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Abstract:



We study densely defined unbounded operators acting between different Hilbert spaces. For these, we introduce a notion of symmetric (closable) pairs of operators. The purpose of our paper is to give applications to selected themes at the cross road of operator commutation relations and stochastic calculus. We study a family of representations of the canonical commutation relations (CCR)-algebra (an infinite number of degrees of freedom), which we call admissible. The family of admissible representations includes the Fock-vacuum representation. We show that, to every admissible representation, there is an associated Gaussian stochastic calculus, and we point out that the case of the Fock-vacuum CCR-representation in a natural way yields the operators of Malliavin calculus. We thus get the operators of Malliavin’s calculus of variation from a more algebraic approach than is common. We further obtain explicit and natural formulas, and rules, for the operators of stochastic calculus. Our approach makes use of a notion of symmetric (closable) pairs of operators. The Fock-vacuum representation yields a maximal symmetric pair. This duality viewpoint has the further advantage that issues with unbounded operators and dense domains can be resolved much easier than what is possible with alternative tools. With the use of CCR representation theory, we also obtain, as a byproduct, a number of new results in multi-variable operator theory which we feel are of independent interest.
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1. Introduction


The purpose of our paper is to identify a unifying framework in infinite-dimensional analysis which involves a core duality notion. There are two elements to our point of view: (i) presentation of the general setting of duality and representation theory, and (ii) detailed applications for two areas, often considered disparate. The first is stochastic analysis, and the second is from the theory of von Neumann algebras (Tomita-Takesaki theory), see, e.g., [1,2]. We feel that this viewpoint is useful as it adds unity to the study of infinite-dimensional analysis; and further, because researchers in one of these two areas usually do not explore the other, or are even unfamiliar with the connections.



We study densely defined unbounded operators acting between different Hilbert spaces, and for these, we introduce a notion of symmetric (closable) pairs of operators. The purpose of our paper is to give applications to themes at the cross road of commutation relations (operator theory) and stochastic calculus. While both subjects have been studied extensively, our aim is to show that the notion of closable pairs from the theory of unbounded operators serves to unify the two areas. Both areas are important in mathematical physics, but researchers familiar with operator theory typically do not appreciate the implications of results on unbounded operators and their commutators for stochastic analysis; and vice versa.



Both the study of quantum fields, and of quantum statistical mechanics, entails families of representations of the canonical commutation relations (CCRs). In the case of an infinite number of degrees of freedom, it is known that we have existence of many inequivalent representations of the CCRs. Among the representations, some describe such things as a nonrelativistic infinite free Bose gas of uniform density. However, the representations of the CCRs play an equally important role in the kind of infinite-dimensional analysis currently used in a calculus of variation approach to Gaussian fields, Itō integrals, including the Malliavin calculus. In the literature, the infinite-dimensional stochastic operators of derivatives and stochastic integrals are usually taken as the starting point, and the representations of the CCRs are an afterthought. Here we turn the tables. As a consequence of this, we are able to obtain a number of explicit results in an associated multi-variable spectral theory. Some of the issues involved are subtle because the operators in the representations under consideration are unbounded (by necessity), and, as a result, one must deal with delicate issues of domains of families of operators and their extensions.



The representations we study result from the Gelfand-Naimark-Segal construction (GNS) applied to certain states on the CCR-algebra. Our conclusions and main results regarding this family of CCR representations (details below, especially Section 4 and Section 5) hold in the general setting of Gaussian fields. However, for the benefit of readers, we have also included an illustration dealing with the simplest case, that of the standard Brownian/Wiener process. Many arguments in the special case carry over to general Gaussian fields mutatis mutandis. In the Brownian case, our initial Hilbert space will be [image: there is no content].



From the initial Hilbert space [image: there is no content], we build the *-algebra [image: there is no content] as in Section 2.2. We will show that the Fock state on [image: there is no content] corresponds to the Wiener measure [image: there is no content]. Moreover the corresponding representation π of [image: there is no content] will be acting on the Hilbert space [image: there is no content] in such a way that for every k in [image: there is no content], the operator [image: there is no content] is the Malliavin derivative in the direction of k. We caution that the representations of the *-algebra [image: there is no content] are by unbounded operators, but the operators in the range of the representations will be defined on a single common dense domain.



Example: There are two ways to think of systems of generators for the CCR-algebra over a fixed infinite-dimensional Hilbert space (“CCR” is short for canonical commutation relations):

	(i)

	
an infinite-dimensional Lie algebra, or




	(ii)

	
an associative *-algebra.









With this in mind, (ii) will simply be the universal enveloping algebra of (i); see [3]. While there is also an infinite-dimensional “Lie” group corresponding to (i), so far, we have not found it as useful as the Lie algebra itself.



All this, and related ideas, supply us with tools for an infinite-dimensional stochastic calculus. It fits in with what is called Malliavin calculus, but our present approach is different, and more natural from our point of view; and as corollaries, we obtain new and explicit results in multi-variable spectral theory which we feel are of independent interest.



There is one particular representation of the CCR version of (i) and (ii) which is especially useful for stochastic calculus. In the present paper, we call this representation the Fock vacuum-state representation. One way of realizing the representations is abstract: Begin with the Fock vacuum state (or any other state), and then pass to the corresponding GNS representation. The other way is to realize the representation with the use of a choice of a Wiener [image: there is no content]-space. We prove that these two realizations are unitarily equivalent.



By stochastic calculus we mean stochastic derivatives (e.g., Malliavin derivatives), and integrals (e.g., Itō-integrals). The paper begins with the task of realizing a certain stochastic derivative operator as a closable operator acting between two Hilbert spaces.



There is an extensive literature on quantum stochastic calculus based on the Fock, and other representations, of the CCR including its relation to Malliavin calculus. The list of authors includes R. Hudson, K. R. Parthasarathy and collaborators. We refer the reader to the papers [4,5,6,7,8], and also see [9,10]. Of more recent papers dealing with results which have motivated our present paper are [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26].




2. Unbounded Operators and the CCR-algebra


2.1. Unbounded Operators between Different Hilbert Spaces: Closable Pairs


While the theory of unbounded operators has been focused on spectral theory where it is then natural to consider the setting of linear endomorphisms with dense domain in a fixed Hilbert space; many applications entail operators between distinct Hilbert spaces, say [image: there is no content] and [image: there is no content]. Typically the facts given about the two differ greatly from one Hilbert space to the next.



Let [image: there is no content], [image: there is no content], be two complex Hilbert spaces. The respective inner products will be written [image: there is no content], with the subscript to identify the Hilbert space in question.



Definition 2.1. 

A linear operator T from [image: there is no content] to [image: there is no content] is a pair [image: there is no content], T, where [image: there is no content] is a linear subspace in [image: there is no content], and [image: there is no content] is well-defined for all [image: there is no content].





We say that [image: there is no content] is the domain of T, and


GT=φTφ;φ∈D⊂H1⊕H2



(1)




is the graph.



