

Review

Selective Survey on Spaces of Closed Subgroups of Topological Groups

Igor V. Protasov

Faculty of Computer Science and Cybernetics, Kyiv University, Academic Glushkov pr. 4d, 03680 Kyiv, Ukraine; i.v.protasov@gmail.com

Received: 8 October 2018; Accepted: 24 October 2018; Published: 26 October 2018

Abstract: We survey different topologizations of the set S(G) of closed subgroups of a topological group G and demonstrate some applications using Topological Groups, Model Theory, Geometric Group Theory, and Topological Dynamics.

Keywords: space of closed subgroups; Chabauty topology; Vietoris topology; Bourbaki uniformity

MSC: 22A05; 22B05; 54B20; 54D30

For a topological group G, S(G) denotes the set of all closed subgroups of G. There are many ways to endow S(G) with a topology related to the topology of G. Among these methods, the most intensively studied are the Chabauty topology, rooted in *Geometry of Numbers*, and the Vietoris topology, based on *General Topology*; both coincide if G is compact. The spaces of closed subgroups are interesting by their own merits, but they also have some deep applications in *Topological Groups and Model Theory*, *Geometric Group Theory*, and *Dynamical Systems*. This survey is my subjective look at this area.

1. Chabauty Spaces

1.1. From Minkowski to Chabauty

We recall that a *lattice* L in \mathbb{R}^n is a discrete subgroup of rank n. We define $min\ L$ as the length of the shortest nonzero vector from L, and we define $vol\ (\mathbb{R}^n/L)$ as the volume of a basic parallelepiped of L.

A sequence $(L_m)_{m\in\omega}$ of lattices in \mathbb{R}^n converges to the lattice L if, for each $m\in\omega$, one can choose a basis $a_1(m),\ldots,a_n(m)$ of L_m and a basis a_1,\ldots,a_n of L such that the sequence $(a_i(m))_{m\in\omega}$ converges to a_i for each $i\in\{1,\ldots,n\}$. This convergence of lattices was introduced by H. Minkowski [1], and its usage in *Geometry of Numbers* (see [2]) is based on the following theorem from K. Mahler [3].

Theorem 1. Let \mathcal{M} be a set of lattices in \mathbb{R}^n . Every sequence in \mathcal{M} has a convergent subsequence if and only if there exist two constants, C > 0 and c > 0, such that min L > c, vol $(\mathbb{R}^n \setminus L) < C$ for each $L \in \mathcal{M}$.

What we know now is that Chabauty topology was invented by C. Chabauty in [4] in order to extend Theorem 1 to lattices in connected Lie groups. A discrete subgroup L of a connected Lie group G is called a *lattice* if the quotient space G/L is compact.

Let X be a Hausdorff locally compact space, and let $exp\ X$ denote the set of all closed subsets of X. The sets

$${F \in exp \ X : F \cap K = \emptyset}, \ {F \in exp \ X : F \cap U \neq \emptyset},$$

Axioms 2018, 7, 75 2 of 12

where K runs over all compact subsets of X and U runs over all open subsets of X, form the subbase of the *Chabauty topology* on $exp\ X$. The space $exp\ X$ is compact and Hausdorff. If X is discrete, then $exp\ X$ is homeomorphic to the Cantor cube $\{0,1\}^{|X|}$.

We note also that a net $(F_{\alpha})_{\alpha \in \mathcal{I}}$ converges in $exp\ X$ to F if and only if

- for every compact K of X such that $K \cap F = \emptyset$, there exists $\beta \in \mathcal{I}$ such that $F_{\alpha} \cap K = \emptyset$ for each $\alpha > \beta$;
- for every $x \in F$ and every neighborhood U of x, there exists $\gamma \in \mathcal{I}$ such that $F_{\alpha} \cap U \neq \emptyset$ for each $\alpha > \gamma$.

If *G* is a locally compact group, then S(G) is a closed subspace of $exp\ G$ (so, S(G) is compact); S(G) is called the *Chabauty space* of *G*.

Theorem 2. [4]. Let G be a connected unimodular Lie group. A set \mathcal{M} of lattices in G is relatively compact in \mathcal{M} if and only if there exists a constant C > 0 and a neighborhood U with the identity e of G such that $L \cap U = \{e\}$ and vol (G/L) < C for each $L \in \mathcal{M}$.

There was some technical improvement made in [5] and the paper [4], which is included in [6], Chapter 8.

1.2. Pontryagin-Chabauty Duality

This duality was established in [7] and detailed in [8]. We use the standard abbreviation LCA for a locally compact Abelian group. Let G be an LCA-group G^{\wedge} , let denote its dual group $G^{\wedge} = Hom(G, \mathbb{R}/\mathbb{Z})$, and let φ denote the canonical bijection $S(G) \longrightarrow S(G^{\wedge})$, $\varphi(X) = \{f \in G^{\wedge} : X \subseteq ker f\}$.

Theorem 3. For every LCA-group G, the bijection $\varphi : \mathcal{S}(G) \longrightarrow \mathcal{S}(G^{\wedge})$ is a homeomorphism.

