[image: there is no content]−|−∞<s≤[image: there is no content]} as [image: there is no content] if necessary taking a subsequence of [image: there is no content], and hence, we can find a solution [image: there is no content] through ([image: there is no content],x[image: there is no content]) of (3) defined for all [image: there is no content] by Assumptions (H3) and (H4), where ρ(x[image: there is no content],u[image: there is no content])≤[image: there is no content]. Moreover, there exists a subsequence of [image: there is no content], such that [image: there is no content] tends to [image: there is no content] as [image: there is no content] through ([image: there is no content],x[image: there is no content]) uniformly on any compact interval. Since, for every solution [image: there is no content], [image: there is no content] as [image: there is no content], we have at some [image: there is no content]≥[image: there is no content]:


[image: there is no content]



(6)




where [image: there is no content] is the one for (K, ρ)-US in (i) of Definition 3. Denoting by [image: there is no content] through ([image: there is no content],x[image: there is no content]k) the subsequence again, if k is sufficiently large, we have:


[image: there is no content]



(7)




From (7) and (6), it follows that [image: there is no content]. Therefore, by the (K, ρ)-US of [image: there is no content], we have:



[image: there is no content]








for all [image: there is no content], which contradicts (5). This proves the theorem.
For the periodic system, we have the following theorem.

Theorem 2. Under Assumptions (H1), (H3) and (H4), if the bounded solution [image: there is no content] of Equation (3) is (K, ρ)-WUAS, then it is (K, ρ)-UAS.

Proof. Since [image: there is no content] is (K, ρ)-US, there exists a [image: there is no content], such that [image: there is no content] is a positive integer and ρ(x[image: there is no content],u[image: there is no content])≤[image: there is no content] implies ρ(un,xn)<[image: there is no content]2 for all [image: there is no content], where [image: there is no content] is the one in (iii) of Definition 3. Suppose that for this [image: there is no content], solution [image: there is no content] is not (K, ρ)-UAS. Then, for some [image: there is no content], there exist sequences [image: there is no content] and [image: there is no content], such that [image: there is no content], [image: there is no content] as [image: there is no content], where [image: there is no content] is a positive integer, and:



ρ(u[image: there is no content]ω,x[image: there is no content]ω[image: there is no content])<[image: there is no content]2



(8)




and:


ρ(u[image: there is no content]ω+τ[image: there is no content],x[image: there is no content]ω+τ[image: there is no content][image: there is no content])≥ϵ



(9)




where x[image: there is no content](n) is a solution of (3) through (kjω,x[image: there is no content]ω[image: there is no content]). Clearly, by (H4), [image: there is no content] is a bounded solution of (3) passing through ([image: there is no content]ω,u[image: there is no content]ω), and hence, there is a subsequence [image: there is no content] of {[image: there is no content]} and u[image: there is no content], such that [image: there is no content] monotonically as [image: there is no content] and umjω→u[image: there is no content] as [image: there is no content]. Then, there exists an integer [image: there is no content], such that if [image: there is no content], we have ρ(umjω,u[image: there is no content])<[image: there is no content]4. Thus, for any [image: there is no content], we have:


ρ(umjω,umpω)<[image: there is no content]2



(10)




From (8) with [image: there is no content]=mj and (10), it follows that:



ρ(xmjωmj,umpω)<[image: there is no content]








By Theorem 1, there exists a [image: there is no content], such that:



[image: there is no content]








for all [image: there is no content] and where [image: there is no content] is a solution of (3) through [image: there is no content] and:


[image: there is no content]








for all [image: there is no content] and where [image: there is no content] is a solution of (3) through [image: there is no content]. This implies that:


[image: there is no content]



(11)




for all [image: there is no content]. Since ω is the period and [image: there is no content] are integers, it follows from (11) that for any [image: there is no content]:


[image: there is no content]








for all [image: there is no content]. This contradicts (9), because [image: there is no content] depends only on ϵ. This completes the proof.
The following lemma is needed for the proofs of Theorems 3,5 and 8.

Lemma 1. When [image: there is no content], [image: there is no content] is a solution defined on [image: there is no content] of:



[image: there is no content]








and [image: there is no content] for all n∈[image: there is no content].
Proof. Since [image: there is no content], there exists a sequence [image: there is no content], [image: there is no content] as [image: there is no content], such that:



[image: there is no content]








uniformly on [image: there is no content]×K for any compact set K⊂[image: there is no content]:


[image: there is no content]








uniformly on [image: there is no content]×[image: there is no content]*×K×K for any compact subset [image: there is no content]* in [image: there is no content]− and:


[image: there is no content]








uniformly on any compact subset in Z as [image: there is no content]. Set [image: there is no content]. Then, [image: there is no content] is a solution defined for [image: there is no content] of:


[image: there is no content]