If the closure [image: there is no content] is the graph of a linear operator, we say that T is closable. By closure, we shall refer to closure in the norm of [image: there is no content], i.e.,


h1h22=h112+h222,hi∈Hi



(2)







If [image: there is no content] is dense in [image: there is no content], we say that T is densely defined.



Definition 2.2 (The adjoint operator). 

Let H1→TH2 be a densely defined operator, consider the subspace [image: there is no content] defined as follows:


domT*={h2∈H2;∃C=Ch2<∞s.t.(3)Tφ,h22≤Cφ1,∀φ∈domT}








Then, by Riesz’ theorem, there is a unique [image: there is no content] s.t.


Tφ,h22=φ,h11,and



(4)




we set [image: there is no content]. [image: there is no content] is called the adjoint of T.





Lemma 2.3. 

Given a densely defined operator H1→TH2, then T is closable if and only if [image: there is no content] is dense in [image: there is no content].





Proof. 

See [27]. ☐





Remark 2.4 (Notation and Facts). 


	1. 

	
The abbreviated notation  [image: Axioms 05 00012 i001] will be used when the domains of T and [image: there is no content] are understood from the context.




	2. 

	
Let T be an operator H1→TH2 and [image: there is no content], [image: there is no content], two given Hilbert spaces. Assume [image: there is no content] is dense in [image: there is no content], and that T is closable. Then there is a unique closed operator, denoted [image: there is no content] such that


[image: there is no content]



(5)




where “—” on the RHS in Equation (5) refers to norm closure in [image: there is no content], see Equation (2).




	3. 

	
It may happen that [image: there is no content]. See Example 2.6 below.











Definition 2.5 (closable pairs). 

Let [image: there is no content] and [image: there is no content] be two Hilbert spaces with respective inner products [image: there is no content], [image: there is no content]; let [image: there is no content], [image: there is no content], be two dense linear subspaces; and let


S0:D1→H2,and T0:D2→H1








be linear operators such that


S0u,v2=u,T0v1,∀u∈D1,∀v∈D2



(6)




Then both operators [image: there is no content] and [image: there is no content] are closable. The closures [image: there is no content], and [image: there is no content] satisfy


S*⊆Tand T⊆S*



(7)




We say the system [image: there is no content] is a closable pair. (Also see Definition 3.5.)





Example 2.6. 

An operator [image: there is no content] with dense domain s.t. [image: there is no content], i.e., “extremely” non-closable.





Set [image: there is no content], [image: there is no content], where [image: there is no content] and [image: there is no content] are two mutually singular measures on a fixed locally compact measurable space, say X. The space [image: there is no content] is dense in both [image: there is no content] and in [image: there is no content] with respect to the two [image: there is no content]-norms. Then, the identity mapping [image: there is no content], [image: there is no content], becomes a Hilbert space operator H1→TH2.



Using Definition 2.2, we see that [image: there is no content] is in [image: there is no content] iff [image: there is no content] such that


∫φh1dμ1=∫φh2dμ2,∀φ∈D



(8)




Since [image: there is no content] is dense in both [image: there is no content]-spaces, we get


∫Eh1dμ1=∫Eh2dμ2



(9)




where [image: there is no content].



Now suppose [image: there is no content] in [image: there is no content], then there is a subset [image: there is no content] s.t. [image: there is no content] on A, [image: there is no content], and ∫Ah2dμ2>0. But ∫Ah1dμ1=∫Ah2dμ2, and ∫Ah1dμ1=0 since [image: there is no content]. This contradiction proves that [image: there is no content]; and in particular T is unbounded and non-closable.



Theorem 2.7. 

Let H1→TH2 be a densely defined operator, and assume that [image: there is no content] is dense in [image: there is no content], i.e., T is closable, then both of the operators [image: there is no content] and [image: there is no content] are densely defined, and both are selfadjoint.





Moreover, there is a partial isometry [image: there is no content] with initial space in [image: there is no content] and final space in [image: there is no content] such that


[image: there is no content]



(10)




(Equation (10) is called the polar decomposition of T.)

Proof. 

See, e.g., [27]. ☐








2.2. The CCR-algebra, and the Fock Representations


There are two *-algebras built functorially from a fixed (single) Hilbert space [image: there is no content]; often called the one-particle Hilbert space (in physics). The dimension [image: there is no content] is called the number of degrees of freedom. The case of interest here is when [image: there is no content] (countably infinite). The two *-algebras are called the CAR, and the CCR-algebras, and they are extensively studied; see, e.g., [2]. Of the two, only CAR([image: there is no content]) is a [image: there is no content]-algebra. The operators arising from representations of CCR([image: there is no content]) will be unbounded, but still having a common dense domain in the respective representation Hilbert spaces. In both cases, we have a Fock representation. For CCR([image: there is no content]), it is realized in the symmetric Fock space [image: there is no content]. There are many other representations, inequivalent to the respective Fock representations.



Let [image: there is no content] be as above. The CCR([image: there is no content]) is generated axiomatically by a system, [image: there is no content], [image: there is no content], [image: there is no content], subject to


ah,ak=0,∀h,k∈L,andah,a*k=h,kL𝟙



(11)




Notation. In Equation (11), [image: there is no content] denotes the commutator. More specifically, if [image: there is no content] are elements in a *-algebra, set [image: there is no content].



The Fock States [image: there is no content] on the CCR-algebra are specified as follows:


[image: there is no content]



(12)




with the vacuum property


ωFocka*hah=0,∀h∈L



(13)







For the corresponding Fock representations π we have:


[image: there is no content]



(14)




where [image: there is no content] on the RHS of Equation (14) refers to the identity operator.



Some relevant papers regarding the CCR-algebra and its representations are [28,29,30,31,32,33,34,35].




2.3. An Infinite-dimensional Lie Algebra


Let [image: there is no content] be a separable Hilbert space, i.e., [image: there is no content], and let [image: there is no content] be the corresponding CCR-algebra. As above, its generators are denoted [image: there is no content] and [image: there is no content], for [image: there is no content]. We shall need the following:



Proposition 2.8. 


	1. 

	
The “quadratic” elements in [image: there is no content] of the form [image: there is no content], [image: there is no content], span a Lie algebra [image: there is no content] under the commutator bracket.




	2. 

	
We have


aha*k,ala*m=h,mLala*k-k,lLaha*m








for all [image: there is no content].




	3. 

	
If [image: there is no content] is an ONB in [image: there is no content], then the non-zero commutators are as follows: Set [image: there is no content], then, for [image: there is no content], we have


[image: there is no content]



(15)






γi,i,γi,j=-γi,j;and



(16)






[image: there is no content]



(17)




All other commutators vanish; in particular, [image: there is no content] spans an abelian sub-Lie algebra in [image: there is no content].