Typically, Theorem 3 is applied to replace $\mathcal{S}(G)$ by $\mathcal{S}(G^{\wedge})$ in the case of a compact Abelian group G. In what follows, we use the following notations: \mathbb{C}_n is a cyclic group of order n, $\mathbb{C}_{p^{\infty}}$ is a quasi-cyclic (or Prüfer) p-group, \mathbb{Z} is a discrete group of integers, \mathbb{Z}_p is the group of p-adic integers, and \mathbb{Q}_p is an additive group of a field of p-adic numbers.

1.3. S(G) for Compact G

The following two lemmas from [9] are the basic technical tools in this area.

Lemma 1. *If* G, H *are compact groups and* $\varphi : G \longrightarrow H$ *is a continuous surjective homomorphism, then the mapping* $S(G) \longrightarrow S(H)$, $X \longmapsto \varphi(X)$ *is continuous and open.*

The continuity is easily deduced, but to prove the openness, we need

Lemma 2. Let G be a compact group, $X \in \mathcal{S}(G)$. Then, the following subsets form a base of the neighborhoods of X is $\mathcal{S}(G)$:

$$\mathcal{N}_X(U, N, x_1, \dots, x_n) = \{u^{-1}Yu : u \in U, Y \in \mathcal{S}(G), Y \subseteq XN, Y \cap x_1U \neq \emptyset, \dots, Y \cap x_nU \neq \emptyset, \}$$

where U is a neighborhood of the identity of G, N is closed normal subgroup such that G/N is a Lie group, and x_1, \ldots, x_n are arbitrary elements of X, $n \in \mathbb{N}$.

Axioms 2018, 7, 75 3 of 12

In particular, if G is a compact Lie group, then Lemma 2 states that there is a neighborhood \mathcal{N} of X such that each subgroup $Y \in \mathcal{N}$ is conjugated to some subgroup of X. The Montgomery–Yang theorem on tubes [10] (see also ([11], Theorem 5.4, Chapter 2)) plays the key role in the proof of Lemma 2.

We recall that the *cellularity* (or Souslin number) c(X) of a topological space X is the supremum of cardinalities of disjoint families of open subsets of X. A topological space X is called *dyadic* if X is a continuous image of some Cantor cube $\{0,1\}^\kappa$.

The weight w(X) of a topological space X is the minimal cardinality of the open bases of X.

Theorem 4. [9]. For every compact group G, we have $c(S(G)) \leq \aleph_0$. In addition, if $w(G) \leq \aleph_1$, then S(G) is dyadic.

Theorem 5. [12]. Let a group G be either profinite or compact and Abelian. If $w(G) > \aleph_2$, then the space S(G) is not dyadic.

Theorem 6. [12]. Let G be an infinite compact Abelian group such that $w(G) \leq \aleph_1$. Then, the space S(G) is homeomorphic to the Cantor cube $\{0,1\}^{w(G)}$ if and only if S(G) has no isolated points.

An Abelian group G is called *Artinian* if every increasing chain of subgroups of G is finite; every such group is isomorphic to the direct $sum \oplus_{p \in F} \mathbb{C}_{p^{\infty}} \oplus K$, where F is a finite set of primes, and K is a finite subgroup. An Abelian group G is called *minimax* if G has a finitely generated subgroup N such that G/N is Artinian.

Theorem 7. [12]. For a compact Abelian group G, the space S(G) has an isolated point if and only if the dual group G^{\wedge} is minimax.

1.4. S(G) for LCA G

The space $\mathcal{S}(\mathbb{R})$ is homeomorphic to the segment [0,1]. By [13], $\mathcal{S}(\mathbb{R}^2)$ is homeomorphic to the sphere \mathbf{S}^4 . For $n \geq 3$, $\mathcal{S}(\mathbb{R}^n)$ is not a topological manifold and its structure is far from understood (see [14]).

Theorem 8. [15]. The space S(G) of an LCA-group G is connected if and only if G has a subgroup topologically isomorphic to \mathbb{R} .

If *F* is a non-solvable finite group, then $\mathcal{S}(\mathbb{R} \times F)$ is not connected ([8], Proposition 8.6).

Theorem 9. [8]. The space S(G) of an LCA-group G is totally disconnected if and only if G is either totally disconnected or each element of G belongs to a compact subgroup.

Some more information on S(G) for LCA G can be found in [8] and the references therein, particularly on the topological dimension of S(G).

By Theorems 3 and 4, $c(S(G)) \leq \aleph_0$ for every discrete Abelian group. We say that a topological space X has the *Shanin number* ω if any uncountable family \mathcal{F} of the non-empty open subsets of X has an uncountable subfamily \mathcal{F}' such that $\cap \mathcal{F}' \neq \emptyset$. Evidently, if a space X has the Shanin number ω , then $c(X) \leq \aleph_0$. By [16], Theorem 1, for every discrete Abelian group G, the space S(G) has the Shanin number ω . By [16], Theorem 3, for every infinite cardinal τ , there exists a solvable discrete group G such that $c(S(G)) = |G| = \tau$.

Axioms 2018, 7, 75 4 of 12

1.5. S(G) as a Lattice

The set S(G) has the natural structure of a lattice with the operations \vee and \wedge , where $A \wedge B = A \cap B$, and $A \vee B$ is the smallest closed subgroup of G containing A and B. In this subsection, we formulate some results from [17] about the interrelations between the topological and lattice structures on S(G).

