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Abstract

:

In this paper, we consider the fixed-circle problem on metric spaces and give new results on this problem. To do this, we present three types of   F C  -Khan type contractions. Furthermore, we obtain some solutions to an open problem related to the common fixed-circle problem.
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1. Introduction


Recently, the fixed-circle problem has been considered for metric and some generalized metric spaces (see [1,2,3,4,5,6] for more details). For example, in [1], some fixed-circle results were obtained using the Caristi type contraction on a metric space. Using Wardowski’s technique and some classical contractive conditions, new fixed-circle theorems were proved in [5,6]. In [2,3], the fixed-circle problem was studied on an S-metric space. In [7], a new fixed-circle theorem was proved using the modified Khan type contractive condition on an S-metric space. Some generalized fixed-circle results with geometric viewpoint were obtained on   S b  -metric spaces and parametric   N b  -metric spaces (see [8,9] for more details, respectively). Also, it was proposed to investigate some fixed-circle theorems on extended   M b  -metric spaces [10]. On the other hand, an application of the obtained fixed-circle results was given to discontinuous activation functions on metric spaces (see [1,4,11]). Hence it is important to study new fixed-circle results using different techniques.



Let   ( X , d )   be a metric space and    C   x 0  , r   =  x ∈ X : d ( x ,  x 0  ) = r    be any circle on X. In [5], it was given the following open problem.



Open Problem   C C  : What is (are) the condition(s) to make any circle   C   x 0  , r    as the common fixed circle for two (or more than two) self-mappings?



In this paper, we give new results to the fixed-circle problem using Khan type contractions and to the above open problem using both of Khan and Ćirić type contractions on a metric space. In Section 2, we introduce three types of   F C  -Khan type contractions and obtain new fixed-circle results. In Section 3, we investigate some solutions to the above Open Problem   C C  . In addition, we construct some examples to support our theoretical results.




2. New Fixed-Circle Theorems


In this section, using Khan type contractions, we give new fixed-circle theorems (see [12,13,14,15] for some Khan type contractions used to obtain fixed-point theorems). At first, we recall the following definitions.



Definition 1

([16]). Let  F  be the family of all functions   F : ( 0 , ∞ ) → R   such that



  ( F 1 )   F is strictly increasing,



  ( F 2 )   For each sequence     α n    n = 1  ∞   of positive numbers,     lim  n → ∞     α n  = 0   if and only if     lim  n → ∞    F  (  α n  )  = − ∞  ,



  ( F 3 )   There exists   k ∈ ( 0 , 1 )   such that     lim  α →  0 +      α k  F  ( α )  = 0  .





Definition 2

([16]). Let   ( X , d )   be a metric space. A mapping   T : X → X   is said to be an F-contraction on   ( X , d )  , if there exist   F ∈ F   and   τ ∈ ( 0 , ∞ )   such that


  d ( T x , T y ) > 0 ⟹ τ + F ( d ( T x , T y ) ) ≤ F ( d ( x , y ) ) ,  








for all   x , y ∈ X  .





Definition 3

([15]) .Let   F k   be the family of all increasing functions   F : ( 0 , ∞ ) → R  , that is, for all   x , y ∈ ( 0 , ∞ )  , if   x < y   then   F ( x ) ≤ F ( y )  .





Definition 4

([15]). Let   ( X , d )   be a metric space and   T : X → X   be a self-mapping. T is said to be an F-Khan-contraction if there exist   F ∈  F k    and   t > 0   such that for all   x , y ∈ X   if   max  d ( T y , x ) , d ( T x , y )  ≠ 0   then   T x ≠ T y   and


  t + F  ( d  ( T x , T y )  )  ≤ F    d ( T x , x ) d ( T y , x ) + d ( T y , y ) d ( T x , y )   max  d ( T y , x ) , d ( T x , y )     ,  








and if   max  d ( T y , x ) , d ( T x , y )  = 0   then   T x = T y  .





Now we modify the definition of an F-Khan-contractive condition, which is used to obtain a fixed point theorem in [15], to get new fixed-circle results. Hence, we define the notion of an   F C  -Khan type I contractive condition as follows.



Definition 5.