(12)




through [image: there is no content], [image: there is no content], [image: there is no content]. There exists an [image: there is no content], such that [image: there is no content] and [image: there is no content] for all n∈[image: there is no content], [image: there is no content]. Then, by Assumption (H3), for this r and any [image: there is no content], there exists an integer [image: there is no content], such that:


∑s=−∞−S|F(n,s,uk(n+s),uk(n))|≤ϵand∑s=−∞−S|G(n,s,v(n+s),v(n))|≤ϵ








Then, we have:



|∑s=−∞0F(n,s,uk(n+s),uk(n))−∑s=−∞0G(n,s,v(n+s),v(n))|≤∑s=−∞−S|F(n,s,uk(n+s),uk(n))|+∑s=−∞−S|G(n,s,v(n+s),v(n))|+∑s=−S0|F(n,s,uk(n+s),uk(n))−G(n,s,v(n+s),v(n))|≤2ϵ+∑s=−S0|F(n,s,uk(n+s),uk(n))−G(n,s,v(n+s),v(n))|








Since [image: there is no content] and [image: there is no content] are continuous for [image: there is no content] and [image: there is no content] converges to [image: there is no content] on discrete interval {s∈[image: there is no content]−|, [image: there is no content] as [image: there is no content], there exists an integer [image: there is no content], such that:



[image: there is no content]








when [image: there is no content]. Thus, we have:


[image: there is no content]








as [image: there is no content], because [image: there is no content] uniformly on any compact set in [image: there is no content]. Therefore, by letting [image: there is no content] in (12), [image: there is no content] is a solution of (4) on [image: there is no content] and [image: there is no content].
For the almost periodic System Equation (3), we have the following theorem.

Theorem 3. Under the above Assumptions (H2), (H3) and (H4), if the zero solution [image: there is no content] of Equation (3) is (K, ρ)-WUAS, then it is (K, ρ)-UAS.

Proof. Since the zero solution is (K, ρ)-US, there exists a δ([image: there is no content])>0, such that ρ(x[image: there is no content],0)≤δ([image: there is no content]) implies ρ(xn,0)<[image: there is no content] for all n≥[image: there is no content]≥0, where [image: there is no content] is a solution of (3) through ([image: there is no content],x[image: there is no content]) and [image: there is no content] is the number given in (iii) of Definition 3. Let [image: there is no content] be given. We shall now show that there exists a number [image: there is no content], such that x[image: there is no content](s)∈K, [image: there is no content], ρ(x[image: there is no content],0)≤δ([image: there is no content]), and for any [image: there is no content], there exists an [image: there is no content], [image: there is no content]≤[image: there is no content]≤[image: there is no content]+T(ϵ), such that ρ(x[image: there is no content],0)<δ(ϵ), where [image: there is no content] is the one for the (K, ρ)-US of [image: there is no content]. Then, clearly it will follow that [image: there is no content] for n≥[image: there is no content]+T(ϵ), which shows that the zero solution is (K, ρ)-UAS.

Suppose that there is no [image: there is no content]. Then, for each integer [image: there is no content], there exist a function [image: there is no content], [image: there is no content] and an [image: there is no content], such that ρ(xnkk,0)≤δ([image: there is no content]) and [image: there is no content] for all [image: there is no content], where [image: there is no content] is a solution of (3) through [image: there is no content]. Letting [image: there is no content], [image: there is no content] is a solution of:



[image: there is no content]








through [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] on [image: there is no content]. Since ρ(xnkk,0)≤δ([image: there is no content]), ρ(ynk,0)≤[image: there is no content], [image: there is no content] is almost periodic in n uniformly for x∈[image: there is no content] and [image: there is no content] is almost periodic in n uniformly for [image: there is no content] for any compact set [image: there is no content]⊂[image: there is no content]−×[image: there is no content]×[image: there is no content], there exist an initial function x[image: there is no content], functions [image: there is no content], [image: there is no content], [image: there is no content] and a subsequence {[image: there is no content]} of [image: there is no content], such that:


xn[image: there is no content][image: there is no content](s)→x[image: there is no content](s)








uniformly on any compact interval in [image: there is no content]−,


f(n+n[image: there is no content],x)→g(n,x)








uniformly on [image: there is no content]×K for any compact set:


K={x∈[image: there is no content]||x|≤[image: there is no content]}










F(n+n[image: there is no content],s,x,y)→G(n,s,x,y)








uniformly on any compact set on:


[image: there is no content]−×K×K








and:


y[image: there is no content](n)→z(n)








uniformly on any compact interval in [image: there is no content]+ as [image: there is no content]. By Lemma 1, [image: there is no content] is a solution of:


[image: there is no content]








which is defined on n∈[image: there is no content]+, [image: there is no content] for [image: there is no content] and passes through [image: there is no content]. For fixed [image: there is no content], there is a j sufficiently large, so that:


ρ(yn[image: there is no content],0)−ρ(yn[image: there is no content],zn)≤ρ(zn,0)








Since ρ(yn[image: there is no content],0)≥δ(ϵ) and ρ(yn[image: there is no content],zn)<[image: there is no content]2 for large j, we have:



ρ(zn,0)>[image: there is no content]2for alln≥0



(13)




Moreover, clearly:



ρ(zn,0)≤[image: there is no content]for alln≥0



(14)




Since [image: there is no content] is in [image: there is no content], [image: there is no content] is in [image: there is no content] and, hence, there exists a sequence [image: there is no content], such that [image: there is no content] as [image: there is no content] and [image: there is no content] uniformly for n∈[image: there is no content] and [image: there is no content] and [image: there is no content] uniformly for n∈[image: there is no content] and [image: there is no content] as [image: there is no content]. If we set [image: there is no content], [image: there is no content] is a solution through [image: there is no content] of:



[image: there is no content]








Since ρ(zn,0)≤[image: there is no content] for all [image: there is no content], [image: there is no content] is uniformly bounded. Hence, there exists a subsequence [image: there is no content] of [image: there is no content], such that:



g(n+τ[image: there is no content],x)→f(n,x)








uniformly for n∈[image: there is no content] and [image: there is no content],


G(n+τ[image: there is no content],s,x,y)→F(n,s,x,y):








uniformly for n∈[image: there is no content], s∈[image: there is no content]−,


[image: there is no content]








and:


v[image: there is no content](n)→w(n)








on any compact interval in [image: there is no content] as [image: there is no content]. Here, we can see that [image: there is no content] is a solution of (3), by Lemma 1. For fixed [image: there is no content], there exists a j so large that:


ρ(wn,0)≥ρ(vn[image: there is no content],0)−ρ(vn[image: there is no content],wn)≥[image: there is no content]2−[image: there is no content]4=[image: there is no content]4



(15)




because τ[image: there is no content]>0 for j sufficiently large and ρ(vn[image: there is no content],0)=ρ(zn+τ[image: there is no content],0)≥[image: there is no content]2 by (13). Moreover, by (14), we have ρ(w0,0)≤[image: there is no content]. However, this implies that [image: there is no content] as [image: there is no content]; this contradicts (15). This proves the theorem.
The following corollary can be proven by the same argument as in the proof of Theorem 1.

Corollary 1. Under Assumptions (H3) and (H4), if the bounded solution [image: there is no content] of Equation (3) is (K, ρ)-GWUAS, then it is (K, ρ)-GEAS.

Theorem 4. Assume Conditions (H1), (H3) and (H4). If the solution [image: there is no content] of Equation (3) is (K, ρ)-GWUAS, then the solution [image: there is no content] of Equation (3) is (K, ρ)-GUAS.

Proof. Since we have a bounded solution [image: there is no content] of Equation (3) by (H4), let [image: there is no content] be such that [image: there is no content] for all [image: there is no content] and [image: there is no content] for all [image: there is no content]. Then, we can take [image: there is no content] for all [image: there is no content] and [image: there is no content] for all [image: there is no content] from the definition of ρ. Since [image: there is no content] and [image: there is no content] is (K, ρ)-GEAS by Corollary 1, we can show that the solution of (3) is (K, ρ)-equi-bounded. Therefore, for any [image: there is no content] and [image: there is no content], we can find a [image: there is no content], such that if [image: there is no content] and ρ(x[image: there is no content],u[image: there is no content])≤α, then [image: there is no content] for all [image: there is no content].

By the assumption of (K, ρ)-GWUAS, [image: there is no content] is (K, ρ)-US, and hence, it is sufficient to show that for any [image: there is no content] and [image: there is no content], there exists a [image: there is no content], such that if ρ(x[image: there is no content],u[image: there is no content])≤α, then:



ρ(xn,un)<ϵfor alln≥[image: there is no content]+T(ϵ,α)








To do this, given [image: there is no content], if 0≤[image: there is no content]<ω and ρ(x[image: there is no content],u[image: there is no content])≤2B*+α, then:



[image: there is no content]








By (K, ρ)-GEAS, there exists a [image: there is no content], such that if [image: there is no content], then ρ(xn,un)<ϵ2 for all [image: there is no content].

Now, consider a solution [image: there is no content] of (3), such that ρ(x[image: there is no content],u[image: there is no content])≤α and kω≤[image: there is no content]<(k+1)ω, where [image: there is no content]. Since System (3) is periodic in n of period ω by (H1), we have:



x(n)=x(n−kω),n≥[image: there is no content]



(16)




and x[image: there is no content](s)=x[image: there is no content]−kω(s)∈K for all [image: there is no content]. Moreover, [image: there is no content] also is a solution of (3), such that [image: there is no content] for all [image: there is no content], which we shall denote by [image: there is no content] through [image: there is no content]. Then, we have:


[image: there is no content]








and hence, we have:


ρ(vn,un)<ϵ2for alln≥ω+T1(ω,ϵ2,α)



(17)




Since ρ(x[image: there is no content],u[image: there is no content])≤α and u([image: there is no content])=v([image: there is no content]−kω) through (0,u[image: there is no content]k), it follows from Equation (16) that:



ρ(x[image: there is no content]−kω,v[image: there is no content]−kω)≤α








which implies that ρ(x[image: there is no content]−kω,u[image: there is no content]−kω)≤2B*+α, because ρ(v[image: there is no content]−kω,u[image: there is no content]−kω)≤2B*. Therefore, we have:


[image: there is no content]



(18)




for all [image: there is no content] since 0≤[image: there is no content]−kω<ω. From (17), it follows that:


[image: there is no content]



(19)




for all [image: there is no content]. Thus, by (18) and (19):


[image: there is no content]








for all [image: there is no content], which implies that:


[image: there is no content]








for all n≥[image: there is no content]+T(ϵ,α), where [image: there is no content], because [image: there is no content]≥kω. Thus, we see that the solution [image: there is no content] is (K, ρ)-UAS.
For the ordinary differential equation, it is well known that an example in ([8], pp. 81) is of a scalar almost periodic equation, such that the zero solution is GWUAS, but is not GUAS.

We say that Equation (3) is regular, if the solutions of every limiting Equation (4) of (3) are unique for the initial value problem.

Theorem 5. Under Assumptions (H2), (H3) and (H4), if Equation (3) is regular and the unique solution [image: there is no content] of Equation (3) is (K, ρ)-RWUAS in [image: there is no content], then the solution [image: there is no content] of Equation (3) is (K, ρ)-RTS.

Proof. Suppose that [image: there is no content] is not (K, ρ)-RTS. Then, there exists a small [image: there is no content], 0<1/k<ϵ<[image: there is no content], where [image: there is no content] is the number for (K, ρ)-A in [image: there is no content] of (ix) in Definition 3, and sequences {[image: there is no content]}⊂[image: there is no content]+, [image: there is no content], [image: there is no content] and [image: there is no content], such that ϕk:(−∞,[image: there is no content]]→[image: there is no content] and [image: there is no content]→[image: there is no content] are bounded functions satisfying [image: there is no content] for [image: there is no content] and:



ρ(u[image: there is no content],x[image: there is no content]k)<1k,ρ(un,xnk)<ϵ,n∈[[image: there is no content],[image: there is no content]+rk−1)andρ(u[image: there is no content]+rk,x[image: there is no content]+rkk)=ϵ,



(20)




for sufficient large k, where [image: there is no content] is a solution of:


x(n+1)=f(n,x(n))+∑s=−∞0F(n,s,x(n+s),x(n))+hk(n),n≥[image: there is no content]








passing through [image: there is no content], such that [image: there is no content] for all [image: there is no content] and [image: there is no content], where [image: there is no content] is the compact set, such that [image: there is no content]=[image: there is no content] for some [image: there is no content]; here, [image: there is no content] denotes the closure of the [image: there is no content] -neighborhood N([image: there is no content],K) of K, and we let this [image: there is no content] denote K again. Since K is a compact set of [image: there is no content], it follows that for k≥1,{xk([image: there is no content]+rk+n)} and [image: there is no content] are uniformly bounded for all [image: there is no content] and [image: there is no content]. We first consider the case where [image: there is no content][image: there is no content],rk→∞ as [image: there is no content]. Taking a subsequence if necessary, we may assume from (H2) and the properties of almost periodic functions in [image: there is no content] that there exists a [image: there is no content], such that f(n+[image: there is no content]+rk,x)→g(n,x) uniformly on [image: there is no content]+×K, F(n+[image: there is no content]+rk,s,x,y)→G(n,s,x,y) uniformly on [image: there is no content]+×[image: there is no content], xk(n+[image: there is no content]+rk)→z(n) uniformly on [image: there is no content]+ and u(n+[image: there is no content]+rk)→v(n) uniformly on [image: there is no content]+, as [image: there is no content], where z,v:Z+→[image: there is no content] are some bounded functions. Since:


xk(n+[image: there is no content]+rk+1)=f(n+[image: there is no content]+rk,xk(n+[image: there is no content]+rk))+∑s=−∞0F(n+[image: there is no content]+rk,s,xk(n+[image: there is no content]+rk+s),xk(n+[image: there is no content]+rk))+hk(n+[image: there is no content]+rk)








such that [image: there is no content] for all [image: there is no content], passing to the limit as [image: there is no content], by Lemma 1, we conclude that [image: there is no content], for [image: there is no content], is the solution of the following equation of:


x(n+1)=g(n,x(n))+∑s=−∞0G(n,s,x(n+s),x(n)),n∈[image: there is no content]+



(21)




Similarly, [image: there is no content] for [image: there is no content] is also a solution of Equation (21). By [image: there is no content], x[image: there is no content]+rkk→z0 and u[image: there is no content]+rk→v0 in [image: there is no content] as [image: there is no content]. It follows from (20) that we have:



ρ(v0,z0)=lim[image: there is no content]ρ(u[image: there is no content]+rk,x[image: there is no content]+rkk)=ϵ<[image: there is no content]



(22)




Notice that [image: there is no content], for [image: there is no content], is a solution of Equation (21) passing through [image: there is no content], and [image: there is no content] is RWUAS of limiting Equation (21) by [image: there is no content] and the similar result of Lemma 3 in [4]. Then, we obtain [image: there is no content] as [image: there is no content]. This is a contradiction to (22). Thus, the sequence [image: there is no content] must be bounded. We can assume that, taking a subsequence if necessary, [image: there is no content] as [image: there is no content]. Moreover, we may assume that xk([image: there is no content]+n)→z˜(n) and u([image: there is no content]+n)→v˜(n) for each n∈[image: there is no content], and f(n+[image: there is no content],ϕk)→g˜(n,ϕ) uniformly on [image: there is no content]+×K, F(n+[image: there is no content],s,ϕk,ϕk)→G˜(n,s,ϕ,ϕ) uniformly on [image: there is no content]+×[image: there is no content], for [image: there is no content]. Since u[image: there is no content]→v0˜ and x[image: there is no content]k→z0˜=ϕ(s) in [image: there is no content] as [image: there is no content], we have:



ρ(v0˜,z0˜)=lim[image: there is no content]ρ(u[image: there is no content],x[image: there is no content]k)=0








by (20), and hence, we have [image: there is no content], that is [image: there is no content] for all [image: there is no content]. Moreover, [image: there is no content] and [image: there is no content] satisfy the same equation of:


[image: there is no content]








The uniqueness of the solutions for the initial value problems implies that [image: there is no content] for [image: there is no content], and hence, we have [image: there is no content]. On the other hand, and again from (20), we have:



ρ(v˜r0,z˜r0)=lim[image: there is no content]ρ(u[image: there is no content]+rk,x[image: there is no content]+rkk)=ϵ








This is a contradiction. This shows that [image: there is no content] is (K, ρ)-RTS.

We have the following existence theorem of an almost periodic solution for Equation (3).

Theorem 6. Under Assumptions (H2), (H3) and (H4), if Equation (3) is regular and the unique solution [image: there is no content] of Equation (3) is (K, ρ)-RWUAS in [image: there is no content], then Equation (3) has an almost periodic solution.

Proof. From Theorem 5, the unique solution [image: there is no content] of Equation (3) is (K, ρ)-RTS. Thus, by Theorem 1 and 2 in [14], we have an almost periodic solution.



4. Applications in a Prey-Predator Model

We consider the existence of an almost periodic solution of a system with a strictly positive component of Volterra difference equation:



[image: there is no content]








which describes a model for the dynamics of a prey-predator discrete system in mathematical ecology. We can regard Equation (3) as the following functional difference equation with axiomatic phase space B and (K, ρ) topology (cf. [14]):


x(n+1)=h(n,xn),n∈[image: there is no content]+



(23)




where h:[image: there is no content]+×B→[image: there is no content]. Then, we also hold Theorems 1, 3, 5 and 6 for (23), and we can treat System (E) as an application of Equation (3). In (E), setting [image: there is no content] and [image: there is no content] are R-valued bounded almost periodic function in [image: there is no content], ai=infn∈[image: there is no content]ai(n),Ai=supn∈[image: there is no content]ai(n),bi=infn∈[image: there is no content]bi(n),Bi=supn∈[image: there is no content]bi(n),ci=infn∈[image: there is no content]ci(n) and Ci=supn∈[image: there is no content]ci(n)(i=1,2), and Ki:[image: there is no content]+[image: there is no content] denote delay kernels, such that:


Ki(s)≥0,∑s=0∞Ki(s)=1and∑s=0∞sKi(s)<∞(i=1,2)








We set:



α1=exp{B1−1}/a1,α2=exp{−b2+C1α1−1}/a2,β1=min{exp{b1−A1α1−C2α2}(b1−C2α2)/A1,{b1−C2α2}/A1}








and:


β2=min{exp{−B2−A2α2+c1β1}(−B2+c1β1)/A2,{−B2+c1β1}/A2}








(cf. [4], and 4 Applications in population dynamic systems in [11]). We now make the following assumptions:
(i) [image: there is no content], bi>0(i=1,2) and [image: there is no content], [image: there is no content],

(ii) b1>C2α2andB2<c1β1,

(iii) there exists a positive constant m, such that:



ai>Ci+m(i=1,2)








Then, we have [image: there is no content] for each [image: there is no content]. If [image: there is no content] is a solution of (E) through [image: there is no content], such that [image: there is no content] for all [image: there is no content], then we have [image: there is no content] for all [image: there is no content]. Let K be the closed bounded set in [image: there is no content], such that:



K={(x1,x2)∈[image: there is no content];βi≤xi≤αifor eachi=1,2}








Then, K is invariant for System (E), that is we can see that for any [image: there is no content]∈[image: there is no content] and any φ, such that [image: there is no content], [image: there is no content], every solution of (E) through ([image: there is no content],φ) remains in K for all [image: there is no content]. Hence, K is invariant for its limiting equations. Now, we shall see that the existence of a strictly positive almost periodic solution of (E) can be obtained under Conditions (i), (ii) and (iii). For System (E), we first introduce the change of variables:



ui(n)=exp{vi(n)},xi(n)=exp{yi(n)},i=1,2








Then, System (E) can be written as:



[image: there is no content]








We now consider the Lyapunov functional:



[image: there is no content]








where [image: there is no content] and [image: there is no content] are solutions of ([image: there is no content]), which remains in K. Calculating the differences, we have:


[image: there is no content]








where set [image: there is no content], and let [image: there is no content] be solutions of (E), such that [image: there is no content] for n≥[image: there is no content](i=1,2). Thus, [image: there is no content] as [image: there is no content], and hence, [image: there is no content] as [image: there is no content]. Thus, we have that [image: there is no content] is (K, ρ)-A in Ω of ([image: there is no content]). Moreover, by using this Lyapunov functional, we can show that [image: there is no content] is (K, ρ)-RUS in Ω of ([image: there is no content]), that is (K, ρ)-RWUAS in Ω of ([image: there is no content]). Thus, from Theorem 5, [image: there is no content] is (K, ρ)-RTS, because K is invariant. By the equivalence between (E) and ([image: there is no content]), the solution [image: there is no content] of (E) is (K, ρ)-RWUAS in Ω, and hence, it is (K, ρ)-RTS. Therefore, it follows from Theorem 6 that System (E) has an almost periodic solution [image: there is no content], such that [image: there is no content], for all n∈[image: there is no content].


5. Stability Property and Separation Condition

In order to discuss the conditions for the existence of an almost periodic solution in a Volterra integrodifferential equation with infinite delay, we discussed the relationship between the total stability with respect to a certain metric ρ and the separation condition with respect to ρ (cf. [5]). In this final section, we discuss a new approach of a relationship between the ρ-separation condition and (K, ρ)-uniformly-asymptotic stability property in a metric ρ sense for a nonlinear Volterra difference equation with infinite delay.

Let K be a compact set in [image: there is no content], such that [image: there is no content] for all n∈[image: there is no content], where [image: there is no content] for [image: there is no content]. If [image: there is no content] is a solution, such that [image: there is no content] for all n∈[image: there is no content], we say that x is in K.

Definition 4. We say that Equation (3) satisfies the ρ-separation condition in K, if for each [image: there is no content], there exists a [image: there is no content], such that if x and y are distinct solution of (4) in K, then we have:



ρ(xn,yn)≥λ[image: there is no content]for all,n∈[image: there is no content]








If Equation (3) satisfies the ρ-separation condition in K, then we can choose a positive constant [image: there is no content] independent of [image: there is no content] for which ρ(xn,yn)≥[image: there is no content] for all n∈[image: there is no content], where x and y are a distinct solution of Equation (4) in K. We call [image: there is no content] the ρ-separation constant in K (e.g., [8], pp. 189–190).

Definition 5. A solution [image: there is no content] of (3) in K is said to be (K, ρ)-relatively totally stable (in short, (K, ρ)-RTS), if for any [image: there is no content], there exists a [image: there is no content], such that [image: there is no content] for all [image: there is no content] whenever ρ(x[image: there is no content],y[image: there is no content])<δ(ϵ) at some [image: there is no content]∈Z and h∈BS([[image: there is no content],∞)), which satisfies |h|[[image: there is no content],∞)<δ(ϵ), for [image: there is no content]. Here, [image: there is no content] is a solution through ([image: there is no content],y[image: there is no content]) of:



[image: there is no content]








such that y[image: there is no content](s)∈K for all [image: there is no content] and [image: there is no content] for [image: there is no content]. In the case where [image: there is no content], this gives the definition of the (K, ρ)-relatively uniform stability of [image: there is no content] (in short, (K, ρ)-RUS).
The following Proposition 1 can be proven by the same argument as in the proof for integrodifferential equations by Hamaya and Yoshizawa [5].

Proposition 1. Under Assumptions (H2), (H3) and (H4), if Equation (3) satisfies the ρ-separation condition in K, then for any [image: there is no content], any solution x of (4) in K is (K, ρ)-RTS. Moreover, we can choose the number [image: there is no content] in Definition 5, so that [image: there is no content] depends only on ϵ and is independent of [image: there is no content] and solutions.

Theorem 7. Under Assumptions (H2), (H3) and (H4), suppose that Equation (3) satisfies the ρ-separation condition in K. If [image: there is no content] is a solution of (3), such that [image: there is no content] for all n∈[image: there is no content], then [image: there is no content] is almost periodic.