For $g \in G$, $\overline{\langle g \rangle}$ denotes the subgroup of G topologically generated by g. A totally disconnected locally compact group G is called *periodic* if $\overline{\langle g \rangle}$ is compact for each $g \in G$. In this case, $\pi(G)$ denotes the set of all prime numbers such that $p \in \pi(G)$ if and only if $g \in G$ such that $\overline{\langle g \rangle}$ is topologically isomorphic either to \mathbb{C}_{p^n} or to \mathbb{Z}_p ; this g is called a *topological p-element*.

Theorem 10. *For a compact group G, the following statements are equivalent:*

- (i) \wedge is continuous;
- (ii) \wedge and \vee are continuous;
- (iii) G is the semidirect product $K \times P$, where K is profinite with finite Sylow p-subgroups, P is Abelian profinite and each Sylow p-subgroup of G is \mathbb{Z}_p , $\pi(K) \cap \pi(P) = \emptyset$, and the centralizer of each Sylow p-subgroup of G has a finite index in G.

Theorem 11. For a locally compact group G, the operation \wedge is continuous if and only if the following conditions are satisfied:

- (i) G is either discrete or periodic;
- (ii) \land is continuous in S(H) for each compact subgroup H of G;
- (iii) the centralizer of each topological p-element of G is open.

We recall that a torsion group G is *layer-finite* if the set $\{g \in G : g^n = e\}$ is finite for each $n \in \mathbb{N}$. A layer-finite group G is called *thin* if each Sylow p-subgroup of G is finite (equivalently, G has no subgroup isomorphic to $\mathbb{C}_{p^{\infty}}$).

Theorem 12. Let G be a locally compact group. The operations \wedge and \vee are continuous if and only if G is periodic and topologically isomorphic to $A \times B \times (C \setminus D)$, where C has a dense thin layer-finite subgroup; A, B, D are Abelian with Sylow p-subgroups $\mathbb{C}_{p^{\infty}}$, \mathbb{Q}_p , or \mathbb{Z}_p ; the sets $\pi(A)$, $\pi(B)$, $\pi(G)$, $\pi(D)$ are pairwise disjoint; and the centralizer of each Sylow p-subgroup of G is open.

1.6. From Chabauty to Local Method

A topological group G is called *topologically simple* if each closed normal subgroup of G is either G or $\{e\}$. Every topologically simple LCA-group is discrete, and either $G = \{e\}$ or G is isomorphic to \mathbb{C}_p .

Following the algebraic tradition, we say that a group *G* is *locally nilpotent* (*solvable*) if every finitely generated subgroup is nilpotent (solvable).

In [18], Problem 1.76, V. Platonov asked whether there exists a non-Abelian, topologically simple, locally compact, locally nilpotent group. Here, we present the negative answer to this question for the locally solvable group obtained in [19].

Let G be a locally compact, locally solvable group. We take $g \in G \setminus \{e\}$, choose a compact neighborhood U of G, and denote by \mathcal{F} the family of all topologically finitely generated subgroups of G containing g. We may assume that G is not topologically finitely generated, so \mathcal{F} is directed by the inclusion \subset . For each $F \in \mathcal{F}$, we choose A_F , $B_F \in \mathcal{S}(F)$ such that $B_F \subset A_F$; A_F and B_F are normal in F, $A_F \cap U \neq \emptyset$, $B_F \cap U = \emptyset$, and A_F/B_F is Abelian. Since $\mathcal{S}(G)$ is compact, we can choose two subnets $(A_{\alpha})_{\alpha \in \mathcal{I}}$, $(B_{\alpha})_{\alpha \in \mathcal{I}}$ of the nets $(A_F)_{F \in \mathcal{F}}$, $(B_F)_{F \in \mathcal{I}}$ which converge to $A, B \in \mathcal{S}(G)$. Then A, B are normal

Axioms 2018, 7, 75 5 of 12

in *G*, and *A*/*B* is Abelian. Moreover, $x \notin B$ and $A \cap U \neq \emptyset$. If $A \neq \{G\}$, then *A* is a proper normal subgroup of *G*; otherwise, *G*/*B* is Abelian.

In [20], the Chabauty topology was defined on some systems of closed subgroups of a locally compact group G. A system $\mathfrak A$ of closed subgroups of G is called *subnormal* if

- 𝔄 is linearly ordered by the inclusion ⊂;
- for any subset \mathfrak{M} of \mathfrak{A} , the closure of $\bigcup_{F \in \mathfrak{M}} F \in \mathfrak{A}$ and $\bigcap_{F \in \mathfrak{M}} F \in \mathfrak{A}$;
- whenever A and B comprise a jump in $\mathfrak A$ (i.e., $B \subset A$, and no members of $\mathfrak A$ lie between B and A), B is a normal subgroup of A.

If the subgroups A, B form a jump, then A/B is called a factor of G. The system is called *normal* if each $A \in \mathfrak{A}$ is normal in G.

A group G is called an RN-group if G has a normal system with Abelian factors. Among the local theorems from [20], one can find the following: if every topologically finitely generated subgroup of a locally compact group G is an RN-group, then G is an RN-group. In particular, every locally compact, locally solvable group is an RN-group.

