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Abstract:



We prove that if G is a Polish group and A a group admitting a system of generators whose associated length function satisfies: (i) if [image: there is no content], then [image: there is no content]; (ii) if [image: there is no content] and [image: there is no content], then [image: there is no content], then there exists a subgroup [image: there is no content] of G of size [image: there is no content] (the bounding number) such that [image: there is no content] is not embeddable in A. In particular, we prove that the automorphism group of a countable structure cannot be an uncountable right-angled Artin group. This generalizes analogous results for free and free abelian uncountable groups.
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In a meeting in Durham in 1997, Evans asked if an uncountable free group can be realized as the group of automorphisms of a countable structure. This was settled in the negative by Shelah [1]. Independently, in the context of descriptive set theory, Becher and Kechris [2] asked if an uncountable Polish group can be free. This was also answered negatively by Shelah [3], generalizing the techniques of [1]. Inspired by the question of Becher and Kechris, Solecki [4] proved that no uncountable Polish group can be free abelian. In this paper, we give a general framework for these results, proving that no uncountable Polish group can be a right-angled Artin group (see Definition 1). We actually prove more:



Theorem 1.

Let [image: there is no content] be an uncountable Polish group and A a group admitting a system of generators whose associated length function satisfies the following conditions:

	(i) 

	
if [image: there is no content], then [image: there is no content];




	(ii) 

	
if [image: there is no content] and [image: there is no content], then [image: there is no content].









Then G is not isomorphic to A; in fact, there exists a subgroup [image: there is no content] of G of size [image: there is no content] (the bounding number) such that [image: there is no content] is not embeddable in A.





After the authors proved Theorem 1, they discovered that the impossibility to endow groups A as in Theorem 1 with a Polish group topology follows from an old important result of Dudley [5]. In fact, Dudley’s work implies more strongly that we cannot even find a homomorphism from a Polish group G into A. Apart from the fact that the claim about [image: there is no content] in Theorem 1 is of independent interest and not subsumed by Dudley’s work, our focus here is on techniques; i.e., the crucial use of the Compactness Lemma of [3]. This powerful result has a broad scope of applications, and is used by the authors in a work in preparation [6] to deal with classes of groups not covered by Theorem 1 or Dudley’s work, most notably the class of right-angled Coxeter groups (see Definition 1).



Proof of Theorem 1.

Let [image: there is no content] be such that [image: there is no content], for every [image: there is no content], and [image: there is no content] such that [image: there is no content] and [image: there is no content], for every [image: there is no content]. Let [image: there is no content] be a set of power [image: there is no content] of increasing functions [image: there is no content] which is unbounded with respect to the partial order of eventual domination. For transparency, we also assume that for every [image: there is no content] we have [image: there is no content]. For [image: there is no content], define the following set of equations:


[image: there is no content]













By (3.1, [3]), for every [image: there is no content], [image: there is no content] is solvable in G. Let [image: there is no content] witness it; i.e.,


b¯η∈Gωand⋀n<ωbη,n+1η(n)=bη,ngn.











Let [image: there is no content] be the subgroup of G generated by [image: there is no content]. Towards contradiction, suppose that [image: there is no content] is an embedding of [image: there is no content] into A, and let S be a system of generators for A whose associated length function [image: there is no content] satisfies conditions (i) and (ii) of the statement of the theorem. For [image: there is no content] and [image: there is no content], let:


π(gn)=gn′,π(bη,n)=cη,nandm*(η)=lg(cη,0).











Now, [image: there is no content] is a function from [image: there is no content] to [image: there is no content] and so there exists unbounded [image: there is no content] such that for every [image: there is no content] the value [image: there is no content] is a constant [image: there is no content]. Fix such a [image: there is no content] and [image: there is no content], and let [image: there is no content] increasing satisfying the following:

	(1)

	
[image: there is no content];




	(2)

	
[image: there is no content].









Claim 1.

For every [image: there is no content], [image: there is no content].





Proof. 

By induction on [image: there is no content]. The case [image: there is no content] is clear by the choice of [image: there is no content] and [image: there is no content]. Let [image: there is no content]. Because of assumption (i) on A, the choice of [image: there is no content], and the choice of [image: there is no content] and [image: there is no content], we have:


[image: there is no content]








☐





Now, by the choice of [image: there is no content], we can find [image: there is no content] and [image: there is no content] such that [image: there is no content]. Notice then that by the claim above and the choice of [image: there is no content] and [image: there is no content], we have:


[image: there is no content]



(1)






[image: there is no content]



(2)







Thus, by (1) and the fact that [image: there is no content], using assumption (ii), we infer that [image: there is no content]. Hence,


[image: there is no content]











Furthermore, if [image: there is no content], then again by assumption (ii), we have that [image: there is no content], and so [image: there is no content], which contradicts the choice of [image: there is no content]. Hence, [image: there is no content], contradicting (2). It follows that the embedding [image: there is no content] from [image: there is no content] into A cannot exist. ☐



Definition 1.

Given a graph [image: there is no content], the right-angled Artin group [image: there is no content] is the group with presentation:


[image: there is no content]











If in the presentation [image: there is no content], we ask in addition that all the generators are involutions, then we speak of right-angled Coxeter groups [image: there is no content].





Thus, for [image: there is no content], a graph with no edges (resp. a complete graph) [image: there is no content] is a free group (resp. a free abelian group).



Definition 2.

Let [image: there is no content] be a right-angled Artin group and [image: there is no content] its associated length function. We say that an element [image: there is no content] is cyclically reduced if it cannot be written as [image: there is no content] with [image: there is no content].





Fact 1.

Let [image: there is no content] be a right-angled Artin group, [image: there is no content] its associated length function, and [image: there is no content]. Then:

	(1) 

	
g can be written as [image: there is no content] with f cyclically reduced and [image: there is no content];




	(2) 

	
if [image: there is no content] and f is cyclically reduced, then [image: there is no content];




	(3) 

	
if [image: there is no content] and [image: there is no content] is as in (1), then [image: there is no content].











Proof. 

Item (1) is proved in (Proposition on p. 38, [7]). The rest is folklore. ☐





Corollary 1.

No uncountable Polish group can be a right-angled Artin group.





Proof. 

By Theorem 1 it suffices to show that for every right-angled Artin group [image: there is no content] the associated length function [image: there is no content] satisfies conditions (i) and (ii) of the theorem, but by Fact 1, this is clear. ☐





As is well known, the automorphism group of a countable structure is naturally endowed with a Polish topology which respects the group structure, hence:



Corollary 2.

The automorphism group of a countable structure cannot be an uncountable right-angled Artin group.





As already mentioned, the situation is different for right-angled Coxeter groups; in fact, the structure M with [image: there is no content] many disjoint unary predicates of size 2 is such that [image: there is no content]; i.e., [image: there is no content] is the right-angled Coxeter group on [image: there is no content] (a complete graph on continuum many vertices). Notice that in this group for any [image: there is no content], we have:

	(i) 

	
[image: there is no content];




	(ii) 

	
[image: there is no content], [image: there is no content] and [image: there is no content].
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