Note further that, when [image: there is no content], then the three elements


γi,i-γj,j,γi,j,andγj,i



(18)




span (over [image: there is no content]) an isomorphic copy of the Lie algebra [image: there is no content].




	4. 

	
The Lie algebra generated by the first-order elements [image: there is no content] and [image: there is no content] for [image: there is no content], is called the Heisenberg Lie algebra [image: there is no content]. It is normalized by [image: there is no content]; indeed we have:


ala*m,ah=-m,hLal,andala*m,a*k=l,kLa*m,∀l,m,h,k∈L



















Proof. 

The verification of each of the four assertions (1)–(4) uses only the fixed axioms for the CCR, i.e.,


ak,al=0a*k,a*l=0,andak,a*l=k,lL𝟙,k,l∈L



(19)




where [image: there is no content] denotes the unit-element in [image: there is no content]. ☐





Corollary 2.9. 

Let [image: there is no content] be the CCR-algebra, generators [image: there is no content], [image: there is no content], [image: there is no content], and let [image: there is no content] denote the commutator Lie bracket; then, for all [image: there is no content], and all [image: there is no content] (= the n-variable polynomials over [image: there is no content]), we have


ak,pa*h1,⋯,a*hn=∑i=1n∂p∂xia*h1,⋯,a*hnk,hiL



(20)









Proof. 

The verification of Equation (20) uses only the axioms for the CCR, i.e., the commutation relations (19) above, plus a little combinatorics. ☐





We shall now return to a stochastic variation of formula (20), the so called Malliavin derivative in the direction k. In this, the system [image: there is no content] in Equation (20) instead takes the form of a multivariate Gaussian random variable.




2.4. Gaussian Hilbert Space


The literature on Gaussian Hilbert space, white noise analysis, and its relevance to Malliavin calculus is vast; we limit ourselves here to citing [17,36,37,38,39,40,41], and the papers cited there.



Setting and Notation:

	
[image: there is no content]: a fixed real Hilbert space



	
[image: there is no content]: a fixed probability space



	
[image: there is no content]: the Hilbert space [image: there is no content], also denoted by [image: there is no content]



	
[image: there is no content]: the mean or expectation functional, where [image: there is no content]








Definition 2.10. 

Fix a real Hilbert space [image: there is no content] and a given probability space [image: there is no content]. We say the pair [image: there is no content] is a Gaussian Hilbert space.





A Gaussian field is a linear mapping [image: there is no content], such that


[image: there is no content]








is a Gaussian process indexed by [image: there is no content] satisfying:

	
[image: there is no content], [image: there is no content];



	
[image: there is no content], [image: there is no content], the random variable [image: there is no content] is jointly Gaussian, with


[image: there is no content]



(21)




i.e., [image: there is no content] = the covariance matrix. (For the existence of Gaussian fields, see the discussion below.)






Remark 2.11. 

For all finite systems [image: there is no content], set [image: there is no content], called the Gramian. Assume [image: there is no content] non-singular for convenience, so that [image: there is no content]. Then there is an associated Gaussian density [image: there is no content] on [image: there is no content],


[image: there is no content]



(22)




The condition in Equation (21) assumes that for all continuous functions [image: there is no content] (e.g., polynomials), we have


E(fΦl1,⋯,Φln︸)realvalued=∫RnfxgGnxdx



(23)




where [image: there is no content], and [image: there is no content] = Lebesgue measure on [image: there is no content]. See Figure 1 for an illustration.

Figure 1. The multivariate Gaussian [image: there is no content] and its distribution. The Gaussian with Gramian matrix (Gram matrix) [image: there is no content], [image: there is no content].
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In particular, for [image: there is no content], [image: there is no content], and [image: there is no content], we then get [image: there is no content], i.e., the inner product in [image: there is no content].



For our applications, we need the following facts about Gaussian fields.



Fix a Hilbert space [image: there is no content] over [image: there is no content] with inner product [image: there is no content]. Then (see [17,42,43]) there is a probability space [image: there is no content], depending on [image: there is no content], and a real linear mapping [image: there is no content], i.e., a Gaussian field as specified in Definition 2.10, satisfying


EeiΦk=e-12k2,∀k∈L



(24)







It follows from the literature (see also [44]) that [image: there is no content] may be thought of as a generalized Itō-integral. One approach to this is to select a nuclear Fréchet space [image: there is no content] with dual [image: there is no content] such that


[image: there is no content]



(25)




forms a Gelfand triple. In this case we may take [image: there is no content], and [image: there is no content], [image: there is no content], to be the extension of the mapping


[image: there is no content]



(26)




defined initially only for [image: there is no content], but, with the use of (26), now extended, via (24), from [image: there is no content] to [image: there is no content]. See also Example 2.13 below.



Example 2.12. 

Fix a measure space [image: there is no content]. Let [image: there is no content] be a Gaussian field such tha


EΦAΦB=μA∩B,∀A,B∈B








where [image: there is no content], [image: there is no content]; and [image: there is no content] denotes the characteristic function. In this case, [image: there is no content].





Then we have [image: there is no content], i.e., the Itō-integral, and the following holds:


[image: there is no content]



(27)




for all [image: there is no content]. Eq. (27) is known as the Itō-isometry.



Example 2.13 (The special case of Brownian motion). 

There are many ways of realizing a Gaussian probability space [image: there is no content]. Two candidates for the sample space:





	Case 1.

	
Standard Brownian motion process: [image: there is no content], [image: there is no content] = σ-algebra generated by cylinder sets, [image: there is no content] = Wiener measure. Set [image: there is no content], [image: there is no content]; and [image: there is no content], [image: there is no content].




	Case 2.

	
The Gelfand triples: [image: there is no content], where

	
S = the Schwartz space of test functions;



	
[image: there is no content] = the space of tempered distributions.








Set [image: there is no content], [image: there is no content] = σ-algebra generated by cylinder sets of [image: there is no content], and define


Φk:=k^ω=k,ω,k∈L2R,ω∈S′











Note Φ is defined by extending the duality [image: there is no content] to [image: there is no content]. The probability measure [image: there is no content] is defined from


[image: there is no content]








by Minlos’ theorem [17,42].







Definition 2.14. 

Let [image: there is no content] be the dense subspace spanned by functions F, where [image: there is no content] iff [image: there is no content], [image: there is no content], and [image: there is no content] = the polynomial ring, such that


[image: there is no content]








(See the diagram below.) The case of [image: there is no content] corresponds to the constant function [image: there is no content] on Ω. Note that [image: there is no content].


 [image: Axioms 05 00012 i002]













Lemma 2.15. 

The polynomial fields [image: there is no content] in Definition 2.14 form a dense subspace in [image: there is no content].





Proof. 