In 1941 (see ([21], pp. 78–83), A.I. Mal'tsev obtained local theorems for discrete groups as applications of the following general local theorem: if every finitely generated subsystem of an algebraic system A satisfies some property \mathcal{P} , which can be defined by some quasi-universal second-order formula, then A satisfies \mathcal{P} .

In [22], Mal'tsev's local theorem was generalized on a topological algebraic system. The part of the model-theoretical Compactness Theorem in Mal'tsev's arguments employs some convergents of closed subsets. A net $(F_{\alpha})_{\alpha \in \mathcal{I}}$ of closed subsets of a topological space X S-converges to a closed subset F if

- for every $x \in F$ and every neighborhood U of x, there exists $\beta \in \mathcal{I}$ such that $F_{\alpha} \cap U \neq \emptyset$ for each $\alpha > \beta$;
- for every $y \in X \setminus F$, there exist a neighborhood \mathcal{V} of y and a $\gamma \in \mathcal{I}$ such that $F_{\alpha} \cap \mathcal{V} = \emptyset$ for each $\alpha > \gamma$.

Every net of closed subsets of an arbitrary (!) topological space has a convergent subnet. If *X* is a Hausdorff locally compact space, then the *S*-convergence coincides with the convergence in the Chabauty topology.

1.7. Spaces of Marked Groups

Let F_k be the free group of rank k, with the free generators x_1, \ldots, x_k , and let \mathcal{G}_k denote the set of all normal subgroups of F_k . In the metric form, the Chabauty topology on \mathcal{G}_k was introduced in [23] as a reply to Gromov's idea of the topologizations of some sets of groups [24].

Let *G* be a group generated by g_1, \ldots, g_k . The bijection $x_i \longmapsto g_i g_1, \ldots, g_n$ can be extended to the homomorphism $f: F_k \longrightarrow G$. With the correspondence $G \longmapsto \ker f$, G_k is called the *space marked k-generated groups*.

A couple of papers in development by [23] are aimed at understanding how large, in the topological sense, are the well-known classes of finitely generated groups, or how a given k-generated group is placed in \mathcal{G}_k (see [25]). Among the applications of \mathcal{G}_k , we mention the construction of topologizable Tarski Monsters in [26].

Axioms 2018, 7, 75 6 of 12

1.8. Dynamical Development

Every locally compact group G acts on the Chabauty space S(G) by the rule: $(g, H) \mapsto g^{-1}Hg$. Under this action, every minimal closed invariant subset of S(G) is called a *uniformly recurrent subgroup* (URS). The study of URSs was initiated by Glasner and Weiss [27] with the following observation.

Let G be a locally compact group G acting on a compact X so that is G minimal, i.e., the orbit of each point $x \in X$ is dense. We consider the mapping $Stab : X \longrightarrow S(G)$, defined by $Stab(x) = \{g \in G : gx = x\}$. Then, there is the unique URS contained in the closure of Stab(X). This URS is called the $Stabilizer\ URS$. Glasner and Weiss asked whether every URS of a locally compact group G arises as the stabilizer URS of a minimal action of G on a compact space. This question was answered in the affirmative in [28].

2. Vietoris Spaces

For a topological space X, the Vietoris topology on the set $exp\ X$ of all closed subsets of X is defined by the subbase of the open sets

$$\{F \in exp \ X : F \subseteq U\}, \ \{F \in exp \ X : F \cap V \neq \emptyset\},\$$

where U, V run over all open subsets of X.

A net $(F_{\alpha})_{\alpha \in \mathcal{I}}$ converges to F in $exp\ X$ if and only if

- for each open subset *U* of *X* such that $F \subseteq U$, there exists $\beta \in \mathcal{I}$ such that $F_{\alpha} \subseteq U$ for each $\alpha > \beta$;
- for each $x \in F$ and each neighborhood V of x, there exists $\gamma \in \mathcal{I}$ such that $F_{\alpha} \cap V \neq \emptyset$ for each $\alpha > \gamma$.

If X is regular, then S(G) is closed in exp G. To my knowledge, the spaces S(G), where G needs not be compact, endowed with Vietoris topologies appeared in [29] with the characterization of LCA-groups G such that the canonical mapping $\varphi: S(G) \longrightarrow S(G^{\wedge})$ is a homeomorphism.

2.1. Compactness

We cannot ask for a constructive description of arbitrary topological groups G with compact space S(G) because we know nothing about G with S(G) = 2.

Theorem 13. [30]. Let G be a locally compact group. The space S(G) is compact if and only if G is one of the following groups:

- (i) G is compact
- (ii) $\mathbb{C}_{p_1^{\infty}} \times \ldots \times \mathbb{C}_{p_n^{\infty}} \times K$, where p_1, \ldots, p_n are distinct prime numbers, K is finite, and each p_i is not a divisor of |K|;
- (iii) $Q_p \times K$, where K is finite and p does not divide |K|.

A similar characterization of groups with compact S(G) is given in [31], provided that G has a base of neighborhoods at the identity consisting of subgroups.