Let   ( X , d )   be a metric space and   T : X → X   be a self-mapping. T is said to be an   F C  -Khan type I contraction if there exist   F ∈  F k   ,   t > 0   and    x 0  ∈ X   such that for all   x ∈ X   if the following condition holds


  max  d  ( T  x 0  ,  x 0  )  , d  ( T x , x )   ≠ 0 ,  



(1)




then


  t + F  ( d  ( T x , x )  )  ≤ F  h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    max  d  ( T  x 0  ,  x 0  )  , d  ( T x , x )      ,  








where   h ∈  0 ,  1 2     and if   max  d  ( T  x 0  ,  x 0  )  , d  ( T x , x )   = 0   then   T x = x  .





One of the consequences of this definition is the following proposition.



Proposition 1.

Let   ( X , d )   be a metric space. If a self-mapping T on X is an   F C  -Khan type I contraction with    x 0  ∈ X   then we get   T  x 0  =  x 0   .





Proof. 

Let   T  x 0  ≠  x 0   . Then using the hypothesis, we find


  max  d  ( T  x 0  ,  x 0  )  , d  ( T x , x )   ≠ 0  








and


     t + F ( d  ( T  x 0  ,  x 0  )  )    ≤    F  h   d  ( T  x 0  ,  x 0  )  d  ( T  x 0  ,  x 0  )  + d  ( T  x 0  ,  x 0  )  d  ( T  x 0  ,  x 0  )    d ( T  x 0  ,  x 0  )          =    F  ( 2 h d  ( T  x 0  ,  x 0  )  )  < F  ( d  ( T  x 0  ,  x 0  )  )  .     











This is a contradiction since   t > 0   and so it should be   T  x 0  =  x 0   . □





Consequently, the condition (1) can be replaced with   d ( T x , x ) ≠ 0   and so   T x ≠ x  . Considering this, now we give a new fixed-circle theorem.



Theorem 1.

Let   ( X , d )   be a metric space,   T : X → X   be a self-mapping and


   r = inf  d ( T x , x ) : T x ≠ x  .   



(2)







If T is an   F C  -Khan type I contraction with    x 0  ∈ X   then   C   x 0  , r    is a fixed circle of T.





Proof. 

Let   x ∈  C   x 0  , r    . Assume that   T x ≠ x  . Then we have   d ( T x , x ) ≠ 0   and by the   F C  -Khan type I contractive condition, we obtain


     t + F ( d ( T x , x ) )    ≤    F  h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    max  d  ( T  x 0  ,  x 0  )  , d  ( T x , x )            =    F ( h r ) ≤ F ( h d ( T x , x ) ) < F ( d ( T x , x ) ) ,     








a contradiction since   t > 0  . Therefore, we have   T x = x   and so T fixes the circle   C   x 0  , r   . □





Corollary 1.

Let   ( X , d )   be a metric space,   T : X → X   be a self-mapping and r be defined as in (2). If T is an   F C  -Khan type I contraction with    x 0  ∈ X   then T fixes the disc    D   x 0  , r   =  x ∈ X : d ( x ,  x 0  ) ≤ r   .





We recall the following theorem.



Theorem 2

([12]). Let   ( X , d )   be a metric space and   T : X → X   satisfy


  d  ( T x , T y )  ≤      k   d ( x , T x ) d ( x , T y ) + d ( y , T y ) d ( y , T x )   d ( x , T y ) + d ( y , T x )      i f    d ( x , T y ) + d ( y , T x ) ≠ 0      0   i f    d ( x , T y ) + d ( y , T x ) = 0      ,  



(3)




where   k ∈ [ 0 , 1 )   and   x , y ∈ X  . Then T has a unique fixed point    x ∗  ∈ X  . Moreover, for all   x ∈ X  , the sequence    {  T n  x }   n ∈ N    converges to   x ∗  .





We modify the inequality (3) using Wardowski’s technique to obtain a new fixed-point theorem. We give the following definition.



Definition 6.

Let   ( X , d )   be a metric space and   T : X → X   be a self-mapping. T is said to be an   F C  -Khan type II contraction if there exist   F ∈  F k   ,   t > 0   and    x 0  ∈ X   such that for all   x ∈ X   if   d  ( T  x 0  ,  x 0  )  + d  ( T x , x )  ≠ 0   then   T x ≠ x   and


  t + F  ( d  ( T x , x )  )  ≤ F  h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    d  ( T  x 0  ,  x 0  )  + d  ( T x , x )     ,  








where   h ∈  0 ,  1 2     and if   d  ( T  x 0  ,  x 0  )  + d  ( T x , x )  = 0   then   T x = x  .