The easiest argument below takes advantage of the isometric isomorphism of [image: there is no content] with the symmetric Fock space


ΓsymL=H0︸1dim⊕∑n=1∞L⊗⋯⊗L︸n-foldsymmetric








For [image: there is no content], [image: there is no content], there is a unique vector [image: there is no content] such that


[image: there is no content]








Moreover,


ΓsymL∋ek→W0eΦk-12kL2∈L2Ω,P








extends by linearity and closure to a unitary isomorphism ΓsymL→WL2Ω,P, mapping onto [image: there is no content] (also see Equation (73) in Theorem 3.30.) Hence [image: there is no content] is dense in [image: there is no content], as [image: there is no content] is dense in [image: there is no content]. ☐





Lemma 2.16. 

Let [image: there is no content] be a real Hilbert space, and let [image: there is no content] be an associated Gaussian field. For [image: there is no content], let [image: there is no content] be a system of linearly independent vectors in [image: there is no content]. Then, for polynomials [image: there is no content], the following two conditions are equivalent:


pΦh1,⋯,Φhn=0a.e. on Ω w.r.t P; and



(28)






px1,⋯,xn≡0,∀x1,⋯,xn∈Rn



(29)









Proof. 

Let [image: there is no content] be the Gramian matrix. We have [image: there is no content]. Let [image: there is no content] be the corresponding Gaussian density; see Equation (22), and Figure 1. Then the following are equivalent:





	
Equation (28) holds;



	
[image: there is no content] in [image: there is no content];



	
[image: there is no content];



	
[image: there is no content] a.e. x w.r.t. the Lebesgue measure in [image: there is no content] ;



	
[image: there is no content], [image: there is no content]; i.e., Equation (29) holds.






☐





3. The Malliavin Derivatives


Below we give an application of the closability criterion for linear operators T between different Hilbert spaces [image: there is no content] and [image: there is no content], but having dense domain in the first Hilbert space. In this application, we shall take for T to be the so called Malliavin derivative. The setting for it is that of the Wiener process. For the Hilbert space [image: there is no content] we shall take the [image: there is no content]-space, [image: there is no content] where [image: there is no content] is generalized Wiener measure. Below we shall outline the basics of the Malliavin derivative, and we shall specify the two Hilbert spaces corresponding to the setting of Theorem 2.7. We also stress that the literature on Malliavin calculus and its applications is vast, see, e.g., [17,36,45,46,47].



Settings. It will be convenient for us to work with the real Hilbert spaces.



Let [image: there is no content] be as specified in Definition 2.10, i.e., we consider the Gaussian field Φ. Fix a real Hilbert space [image: there is no content] with [image: there is no content]. Set [image: there is no content], and [image: there is no content], i.e., vector valued random variables.



For [image: there is no content], the inner product [image: there is no content] is


F,GH1=∫ΩFGdP=EFG



(30)




where [image: there is no content] is the mean or expectation functional.



On [image: there is no content], we have the tensor product inner product: If [image: there is no content], [image: there is no content], [image: there is no content], then


F1⊗k1,F2⊗k2H2=F1,F2H1k1,k2L=EF1F2k1,k2L



(31)




Equivalently, if [image: there is no content], [image: there is no content], are measurable functions on Ω, we set


[image: there is no content]



(32)




where it is assumed that


∫ΩψiωL2dPω<∞,i=1,2



(33)







Remark 3.1. 

In the special case of standard Brownian motion, we have [image: there is no content], and set [image: there is no content] (= the Itō-integral), for all [image: there is no content]. Recall we then have


[image: there is no content]



(34)




or equivalently (the Itō-isometry),


ΦhL2Ω,P=hL,∀h∈L



(35)




The consideration above also works in the context of general Gaussian fields; see Section 2.4.





Definition 3.2. 

Let [image: there is no content] be the dense subspace in [image: there is no content] as in Definition 2.14. The operator [image: there is no content] (= Malliavin derivative) with [image: there is no content] is specified as follows:





For [image: there is no content], i.e., [image: there is no content], [image: there is no content] a polynomial in n real variables, and [image: there is no content], where


[image: there is no content]



(36)




Set


[image: there is no content]



(37)







In the following two remarks we outline the argument for why the expression for [image: there is no content] in Equation (37) is independent of the chosen representation (36) for the particular F. Recall that F is in the domain [image: there is no content] of T. Without some careful justification, it is not even clear that T, as given, defines a linear operator on its dense domain [image: there is no content]. The key steps in the argument to follow will be the result (41) in Theorem 3.8 below, and the discussion to follow.



There is an alternative argument, based instead on Corollary 2.9; see also Section 5 below.



Remark 3.3. 

It is non-trivial that the formula in Equation (37) defines a linear operator. Reason: On the LHS in Equation (37), the representation of F from (36) is not unique. So we must show that [image: there is no content]⟹ [image: there is no content] as well. (The dual pair analysis below (see Definition 3.6) is good for this purpose.)





Suppose [image: there is no content] has two representations corresponding to systems of vectors [image: there is no content], and [image: there is no content], with polynomials [image: there is no content], and [image: there is no content], where


[image: there is no content]



(38)




We must then verify the identity:


[image: there is no content]



(39)







The significance of the next result is the implication (38) ⟹ (39), valid for all choices of representations of the same [image: there is no content]. The conclusion from (41) in Theorem 3.8 is that the following holds for all [image: there is no content]:


[image: there is no content]








Moreover, with a refinement of the argument, we arrive at the identity


[image: there is no content]








valid for all [image: there is no content], and all [image: there is no content].



However, spanG⊗l∣G∈D,l∈L is dense in [image: there is no content] w.r.t. the tensor-Hilbert norm in [image: there is no content] (see (31)); and we get the desired identity (39) for any two representations of F.



Remark 3.4. 

An easy case where (38) ⟹ (39) can be verified “by hand”:





Let [image: there is no content] with [image: there is no content] fixed. We can then pick the two systems [image: there is no content] and [image: there is no content] with [image: there is no content], and [image: there is no content]. A direct calculus argument shows that [image: there is no content].



We now resume the argument for the general case.



Definition 3.5 (symmetric pair). 

For [image: there is no content], let [image: there is no content] be two Hilbert spaces, and suppose [image: there is no content] are given dense subspaces.





We say that a pair of operators [image: there is no content] forms a symmetric pair if [image: there is no content], and [image: there is no content]; and moreover,


[image: there is no content]



(40)




holds for [image: there is no content], [image: there is no content]. (Also see Definition 2.5.)



It is immediate that (40) may be rewritten in the form of containment of graphs:


T⊂S*,S⊂T*








In that case, both S and T are closable. We say that a symmetric pair is maximal if [image: there is no content] and [image: there is no content].


 [image: Axioms 05 00012 i003]











We will establish the following two assertions:

	
Indeed T from Definition 3.2 is a well-defined linear operator from [image: there is no content] to [image: there is no content] .



	
Moreover, [image: there is no content] is a maximal symmetric pair (see Definitions 3.5 and 3.6).








Definition 3.6. 