Theorem 14. [32]. Let G be a locally compact group. A closed subset \mathcal{F} of $\mathcal{S}(G)$ is compact if and only if the following conditions are satisfied:

(i) every descending chain of non-compact subgroups from F is finite;

Axioms 2018, 7, 75 7 of 12

- (ii) every closed subset \mathcal{F}' of \mathcal{F} has only a finite number of non-compact subgroups maximal in \mathcal{F} ;
- (iii) if a closed subset \mathcal{F}' of \mathcal{F} has no non-compact subgroups, then $\cup \mathcal{F}'$ is compact.

Two corollaries: Every compact subset of S(G) consisting of non-compact subgroups is scattered; a subset F is compact if and only if F is countably compact.

For locally compact groups with the σ -compact space S(G) (see [33]), a description of the LCA-groups with locally compact space S(G) can be obtained in [34].

A topological group G is called *inductively compact* if every finite subset of G is contained in a compact subgroup. For a group G, K(G) and IK(G) denote the sets of all compact and closed inductively compact subgroups.

Theorem 15. [35]. For every locally compact group G, IK(G) is the closure of K(G).

Two corollaries: If G is a connected Lie group, then K(G) is closed; S(G) is a k-space for each locally compact group G of countable weight, i.e., the topology of S(G) is uniquely determined by the family of all compact subsets of S(G).

2.2. Metrizability and Normality

LCA-groups G with metrizable and normal space S(G) were characterized by S. Panasyuk in the candidate thesis *Normality and metrizability of the space of closed subgroups*, Kyiv University, 1989.

Theorem 16. For a discrete Abelian group G, the following statements are equivalent:

- (i) S(G) is metrizable;
- (ii) S(G) is normal;
- (iii) G has a finitely generated subgroup H such that $G/H = \mathbb{C}_{p_1^{\infty}} \times ... \times \mathbb{C}_{p_n^{\infty}}$, where $p_1,...,p_n$ are distinct primes.

In the general case, metrizability and normality of S(G) are not equivalent, but if G is a connected semisimple Lie group, then S(G) is metrizable if and only if S(G) is normal if and only if G is compact (see [36,37]). The space S(G) for every connected solvable Lie group is metrizable [36].

2.3. Some Cardinal Invariants

We remind the reader that c(X) denotes the cellularity of X.

Theorem 17. [9]. For every infinite locally compact group G, we have $c(S(G)) \leq c(G)$.

Theorem 18. [38]. For every locally compact group G, the following conditions are equivalent:

- (i) S(G) is of countable pseudocharacter;
- (ii) S(G) is of countable tightness;
- (iii) S(G) is sequential;
- (iv) $w(G) \leq \aleph_0$.

Axioms 2018, 7, 75 8 of 12

3. Other Topologizations

3.1. Bourbaki Uniformities

Let (X, \mathcal{U}) be a uniform space. The uniformity \mathcal{U} induces the uniformity $\widetilde{\mathcal{U}}$ on the set $\mathcal{F}(X)$ of all non-empty closed subsets of X which have as a base the family of sets of the form

$$\{(A,B)\in\mathcal{F}(X)\times\mathcal{F}(X):B\subseteq U(A),\ A\subseteq U(B)\},\$$

whenever $U \in \mathcal{U}$. The uniformity $\widetilde{\mathcal{U}}$ was introduced in [39] (Chapter 2, § 1), and $\widetilde{\mathcal{U}}$ is called *the Bourbaki* (sometimes, Hausdorff–Bourbaki) *uniformity*.

Let G be a topological group. We endow G with the left uniformity L and F(G) with the Bourbaki uniformity \widetilde{L} . We denote by $\mathcal{L}(G)$ and $\mathcal{B}(G)$ the subspaces of $\mathcal{F}(G)$ consisting of all subgroups and all totally bounded subsets of G.

Theorem 19. [40]. Let G be a group with a base at the identity consisting of subgroups. The space $\mathcal{L}(G)$ is compact if and only if G is totally bounded and $K \cap G$ is dense in K for each closed subgroup K from the completion of G.

In particular, if $\mathcal{L}(G)$ is compact, then G is totally minimal.

Theorem 20. [40]. If a group G is complete in the left uniformity, then $\mathcal{B}(G)$ is complete.

We recall that a topological group G is almost metrizable if each neighborhood of e contains a compact subgroup K such that the set of all open subsets containing K have a countable base. Every metrizable and every locally compact topological group is almost metrizable.

Theorem 21. [40]. If an almost metrizable group G is complete in the left uniformity, then $\mathcal{F}(G)$ is complete.

In [41], Theorem 21 is proved with the bilateral uniformity on G (and so on $\mathcal{F}(G)$) in place of the left uniformity.

3.2. Functionally Balanced Groups

For a topological group G, the set $\mathcal{F}(G)$ has the natural structure of a semigroup with the operation $(A, B) \longmapsto cl \ AB$.

Theorem 22. [42]. For a topological group *G*, the following statements are equivalent:

- (i) $\mathcal{F}(G)$ is a topological semigroup;
- (ii) for every subset X of G and every neighborhood U of e, there exists a neighborhood V of e such that $VX \subseteq XU$;
- (iii) every bounded left uniformly continuous function on G is right uniformly continuous.