Proof. By Proposition 1, solution [image: there is no content] of (3) is (K, ρ)-RTS, because [image: there is no content]. Then, [image: there is no content] is asymptotically almost periodic on [image: there is no content] by Theorem 1 in [14]. Thus, it has the decomposition [image: there is no content], where [image: there is no content] is almost periodic in n, [image: there is no content] is bounded function and [image: there is no content] as [image: there is no content]. Since [image: there is no content] for all n∈[image: there is no content], [image: there is no content] is a solution of (3) in K. If w([image: there is no content])≠p([image: there is no content]) at some [image: there is no content], we have two distinct solutions of (3) in K. Thus, we have ρ(wn,pn)≥[image: there is no content]>0 for all n∈[image: there is no content], where [image: there is no content] is the ρ-separation constant. However, [image: there is no content] as [image: there is no content], and hence, [image: there is no content] as [image: there is no content]. This contradiction shows [image: there is no content] for all n∈[image: there is no content].

Definition 6. A solution [image: there is no content] of (3) in K is said to be (K, ρ)-relatively uniformly-asymptotically stable (in short, (K, ρ)-RUAS), if it is (K, ρ)-RUS and if there exists a [image: there is no content] and for any [image: there is no content] there exists a [image: there is no content], such that if ρ(x[image: there is no content],y[image: there is no content])<[image: there is no content] at some [image: there is no content]∈[image: there is no content], then [image: there is no content] for all n≥[image: there is no content]+T(ϵ), where [image: there is no content] is a solution of (3) through ([image: there is no content],y[image: there is no content]), such that y[image: there is no content](s)∈K for all [image: there is no content] and [image: there is no content] for all [image: there is no content].

We show that the ρ-separation condition will be characterized in terms of (K, ρ) uniformly-asymptotic stability of solutions in K of limiting equations. For ordinary differential equations, this kind of problem has been discussed by Nakajima [15].

Theorem 8. Under Assumptions (H2), (H3) and (H4), Equation (3) satisfies the ρ-separation condition in K if and only if for any [image: there is no content], any solution x of (4) in K is (K, ρ)-RUAS with common triple ([image: there is no content],δ(·),T(·)).

Proof. We suppose that Equation (3) satisfies the ρ-separation condition in K. Then, it follows from Proposition 1 that for any [image: there is no content], there exists a [image: there is no content], such that for any [image: there is no content] and any solution [image: there is no content] of (4) in K, if ρ(x[image: there is no content],y[image: there is no content])<δ(ϵ) at some [image: there is no content]∈[image: there is no content], then [image: there is no content] for all [image: there is no content], where [image: there is no content] is a solution of (4), such that y[image: there is no content](s)∈K for all [image: there is no content] and [image: there is no content] for [image: there is no content]. Now, let [image: there is no content] be a positive constant, such that [image: there is no content]<δ([image: there is no content]/2), where [image: there is no content] is the ρ-separation constant. For this [image: there is no content], we shall show that for any [image: there is no content], there exists a [image: there is no content], such that for any [image: there is no content] and any solution [image: there is no content] of (4) in K, [image: there is no content] for all n≥[image: there is no content]+T(ϵ), whenever ρ(x[image: there is no content],y[image: there is no content])<[image: there is no content] at some [image: there is no content]∈[image: there is no content], where [image: there is no content] is a solution of (4), such that y[image: there is no content](s)∈K for all [image: there is no content] and [image: there is no content] for all [image: there is no content].

Suppose not. Then, there exist an ϵ,0<ϵ<[image: there is no content]/2 and sequences {(gk,Gk)},[image: there is no content],{yk},{[image: there is no content]} and [image: there is no content], such that (gk,Gk)∈Ω[image: there is no content],xk(n) is a solution in K of:



[image: there is no content]



(24)




and that nk≥[image: there is no content]+k,


ρ(x[image: there is no content]k,y[image: there is no content]k)<[image: there is no content]<δ([image: there is no content]/2)



(25)




and:


[image: there is no content]








where [image: there is no content] is a solution of (24), such that y[image: there is no content]k(s)∈K for all [image: there is no content] and [image: there is no content] for all [image: there is no content]. Since (25) implies ρ(xnk,ynk)<[image: there is no content]/2 for all [image: there is no content], we have:


ϵ≤ρ(xnkk,ynkk)≤[image: there is no content]/2



(26)




If we set [image: there is no content] and [image: there is no content], then [image: there is no content] is a solution in K of:



[image: there is no content]



(27)




and [image: there is no content] is defined for [image: there is no content] and is a solution of (27), such that [image: there is no content] for all [image: there is no content] and [image: there is no content] for all [image: there is no content]. Since (gk(n+nk,x),Gk(n+nk,s,x,y))∈Ω[image: there is no content], taking a subsequence if necessary, we can assume that [image: there is no content] uniformly on any compact interval in [image: there is no content], [image: there is no content] uniformly on any compact interval in [image: there is no content], [image: there is no content] uniformly on [image: there is no content]×K and [image: there is no content] uniformly on [image: there is no content]×[image: there is no content]×K×K for any compact set [image: there is no content] in [image: there is no content] as [image: there is no content], where [image: there is no content]. Then, by the similar argument as in the proof of Lemma 1 (cf. Lemma 5 in [5]), [image: there is no content] and [image: there is no content] are solutions in K of:


[image: there is no content]



(28)




On the other hand, we have:



ρ(w0,z0)=lim[image: there is no content]ρ(w0k,z0k)=lim[image: there is no content]ρ(xnkk,ynkk)








Thus, it follows from (26) that:



ϵ≤ρ(w0,z0)≤[image: there is no content]/2



(29)




Since [image: there is no content] and [image: there is no content] are distinct solutions of (28) in K, (29) contradicts the ρ-separation condition. This shows that for any [image: there is no content], any solution x of (4) in K is (K, ρ)-RUAS with a common triple ([image: there is no content],δ(·),T(·)).

Now, we assume that for any [image: there is no content], any solution of (4) in K is (K, ρ)-RUAS with a common triple ([image: there is no content],δ(·),T(·)). First of all, we shall see that any two distinct solutions [image: there is no content] and [image: there is no content] in K of a limiting equation of (3) satisfy:



lim infn→−∞ρ(xn,yn)≥[image: there is no content]



(30)




Suppose not. Then, for some [image: there is no content], there exist two distinct solutions [image: there is no content] and [image: there is no content] of (4) in K that satisfy:



lim infn→−∞ρ(xn,yn)<[image: there is no content]



(31)




Since [image: there is no content], we have |x([image: there is no content])−y([image: there is no content])|=ϵ>0 at some [image: there is no content]∈[image: there is no content]. Thus, we have ρ(x[image: there is no content],y[image: there is no content])≥ϵ/2(1+ϵ). By (31), there exists an [image: there is no content]∈[image: there is no content], such that ρ(x[image: there is no content],y[image: there is no content])<[image: there is no content] and [image: there is no content]<[image: there is no content]−T(ϵ/4(1+ϵ)), where [image: there is no content] is the number for (K, ρ)-RUAS. Since [image: there is no content] is (K, ρ)-RUAS, we have ρ(x[image: there is no content],y[image: there is no content])<ϵ/4(1+ϵ), which contradicts ρ(x[image: there is no content],y[image: there is no content])≥ϵ/2(1+ϵ). Thus, we have Equation (30).

For any solution [image: there is no content] in K, there exists a positive constant c, such that [image: there is no content] for all n∈[image: there is no content]. Denote by [image: there is no content] the set of the closure of positive orbit of x, that is,



O+(x):={xn|n∈[image: there is no content]+}¯








such that [image: there is no content] for [image: there is no content]. Then, [image: there is no content] is compact in [image: there is no content]. Thus, there is a finite number of coverings, which consist of [image: there is no content] balls with a diameter of [image: there is no content]/4. We shall see that the number of distinct solutions of (4) in K is at most [image: there is no content]. Suppose that there are [image: there is no content]+1 distinct solutions x(j)(n)(j=1,2,⋯,[image: there is no content]+1). By (30), there exists an n2∈[image: there is no content], such that:


ρ(xn2(i),xn2(j))≥[image: there is no content]/2fori≠j



(32)




Since xn2(j),j=1,2,⋯,[image: there is no content]+1 are in [image: there is no content], some two of these, say xn2(i),xn2(j),(i≠j), are in one ball, and hence, ρ(xn2(i),xn2(j))<[image: there is no content]/4, which contradicts (32). Therefore the number of solutions of (4) in K is m≤[image: there is no content]. Thus, we have the set of solutions of (4) in K:



{x(1)(n),x(2)(n),⋯,x(m)(n)}andlim infn→−∞ρ(xn(i),xn(j))≥[image: there is no content]fori≠j.



(33)




Consider a sequence [image: there is no content], such that [image: there is no content], [image: there is no content] uniformly on [image: there is no content]×K and [image: there is no content] uniformly on [image: there is no content]×[image: there is no content]×K×K for any compact set [image: there is no content] in [image: there is no content] as [image: there is no content]. Since the sequences {x(j)(n+nk)},1≤j≤m, are uniformly bounded, there exists a subsequence of [image: there is no content], which will be denoted by [image: there is no content] again, and functions [image: there is no content], such that [image: there is no content], uniformly on any compact interval in [image: there is no content] as [image: there is no content]. Clearly, [image: there is no content] is the solution of (4) in K. Since we have:



ρ(yn(i),yn(j))=lim[image: there is no content]ρ(xn+nk(i),xn+nk(j))forn∈[image: there is no content]








it follows from (33) that:


ρ(yn(i),yn(j))≥[image: there is no content]for alln∈[image: there is no content]andi≠j



(34)




Since we have (34), distinct solutions of (4) in K are [image: there is no content]. This shows that Equation (3) satisfies the ρ-separation condition in K with the ρ-separation constant [image: there is no content].
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