Let H1→TH2 be the Malliavin derivative with [image: there is no content], see Definition 3.2. Set [image: there is no content] = algebraic tensor product, and on [image: there is no content], set


SF⊗k=-TF,k+MΦkF,∀F⊗k∈D2








where [image: there is no content] = the operator of multiplication by [image: there is no content].





Note that both operators S and T are linear and well defined on their respective dense domains, [image: there is no content], [image: there is no content]. For density, see Lemma 2.15.



It is a “modern version” of ideas in the literature on analysis of Gaussian processes; but we are adding to it, giving it a twist in the direction of multi-variable operator theory, representation theory, and especially to representations of infinite-dimensional algebras on generators and relations. Moreover our results apply to more general Gaussian processes than covered so far.



Lemma 3.7. 

Let [image: there is no content] be the pair of operators specified above in Definition 3.6. Then it is a symmetric pair, i.e.,


Tu,vH2=u,SvH1,∀u∈D1,∀v∈D2








Equivalently,


TF,G⊗kH2=F,SG⊗kH1,∀F,G∈D,∀k∈L













In particular, we have [image: there is no content], and [image: there is no content](containment of graphs.) Moreover, the two operators [image: there is no content] and [image: there is no content] are selfadjoint. (For the last conclusion in the lemma, see Theorem 2.7.)



Theorem 3.8. 

Let [image: there is no content] be the Malliavin derivative, i.e., T is an unbounded closable operator with dense domain [image: there is no content] consisting of the span of all the functions F from (36). Then, for all [image: there is no content], and [image: there is no content], we have


[image: there is no content]



(41)









Proof. 

We shall prove (41) in several steps. Once (41) is established, then there is a recursive argument which yields a dense subspace in [image: there is no content], contained in [image: there is no content]; and so T is closable.





Moreover, formula (41) yields directly the evaluation of [image: there is no content] as follows: If [image: there is no content], set [image: there is no content] where [image: there is no content] denotes the constant function “one” on Ω. We get


[image: there is no content]



(42)




The same argument works for any Gaussian field; see Definition 2.10. We refer to the literature [17,36] for details.



The proof of (41) works for any Gaussian process [image: there is no content] indexed by an arbitrary Hilbert space [image: there is no content] with the inner product [image: there is no content] as the covariance kernel.



Formula (41) will be established as follows: Let F and [image: there is no content] be as in Equation (36) and Equation (37).



Step 1. For every [image: there is no content], the polynomial ring [image: there is no content] is invariant under matrix substitution [image: there is no content], where M is an [image: there is no content] matrix over [image: there is no content].



Step 2. Hence, in considering (41) for [image: there is no content], [image: there is no content], we may diagonalize the [image: there is no content] Gram matrix [image: there is no content]; thus without loss of generality, we may assume that the system [image: there is no content] is orthogonal and normalized, i.e., that


hi,hj=δij,∀i,j∈1,⋯,n



(43)




and we may take [image: there is no content] in [image: there is no content].



Step 3. With this simplification, we now compute the LHS in (41). We note that the joint distribution of [image: there is no content] is thus the standard Gaussian kernel in [image: there is no content], i.e.,


[image: there is no content]



(44)




with [image: there is no content]. We have


[image: there is no content]



(45)




by calculus.



Step 4. A direct computation yields


LHS41=ETF,h1L=by43E∂p∂x1Φh1,⋯Φhn=by44∫Rn∂p∂x1x1,⋯,xngnx1,⋯,xndx1⋯dxn=int.byparts-∫Rnpx1,⋯,xn∂gn∂x1x1,⋯,xndx1⋯dxn=by45∫Rnx1px1,⋯,xngnx1,⋯,xndx1⋯dxn=by43EΦh1pΦh1,⋯,Φhn=EΦh1F=RHS41








which is the desired conclusion (41).  ☐



Corollary 3.9. 

Let [image: there is no content], [image: there is no content], and H1→TH2 be as in Theorem 3.8, i.e., T is the Malliavin derivative. Then, for all [image: there is no content], we have for the closure [image: there is no content] of T the following:


T¯(eΦh)=eΦh⊗h,and



(46)






[image: there is no content]



(47)




Here [image: there is no content] denotes the graph-closure of T.





Moreover,


[image: there is no content]



(48)







Proof. 

Equation (46) and Equation (47) follow immediately from (41) and a polynomial approximation to


ex=limn→∞∑0nxjj!,x∈R








see (36). In particular, [image: there is no content], and [image: there is no content] is well defined.





For Equation (48), we use the facts for the Gaussians:


E(eΦk)=e12k2,and










[image: there is no content]








☐



Example 3.10. 

Let [image: there is no content], [image: there is no content]. We have


[image: there is no content]








and similarly,


[image: there is no content]













Let [image: there is no content] be the symmetric pair, we then have the inclusion [image: there is no content], i.e., containment of the operator graphs, [image: there is no content]. In fact, we have



Corollary 3.11. 

[image: there is no content].





Proof. 

We will show that [image: there is no content], where ⊖ stands for the orthogonal complement in the direct sum-inner product of [image: there is no content]. Recall that [image: there is no content], and [image: there is no content].





Using (46), we will prove that if [image: there is no content], and


eΦkeΦk⊗k,FS*F=0,∀k∈L⟹F=0








which is equivalent to


EeΦkF+S*F,k=0,∀k∈L



(49)




But it is know that for the Gaussian filed, [image: there is no content] is dense in [image: there is no content], and so (49) implies that [image: there is no content], which is the desired conclusion.



We can finish the proof of the corollary with an application of Girsanov’s theorem, see e.g., [36] and [48]. By this result, we have a measurable action τ of [image: there is no content] on [image: there is no content], i.e.,


L→τAutΩ,Fτk∘τl=τk+la.e.onΩ,∀k,l∈L



(50)




(see also sect 5 below) s.t. [image: there is no content] for all [image: there is no content], and


[image: there is no content]








with


dP∘τk-1dP=e-12kL2eΦk,a.e.onΩ.



(51)







Returning to (49). An application of (51) to (49) yields:


F·+k+S*F·+k,kL=0a.e.onΩ



(52)




where we have used “[image: there is no content]” for the action in (50). Since τ in (50) is an action by measure-automorphisms, (52) implies


[image: there is no content]



(53)




again with [image: there is no content] arbitrary. If [image: there is no content] in [image: there is no content], then the second term in (53) would be independent of k which is impossible with [image: there is no content]. But if [image: there is no content], then [image: there is no content] (in [image: there is no content]) by (53); and so the proof is completed. ☐



Remark 3.12. 

We recall the definition of the domain of the closure [image: there is no content]. The following is a necessary and sufficient condition for an [image: there is no content] to be in the domain of [image: there is no content]:





[image: there is no content] ⟺ ∃ a sequence [image: there is no content] s.t.


[image: there is no content]



(54)




When (54) holds, we have:


[image: there is no content]



(55)




where the limit on the RHS in (55) is in the Hilbert norm of [image: there is no content].