A topological group G is called *balanced* (or a SIN-group) if the left and right uniformities of G coincide. A group G is called *functionally balanced* if G satisfies (iii) of Theorem 22. The study of functionally balanced groups was initiated by G. Itzkowitz [43].

Axioms 2018, 7, 75 9 of 12

The equivalence of (ii) and (iii) in Theorem 22 is a criterion for a topological group to be functionally balanced. In [44], this criterion was used to show that each almost-metrizable functionally balanced group is balanced.

3.3. Lattice Topologies

These topologies on a complete lattice $\mathcal{L}(G)$ of closed subgroups are algebraically defined by the lattice structure of $\mathcal{L}(G)$.

For example, a net $(A_{\alpha})_{\alpha \in \mathcal{I}}$ in $\mathcal{L}(G)$ order-converges to $A \in \mathcal{L}(G)$ if there exist two nets $(B_{\alpha})_{\alpha \in \mathcal{I}}$, $(C_{\alpha})_{\alpha \in \mathcal{I}}$ in $\mathcal{L}(G)$ such that, for each $\alpha \in \mathcal{I}$, $B_{\alpha} \subseteq A_{\alpha} \subseteq C_{\alpha}$ and $\vee_{\alpha \in \mathcal{I}} B_{\alpha} = \wedge_{\alpha \in \mathcal{I}} C_{\alpha} = A$. By [45], for a compact group G, every net in $\mathcal{L}(G)$ has an order-convergent subset if and only if $\mathcal{L}(G)$ endowed with the Shabauty topology is a topological lattice (see Theorem 10).

More on the lattices' topologies on $\mathcal{L}(G)$ in the case of a compact G can be found in [46].

3.4. Segment Topologies

Let G be a topological group; \mathcal{P}_G is the family of all subsets of G, and $[G]^{<\omega}$ is the family of all finite subsets of G. Each pair \mathcal{A} , \mathcal{B} of subsets of \mathcal{P}_G closed under finite unions defines the segment topology on $\mathcal{L}(G)$ with a base consisting of the segments

$$[A,G \setminus B] = \{X \in \mathcal{L}(G) : A \subseteq X \subseteq G \setminus B\}, A \in \mathcal{A}, B \in \mathcal{B}.$$

These topologies are described in [47] in the following three cases: $\mathcal{A} = \mathcal{B} = [G]^{<\omega}$; $\mathcal{A} = \mathcal{P}_G$ and $\mathcal{B} = [G]^{<\omega}$; $\mathcal{A} = [G]^{<\omega}$, $\mathcal{B} = \mathcal{P}_G$

3.5. (Σ, Θ) -Topologies

This general construction for topologizations of the set $\mathcal{L}(G)$ of closed subgroups of a topological group G from [48] produces Chabauty, Vietoris, and Bourbaki topologies, along with plenty of other topologies.

We assume that, for each $H \in \mathcal{L}(G)$, $\Sigma(H)$ is some family of open subsets of G, $\Sigma = \bigcup_{H \in \mathcal{L}(G)} \Sigma(H)$, and the following conditions are satisfied:

- if $U, V \in \Sigma(H)$, then $U \cap V$ contains some $W \in \Sigma(H)$;
- for every $U \in \Sigma(H)$, there exists $\mathcal{V} \in \Sigma(H)$ such that $U \in \Sigma(K)$ for each $K \in \mathcal{L}(G)$, $K \subseteq \mathcal{V}$;
- $\bigcap_{U \in \Sigma(H)} \overline{U} = H$ for each $H \in \mathcal{L}(G)$.

Then, the family $\{X \in \mathcal{L}(G) : X \subseteq U\}$, $U \in \Sigma$, is a base for the Σ -topology on $\mathcal{L}(G)$.

Let τ denote the topology of G, and let \mathcal{P}_{τ} denote the family of all subsets of τ . We assume that, for each $H \in \mathcal{L}(G)$, $\Theta(H)$ is some subset of \mathcal{P}_{τ} such that the following conditions are satisfied:

- for every $\alpha, \beta \in \Theta(H)$, there is a $\gamma \in \Theta(H)$ such that $\alpha < \gamma$, $\beta < \gamma$ ($\alpha < \beta$ means that, for every $U \in \alpha$, there exists $V \in \beta$ such that $V \subseteq U$);
- for every $\alpha \in \Theta(H)$, there exists $\beta \in \Theta(H)$ such that if $K \in \mathcal{L}(G)$ and $K \cap V \neq \emptyset$ for each $V \in \beta$, then $\alpha < \gamma$ for some $\gamma \in \Theta(K)$;
- for each $H \in \mathcal{L}(G)$ and every neighborhood V of x, there exists $\alpha \in \Theta(H)$ such that $x \in U$, $U \subseteq V$ for some $U \in \alpha$.

Then, the family $\{X \in \mathcal{L}(G) : X \cap U \neq \emptyset \text{ for each } U \in \alpha\}$, where $\alpha \in \Theta(H)$, $H \in \mathcal{L}(G)$, is a base for the Θ -topology on $\mathcal{L}(G)$.