Corollary 3.13. 

Let [image: there is no content] be as above, and let T and S be the two operators from Corollary 3.11. Then, for the domain of [image: there is no content], we have the following:





For random variables F in [image: there is no content], the following two conditions are equivalent:

	
[image: there is no content];



	
[image: there is no content] s.t.


EFSψ2≤CEψ·L2








holds for ∀ψ∈spanG⊗k∣G∈D,k∈L.



Recall


[image: there is no content]








equivalently,


[image: there is no content]








for all [image: there is no content], and all [image: there is no content].








Proof. 

Immediate from the previous corollary. ☐





3.1. A Derivation on the Algebra [image: there is no content]


The study of unbounded derivations has many applications in mathematical physics; in particular in making precise the time dependence of quantum observables, i.e., the dynamics in the Schrödinger picture; —in more detail, in the problem of constructing dynamics in statistical mechanics. An early application of unbounded derivations (in the commutative case) can be found in the work of Silov [49]; and the later study of unbounded derivations in non-commutative [image: there is no content]-algebras is outlined in [2]. There is a rich variety in unbounded derivations, because of the role they play in applications to dynamical systems in quantum physics.



However, previously the theory of unbounded derivations has not yet been applied systematically to stochastic analysis in the sense of Malliavin. In the present section, we turn to this. We begin with the following:



Lemma 3.14 (Leibniz-Malliavin). 

Let H1→TH2 be the Malliavin derivative from Equation (36) and Equation (37). Then,

	1. 

	
[image: there is no content], given by (36), is an algebra of functions on Ω under pointwise product, i.e., [image: there is no content], [image: there is no content].




	2. 

	
[image: there is no content] is a module over [image: there is no content] where [image: there is no content] (= vector valued [image: there is no content]-random variables.)




	3. 

	
Moreover,


TFG=TFG+FTG,∀F,G∈D



(56)




i.e., T is a module-derivation.











Notation. 

The Equation (56) is called the Leibniz-rule. By the Leibniz, we refer to the traditional rule of Leibniz for the derivative of a product. And the Malliavin derivative is thus an infinite-dimensional extension of Leibniz calculus.





Proof. 

To show that [image: there is no content] is an algebra under pointwise multiplication, the following trick is useful. It follows from finite-dimensional Hilbert space geometry.





Let [image: there is no content] be as in Definition 2.14. Then [image: there is no content], [image: there is no content], such that


F=pΦl1,⋯,Φln,andG=qΦl1,⋯,Φln








That is, the same system [image: there is no content] may be chosen for the two functions F and G.



For the pointwise product, we have


[image: there is no content]








i.e., the product in [image: there is no content] with substitution of the random variable


[image: there is no content]











Equation (56) ⟺ [image: there is no content], which is the usual Leibniz rule applied to polynomials. Note that


[image: there is no content]








☐



Remark 3.15. 

There is an extensive literature on the theory of densely defined unbounded derivations in [image: there is no content]-algebras. This includes both the cases of abelian and non-abelian *-algebras. Moreover, this study includes both derivations in these algebras, as well as the parallel study of module derivations. Therefore, the case of the Malliavin derivative is in fact a special case of this study. Readers interested in details are referred to [1,2,50,51].





Definition 3.16. 

Let [image: there is no content] be a Gaussian field, and T be the Malliavin derivative with [image: there is no content]. For all [image: there is no content], set


TkF:=TF,k,F∈D



(57)




In particular, let [image: there is no content] be as in (36), then


[image: there is no content]













Corollary 3.17. 

[image: there is no content] is a derivative on [image: there is no content], i.e.,


TkFG=TkFG+FTkG,∀F,G∈D,∀k∈L



(58)









Proof. 

Follows from Equation (56). ☐





Corollary 3.18. 

Let [image: there is no content] be a Gaussian field. Fix [image: there is no content], and let [image: there is no content] be the Malliavin derivative in the k direction. Then on [image: there is no content] we have


Tk+Tk*=MΦk,and



(59)






[image: there is no content]



(60)









Proof. 

For all [image: there is no content], we have


ETkFG+EFTkG=by58ETkFG=by41EΦkFG








which yields the assertion in (59). Equation (60) now follows from (59) and the fact that [image: there is no content]. ☐





Definition 3.19. 

Let [image: there is no content] be a Gaussian field. For all [image: there is no content], let [image: there is no content] be Malliavin derivative in the k-direction (57). Assume [image: there is no content] is separable, i.e., [image: there is no content]. For every ONB [image: there is no content] in [image: there is no content], let


N:=∑iTei*Tei.



(61)




N is the CCR number operator. See Section 4 below.





Example 3.20. 

[image: there is no content], since [image: there is no content], [image: there is no content]. Similarly,


[image: there is no content]



(62)






NΦk2=-2k2𝟙+2Φk2,∀k∈L



(63)




To see this, note that


∑iTei*TeiΦk=∑iTei*ei,k𝟙=∑iΦeiei,k=Φ∑iei,kei=Φk








which is (62). The verification of (63) is similar.





Theorem 3.21. 

Let [image: there is no content] be an ONB in [image: there is no content], then


[image: there is no content]



(64)









Proof. 

Note the span of [image: there is no content] is dense in [image: there is no content], and both sides of (64) agree on [image: there is no content], [image: there is no content]. Indeed, by (61),


[image: there is no content]








☐





Corollary 3.22. 

Let [image: there is no content]. Specialize to the case of [image: there is no content], and consider [image: there is no content], [image: there is no content], [image: there is no content]; then


[image: there is no content]



(65)









Proof. 

A direct application of the formulas of [image: there is no content] and [image: there is no content] ☐





Remark 3.23. 

If [image: there is no content] in (65), then the RHS in (65) is obtained by a substitution of the real valued random variable [image: there is no content] into the deterministic function


[image: there is no content]



(66)




Then Equation (65) may be rewritten as


DfΦk=δf∘Φk,f∈C∞R



(67)









Corollary 3.24. 

If [image: there is no content], [image: there is no content], denotes the Hermite polynomials on [image: there is no content], then we get for [image: there is no content], [image: there is no content], the following eigenvalues


DHnΦk=nHnΦk



(68)









Proof. 

It is well-known that the Hermite polynomials [image: there is no content] satisfies


δHn=nHn,∀n∈N0



(69)




and so (68) follows from a substitution of (69) into (67). ☐





Theorem 3.25.  

The spectrum of [image: there is no content], as an operator in [image: there is no content], is as follows:


[image: there is no content]













Proof. 

We saw that the [image: there is no content]-representation is unitarily equivalent to the Fock vacuum representation, and [image: there is no content]. ☐






3.2. Infinite-dimensional Δ and [image: there is no content]


Corollary 3.26. 