Axioms 2018, 7, 75

The upper bound of Σ - and Θ -topologies is called the (Σ, Θ) -topology. A net $(H_{\alpha})_{\alpha \in \mathcal{I}}$ converges in (Σ, Θ) -topology to $H \in \mathcal{L}(G)$ if and only if

- for any $U \in \Sigma(H)$, there exists $\beta \in \mathcal{I}$ such that $H_{\alpha} \subseteq U$ for each $\alpha > \beta$;
- for any $\alpha \in \Theta(H)$, there exists $\gamma \in \mathcal{I}$ such that $H_{\alpha} \cap \mathcal{V} \neq \emptyset$ for each $\alpha > \gamma$.

In [48], one can find characterizations of G with a compact and discrete $\mathcal{L}(G)$ for some concrete (Σ, Θ) -topologies.

3.6. Hyperballeans of Groups

Let G be a discrete group. The set $\{Fg:g\in G,F\in [G]^{<\omega}\}$ is a family of balls in the finitary coarse structure on G. For definitions of coarse structures and balleans, see [49,50]. The finitary coarse structure on G induces the coarse structure on $\mathcal{L}(G)$ in which $\{X\in\mathcal{L}(G):X\subseteq FA,\ A\in FX\},\ F\in [G]^{<\omega}$ is the family of balls centered at $A\in\mathcal{L}(G)$. The set $\mathcal{L}(G)$ endowed with the finitary coarse structure is called a hyperballean of G. Hyperballeans of groups, carefully studied in [51], can be considered as asymptotic counterparts of Bourbaki uniformities.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.

References

- 1. Minkowski, H. Geometrie der Zahlen; R.G. Teubner: Leipzig/Berlin, Germany, 1910.
- 2. Cassels, J.W.S. *An Introduction to the Geometry of Nombres;* Classics in Mathematics; Springer: Berlin, Germany, 1997.
- 3. Mahler, K. On lattice points in *n*-dimensional star bodies: I. Existence theorems. *Proc. R. Soc. Lond.* **1946**, 187, 151–187. [CrossRef]
- 4. Chabauty, C. Limite d'ensembles et geometrie des nombres. Bull. Soc. Math. Fr. 1950, 78, 143-151. [CrossRef]
- 5. Macbeath, A.M.; Swierczkowski, S. Limits of lattices in a compactly generated group. *Can. J. Math.* **1960**, 12, 427–437. [CrossRef]
- 6. Bourbaki, N. Éléments de Mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Measure de Haar. Chapitre 8: Convolution et Représentations; Actualites Scientifiques et Industrielles 1306; Hermann: Paris, France, 1963.
- 7. Protasov, I.V. Dualisms of topological abelian groups. Ukr. Math. J. 1979, 31, 207–211. [CrossRef]
- 8. Cornulier, Y. On the Chabauty space of locally compact abelian group. *Algebr. Geom. Topol.* **2011**, *11*, 2007–2035. [CrossRef]
- 9. Protasov, I.V. On the Souslin number of the space of subgroups of a locally compact group. *Ukr. Math. J.* **1988**, 40, 654–658. [CrossRef]
- 10. Montgomery, D.; Yang, C.T. The existence of a slice. Ann. Math. 1957, 65, 108–116. [CrossRef]
- 11. Bredon, G.E. *Introduction to Compact Transformation Groups*; Academic Press: New York, NY, USA; London, UK, 1972.
- 12. Tsybenko, Y.V. Dyadic spaces of subgroups of a topological group. *Ukr. Math. J.* **1986**, *38*, 635–639.
- 13. Pourezza, I.; Hubbard, J. The space of closed subgroup of \mathbb{R}^2 . Topology 1979, 18, 143–146. [CrossRef]
- 14. Kloeckner, B. The space of closed subgroups of \mathbb{R}^n is stratified and simply connected. *J. Topol.* **2009**, 2, 570–588. [CrossRef]
- 15. Protasov, I.V.; Tsybenko, Y.V. Connectedness in the space of subgroups. *Ukr. Math. J.* **1983**, *35*, 382–385. [CrossRef]
- 16. Leiderman, A.; Protasov, I.V. Cellularity of a space of subgroups of a discrete group. *Comment. Math. Univ. C* **2008**, *49*, 519–522.

Axioms 2018, 7, 75

17. Protasov, I.V.; Tsybenko, Y.V. Chabauty topology in the lattice of closed subgroups. *Ukr. Math. J.* **1984**, *36*, 207–213. [CrossRef]