Let [image: there is no content] be a Gaussian field, and let T be the Malliavin derivative, L2Ω,P→TL2Ω,P⊗L. Then, for all [image: there is no content] (see Definition 3.2), we have


[image: there is no content]








which is abbreviated


[image: there is no content]



(70)




For the general theory of infinite-dimensional Laplacians, see, e.g., [52].





Proof. 

(Sketch) We may assume the system [image: there is no content] is orthonormal, i.e., [image: there is no content]. Hence, for [image: there is no content], we have


TF=∑i=1n∂p∂xiΦh1,⋯,Φhn⊗hi,and










T*TF=-∑i=1n∂2p∂xi2Φh1,⋯,Φhn+∑i=1nΦhi∂p∂xiΦh1,⋯,Φhn








which is the assertion. For details, see the proof of Theorem 3.8. ☐





Definition 3.27. 

Let [image: there is no content] be a Gaussian field. On the dense domain [image: there is no content], we define the Φ-gradient by


[image: there is no content]



(71)




for all [image: there is no content]. (Note that [image: there is no content] is an unbounded operator in [image: there is no content], and [image: there is no content].)





Lemma 3.28. 

Let [image: there is no content] be the Φ-gradient from Definition 3.27. The adjoint operator [image: there is no content], i.e., the Φ-divergence, is given as follows:


∇Φ*G=∑i=1nΦhi2-nG-∇ΦG,∀G∈D



(72)









Proof. 

Fix [image: there is no content] as in Definition 3.2. Then [image: there is no content], [image: there is no content], and [image: there is no content], such that


[image: there is no content]








Further assume that [image: there is no content].





In the calculation below, we use the following notation: [image: there is no content], [image: there is no content] = Lebesgue measure, and [image: there is no content] = standard Gaussian distribution in [image: there is no content], see (44).



Then, we have


E∇ΦFG=∑i=1nEΦhi∂p∂xiΦh1,⋯,ΦhnqΦh1,⋯,Φhn=∑i=1n∫Rnxi∂p∂xixqxgnxdx=-∑i=1n∫Rnpx∂∂xixiqxgnxdx=-∑i=1n∫Rnpxqx+xi∂q∂xix-qxxi2gnxdx∂gn∂xi=-xign=∑i=1nEFGΦhi2-nEFG-EF∇ΦG=EFG∑i=1nΦhi2-n-EF∇ΦG








which is the desired conclusion in (72). ☐

Remark 3.29. 

Note [image: there is no content] is not a derivation. In fact, we have


Tk*FG=Tk*FG+FTk*G-ΦkFG








for all [image: there is no content], and all [image: there is no content].







However, the divergence operator [image: there is no content] does satisfy the Leibniz rule, i.e.,


∇ΦFG=∇ΦFG+F∇ΦG,∀F,G∈D












3.3. Realization of the operators


Theorem 3.30. 

Let [image: there is no content] be the Fock state on [image: there is no content], see Equation (12) and Equation (13), and let [image: there is no content] denote the corresponding (Fock space) representation, acting on [image: there is no content], see Lemma 2.15. Let [image: there is no content] be the isomorphism given by


Wek:=eΦk-12kL2,k∈L



(73)




Here [image: there is no content] denotes the Gaussian Hilbert space corresponding to [image: there is no content]; see Definition 2.10. For vectors [image: there is no content], let [image: there is no content] denote the Malliavin derivative in the direction k; see Definition 3.2.





We then have the following realizations:


Tk=WπFakW*,and



(74)






[image: there is no content]



(75)




valid for all [image: there is no content], where the two identities Equation (74) and Equation (75) hold on the dense domain [image: there is no content] from Lemma 2.15.



Remark 3.31. 

The two formulas (74) and (75) take the following form, see Figure 2 and Figure 3.

Figure 2. The first operator.



[image: Axioms 05 00012 g002 1024]





Figure 3. The second operator.



[image: Axioms 05 00012 g003 1024]









In the proof of the theorem, we make use of the following:



Lemma 3.32. 

Let [image: there is no content], [image: there is no content], and [image: there is no content] (= the Fock vacuum state) be as above. Then, for all [image: there is no content], and all [image: there is no content], [image: there is no content], we have the following identity:


ωFah1⋯,ahna*km⋯ak1=δn,m∑s∈Snh1,ks1Lh2,ks2L⋯hn,ksnL



(76)




where the summation on the RHS in (76) is over the symmetric group [image: there is no content] of all permutations of [image: there is no content]. (In the case of the CARs, the analogous expression on the RHS will instead be a determinant.)





Proof. 

We leave the proof of the lemma to the reader; it is also contained in [2]. ☐





Remark 3.33. 

In physics-lingo, we say that the vacuum-state [image: there is no content] is determined by its two-point functions


ωFaha*k=h,kL,andωFa*kah=0,∀h,k∈L













Proof of Theorem 3.30. 

We shall only give the details for formula (74). The modifications needed for (75) will be left to the reader.





Since W in (73) is an isomorphic isomorphism, i.e., a unitary operator from [image: there is no content] onto [image: there is no content], we may show instead that


[image: there is no content]



(77)




holds on the dense subspace of all finite symmetric tensor polynomials in [image: there is no content]; or equivalently on the dense subspace in [image: there is no content] spanned by


Γl:=el:=∑n=0∞l⊗nn!∈ΓsymL,l∈L



(78)




see also Lemma 2.15. We now compute (77) on the vectors [image: there is no content] in (78):


TkWel=TkeΦk-12kL2(byLemma2.15)=e-12kL2TkeΦk=e-12kL2k,lLeΦl(byRemark3.3)=WπFakel








valid for all [image: there is no content]. ☐




3.4. The Unitary Group


For a given Gaussian field [image: there is no content], we studied the [image: there is no content]-algebra, and the operators associated with its Fock-vacuum representation.



From the determination of Φ by


EeiΦk=e-12kL2,k∈L



(79)




we deduce that [image: there is no content] satisfies the following covariance with respect to the group [image: there is no content] of all unitary operators [image: there is no content].



We shall need the following:



Definition 3.34. 

We say that [image: there is no content] iff the following three conditions hold:

	
[image: there is no content] is defined [image: there is no content] a.e. on Ω, and [image: there is no content].



	
[image: there is no content]; more precisely, [image: there is no content] where


[image: there is no content]



(80)







	
[image: there is no content], i.e., α is a measure preserving automorphism.










Note that when Equation (1)–Equation (3) hold for α, then we have the unitary operators [image: there is no content] in [image: there is no content],


[image: there is no content]



(81)




or more precisely,


UαFω=Fαω,a.e.ω∈Ω








valid for all [image: there is no content].



Theorem 3.35. 


	1. 

	
For every [image: there is no content] (= the unitary group of [image: there is no content]), there is a unique [image: there is no content] s.t.


[image: there is no content]



(82)




or equivalently (see (81))


ΦUk=UαΦk,∀k∈L



(83)








	2. 

	
If [image: there is no content] is the Malliavin derivative from Definition 3.2, then we have:


[image: there is no content]



(84)















Proof. 

The first conclusion in the theorem is immediate from the above discussion, and we now turn to the covariance formula (84).





Note that (84) involves unbounded operators, and it holds on the dense subspace [image: there is no content] in [image: there is no content] from Lemma 2.15. Hence it is enough to verify (84) on vectors in [image: there is no content] of the form [image: there is no content], [image: there is no content]. Using Lemma 2.15, we then get:


LHS84eΦk-12kL2=e-12kL2TeΦUk(by82)=e-12UkL2eΦUk⊗Uk(byRemark3.3)=Uα⊗UeΦk-12kL2=RHS84








which is the desired conclusion. ☐





4. The Fock-State, and Representation of CCR, Realized as Malliavin Calculus


We now resume our analysis of the representation of the canonical commutation relations (CCR)-algebra induced by the canonical Fock state (see (11)). In our analysis below, we shall make use of the following details: Brownian motion, Itō-integrals, and the Malliavin derivative.



The general setting. Let [image: there is no content] be a fixed Hilbert space, and let [image: there is no content] be the *-algebra on the generators [image: there is no content], [image: there is no content], [image: there is no content], and subject to the relations for the CCR-algebra, see Section 2.2:


ak,al=0,and



(85)






[image: there is no content]



(86)




where [image: there is no content] is the commutator bracket.



A representation π of [image: there is no content] consists of a fixed Hilbert space [image: there is no content] (the representation space), a dense subspace [image: there is no content], and a *-homomorphism [image: there is no content] such that


Dπ⊂domπA,∀A∈CCR.



(87)




The representation axiom entails the commutator properties resulting from Equation (85) and Equation (86); in particular π satisfies


πak,πalF=0,and



(88)






[image: there is no content]



(89)




[image: there is no content], [image: there is no content]; where [image: there is no content] .



In the application below, we take [image: there is no content], and [image: there is no content] where [image: there is no content] is the standard Wiener probability space, and


Φtω=ωt,∀ω∈Ω,t∈[0,∞)



(90)




For [image: there is no content], we set


Φk=∫0∞ktdΦt(=the Itō-integral)











The dense subspace [image: there is no content] is generated by the polynomial fields:



For [image: there is no content], [image: there is no content], [image: there is no content] a polynomial in n real variables, set


F=pΦh1,⋯,Φhn,and



(91)






[image: there is no content]



(92)







It follows from Lemma 3.14 that [image: there is no content] is an algebra under pointwise product and that


[image: there is no content]



(93)




[image: there is no content], [image: there is no content]. Equivalently, [image: there is no content] is a derivation in the algebra [image: there is no content] (relative to pointwise product.)



Theorem 4.1. 

With the operators [image: there is no content], [image: there is no content], we get a *-representation [image: there is no content], i.e., [image: there is no content] = the Malliavin derivative in the direction k,


πakF=TF,kL,∀F∈Dπ,∀k∈L



(94)









Proof. 

The proof begins with the following lemma. ☐





Lemma 4.2. 

Let π, [image: there is no content], and [image: there is no content] be as above. For [image: there is no content], we shall identify [image: there is no content] with the unbounded multiplication operator in [image: there is no content]:


[image: there is no content]



(95)




For [image: there is no content], we have [image: there is no content]; or in abbreviated form:


[image: there is no content]



(96)




valid on the dense domain [image: there is no content].





Proof. 

This follows from the following computation for [image: there is no content], [image: there is no content].





Setting [image: there is no content], we have


ETkFG+EFTkG=ETkFG=EΦkFG








Hence [image: there is no content], and [image: there is no content], which is the desired conclusion (96). ☐



Proof of Theorem 4.1 continued. 

It is clear that the operators [image: there is no content] form a commuting family. Hence on [image: there is no content], we have for [image: there is no content], [image: there is no content]:


Tk,Tl*F=Tk,ΦlFby96=TkΦlF-ΦlTkF=TkΦlFby93=k,lLFby92








which is the desired commutation relation (86).





The remaining check on the statements in the theorem are now immediate. ☐



Corollary 4.3. 

The state on [image: there is no content] which is induced by π and the constant function [image: there is no content] in [image: there is no content] is the Fock-vacuum-state, [image: there is no content].





Proof. 

The assertion will follow once we verify the following two conditions:


[image: there is no content]



(97)




and


[image: there is no content]



(98)




for all [image: there is no content].





This in turn is a consequence of our discussion of Equation (12) and Equation (13) above: The Fock state [image: there is no content] is determined by these two conditions. The assertions (97) and (98) follow from [image: there is no content], and [image: there is no content]. See (42). ☐



Corollary 4.4. 

For [image: there is no content] we get a family of selfadjoint multiplication operators [image: there is no content] on [image: there is no content] where [image: there is no content]. Moreover, the von Neumann algebra generated by these operators is [image: there is no content], i.e., the maximal abelian [image: there is no content]-algebra of all multiplication operators in [image: there is no content].





Remark 4.5. 

In our considerations of representations π of [image: there is no content] in a Hilbert space [image: there is no content], we require the following five axioms satisfied:

	1. 

	
a dense subspace [image: there is no content];




	2. 

	
[image: there is no content], i.e., [image: there is no content];




	3. 

	
[image: there is no content], [image: there is no content];




	4. 

	
[image: there is no content], [image: there is no content]; and




	5. 

	
[image: there is no content], [image: there is no content].











Note that in our assignment for the operators [image: there is no content], and [image: there is no content] in Lemma 4.2, we have all the conditions (1)–(5) satisfied. We say that π is a selfadjoint representation.



If alternatively, we define


[image: there is no content]



(99)




with the following modification:


ρak=Tk,k∈L,andρa*k=Φk



(100)




then this ρ will satisfy (1)–(3), and


[image: there is no content]








but then [image: there is no content]; i.e., non-containment of the respective graphs.



One generally says that the representation π is (formally) selfadjoint, while the second representation ρ is not.




5. Conclusions: The General Case


Definition 5.1. 

A representation π of [image: there is no content] is said to be admissible iff (Definition) [image: there is no content] as above such that [image: there is no content], and there exists a linear mapping [image: there is no content] subject to the condition:





For every [image: there is no content], and every [image: there is no content], the following holds on its natural dense domain in [image: there is no content]: For every [image: there is no content], we have


[image: there is no content]



(101)




with the M on the RHS denoting “multiplication.”



Corollary 5.2. 


	1. 

	
Every admissible representation π of [image: there is no content] yields an associated Malliavin derivative as in (101).




	2. 

	
The Fock-vacuum representation [image: there is no content] is admissible.











Proof. 

Item (1) of Corollary 5.2 follows from the definition combined with Corollary 2.9. Item (2) of Corollary 5.2 is a direct consequence of Lemma 3.7 and Theorem 3.8; see also Corollary 4.3. ☐
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