- 18. Mazurov, V.D.; Khukhro, E.I. (Eds.) *Unsolved Problems in Group Theory*; 13th ed.; Russian Academy of Sciences Siberian Division, Institute of Mathematics: Novosibirsk, Russia, 1995.
- 19. Protasov, I.V. Closed invariant subgroups of locally compact groups. *Dokl. Acad. Nauk SSSR* **1978**, 239, 1060–1062.
- 20. Protasov, I.V. Local theorems for topological groups. *Izv. Acad. Nauk SSSR. Ser. Mat.* **1979**, 43, 1430–1440. [CrossRef]
- 21. Mal'tsev, A.I. Selected Works. Classic Algebra; Nauka: Moscow, Russia, 1976; Volume 1.
- 22. Protasov, I.V. Local method and compactness theorem for topological algebraic systems. *Sib. Math. J.* **1982**, 23, 136–143. [CrossRef]
- 23. Grigorchuk, R.I. Degrees of growth of finitely generated groups and the theory of invariant means. *Math. USSR Izv.* **1985**, *25*, 259–330. [CrossRef]
- 24. Gromov, M. Groups of polynomial growth and expanding maps. *Inst. Hautes Etudes Sci. Publ. Math.* **1981**, 53, 53–73. [CrossRef]
- 25. Cornulier, Y.; Guyot, L.; Pitsch, W. On the isolated points in the space of groups. *J. Algebra* **2007**, 307, 254–277. [CrossRef]
- 26. Klyachko, A.A.; Olshanskii, A.Y.; Osin, D.V. On topologizable and non topologizable groups. *Topol. Appl.* **2013**, *160*, 2014–2020. [CrossRef]
- 27. Glasner, E.; Weiss, B. Uniformly recurrent subgroups. In *Recent Trends in Ergodic Theory and Dynamical Systems* (*Contemporary Mathematics*, 631). AMS, *Providence*; American Mathematical Society: Providence, RI, USA, 2015; pp. 63–75.
- 28. Matte Bon, N.; Tsankov, T. Realizing uniformly recurrent subgroups. arXiv 2017, arXiv:1702.07101.
- 29. Protasov, I.V. Topological dualizms of locally compact abelian groups. Ukr. Math. J. 1977, 29, 625-631.
- 30. Protasov, I.V. Topological groups with compact lattice of closed subgroups. *Sib. Math. J.* **1979**, 20, 378–385. [CrossRef]
- 31. Protasov, I.V. 0-dimensional groups with compact space of subgroups. *Math. Zamet.* **1985**, 37, 483–490. [CrossRef]
- 32. Protasov, I.V. Compacts in the space of subgroups of a topological groups. *Ukr. Math. J.* **1986**, *38*, 600–605. [CrossRef]
- 33. Protasov, I.V. Topological groups with *σ*-compact spaces of subgroups. *Ukr. Math. J.* **1985**, *37*, 93–98. [CrossRef]
- 34. Protasov, I.V.; Saryev, A. Topological abelian groups with locally compact lattice of closed subgroups. *Dopov. AN Ukrain. SSR. Ser. A* **1980**, *N3*, 29–32.
- 35. Protasov, I.V. Limits of compact subgroups of a topological groups. *Dopov. AN Ukrain. SSR. Ser. A* **1986**, *N5*, 64–66.
- 36. Panasyuk, S.P. Metrizability in the space of subgroups of a Lie group. Ukr. Math. J. 1990, 42, 351–355. [CrossRef]
- 37. Panasyuk, S.P. Normality in the space of subgroups of a Lie group. Ukr. Math. J. 1990, 42, 786–788. [CrossRef]
- 38. Piskunov, A.G. Reconstruction of the Vectoris topology by compacts in the space of closed subgroups. *Ukr. Math. J.* **1990**, 42, 789–794. [CrossRef]
- 39. Bourbaki, N. Éléments de Matématique. Fascicule II. Livre III: Topologie Générale. Chapitre 1: Structures Topologiques. Chapitre 2: Structures Uniformes; Hermann: Paris, France, 1940.
- 40. Protasov, I.V.; Saryev A. Bourbaki spaces of topological groups. Ukr. Math. J. 1990, 42, 542–549 [CrossRef]
- 41. Romaguera, S.; Sanchis, M. Completeness of hyperspaces of topological groups. *J. Pure Appl. Algebr.* **2000**, *149*, 287–293. [CrossRef]
- 42. Protasov, I.V.; Saryev A. Semigroup of closed subsets of a topological group, Izv. *Akad. Nauk TadzhSSR. Ser. Fiz.-Tekh. Nauk* **1988**, *3*, 21–25.
- 43. Itzkowitz, G.L. Continuous measures, Baire category, and uniformly continuous functions in topological groups. *Pac. J. Math.* **1974**, *54*, 115–125. [CrossRef]

Axioms 2018, 7, 75

- 44. Protasov, I.V. Functionally balanced groups. Math. Acad. Sci. USSR 1991, 49, 87–90. [CrossRef]
- 45. Protasov, I.V. Order convergence in the lattice of subgroups of a topological group. *Izv. Vysš. Učebn. Zav. Matematika* **1980**, *9*, 25–29.
- 46. Scheiderer, C. Topologies on subgroup lattice of a compact group. *Topol. Appl.* 1986, 23, 183–191. [CrossRef]
- 47. Protasov, I.V.; Stukotilov, V.S. Ochan topologies on a space of closed subgroups. *Ukr. Math. J.* 1989, 41, 1337–1342. [CrossRef]
- 48. Protasov, I.V. On topologies on lattices of subgroups. Dopov. AN Ukr. SSR Ser. A 1981, N11, 29–32.
- 49. Roe, J. *Lectures on Coarse Geometry*; AMS University Lecture Ser. No. 31; American Mathematical Society: Providence, RI, USA, 2003.
- 50. Protasov, I.V.; Zarichnyi, M. *General Asymptopogy*; Mathematical Studies Monograph Series 12; VNTL: Lviv, Ukraine, 2007.
- 51. Dikranjan, D.; Protasov, I.; Zava, N. Hyperballeans of groups. Topol. Appl. 2018, in press.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).