An immediate consequence of this definition is the following result.



Proposition 2.

Let   ( X , d )   be a metric space. If a self-mapping T on X is an   F C  -Khan type II contraction then we get   T  x 0  =  x 0   .





Proof. 

Let   T  x 0  ≠  x 0   . Then using the hypothesis, we find


  d  ( T  x 0  ,  x 0  )  + d  ( T x , x )  ≠ 0  








and


     t + F ( d  ( T  x 0  ,  x 0  )  )    ≤    F  h   d  ( T  x 0  ,  x 0  )  d  ( T  x 0  ,  x 0  )  + d  ( T  x 0  ,  x 0  )  d  ( T  x 0  ,  x 0  )    2 d ( T  x 0  ,  x 0  )          =    F  ( h d  ( T  x 0  ,  x 0  )  )  < F  ( d  ( T  x 0  ,  x 0  )  )  ,     








which is a contradiction since   t > 0  . Hence it should be   T  x 0  =  x 0   . □





Theorem 3.

Let   ( X , d )   be a metric space,   T : X → X   be a self-mapping and r be defined as in (2). If T is an   F C  -Khan type II contraction with    x 0  ∈ X   then   C   x 0  , r    is a fixed circle of T.





Proof. 

Let   x ∈  C   x 0  , r    . Assume that   T x ≠ x  . Then using Proposition 2, we get


  d  ( T  x 0  ,  x 0  )  + d  ( T x , x )  = d  ( T x , x )  ≠ 0 .  











By the   F C  -Khan type II contractive condition, we obtain


     t + F ( d ( T x , x ) )    ≤    F  h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    d  ( T  x 0  ,  x 0  )  + d  ( T x , x )           =    F ( h r ) ≤ F ( h d ( T x , x ) ) < F ( d ( T x , x ) ) ,     








a contradiction since   t > 0  . Therefore, we have   T x = x   and T fixes the circle   C   x 0  , r   . □





Corollary 2.

Let   ( X , d )   be a metric space,   T : X → X   be a self-mapping and r be defined as in (2). If T is an   F C  -Khan type II contraction with    x 0  ∈ X   then T fixes the disc   D   x 0  , r   .





In the following theorem, we see that the   F C  -Khan type I and   F C  -Khan type II contractive conditions are equivalent.



Theorem 4.

Let   ( X , d )   be a metric space and   T : X → X   be a self-mapping. T satisfies the   F C  -Khan type I contractive condition if and only if T satisfies the   F C  -Khan type II contractive condition.





Proof. 

Let the   F C  -Khan type I contractive condition be satisfied by T. Using Proposition 1 and Proposition 2, we get


     t + F ( d ( T x , x ) )    ≤    F  h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    max  d  ( T  x 0  ,  x 0  )  , d  ( T x , x )            =    F  h   d  ( T x , x )  d  ( T  x 0  , x )    d ( T x , x )          =    F ( h d  ( T  x 0  , x )  )       =    F  h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    d  ( T  x 0  ,  x 0  )  + d  ( T x , x )     .     











Using the similar arguments, the converse statement is clear. Consequently, the   F C  -Khan type I contractive and the   F C  -Khan type II contractive conditions are equivalent. □





Remark 1.

By Theorem 4, we see that Theorem 1 and Theorem 3 are equivalent.





Now we give an example.



Example 1.

Let   X = R   be the metric space with the usual metric   d  ( x , y )  =  x − y   . Let us define the self-mapping   T : R → R   as


   T x =     x   i f     x  < 6       x + 1    i f     x  ≥ 6      ,   








for all   x ∈ R  . The self-mapping T is both of an   F C  -Khan type I and an   F C  -Khan type II contraction with   F = ln x  ,   t = ln 2  ,    x 0  = 0   and   h =  1 3   . Indeed, we get


   d ( T x , x ) = 1 ≠ 0 ,   








for all   x ∈ R   such that    x  ≥ 6  . Then we have


      ln 2    ≤    ln   1 3   x         ⟹    ln 2 + ln 1 ≤ ln  h d ( x , 0 )  = ln  h d ( x ,  x 0  )        ⟹    t + F  ( d  ( T x , x )  )  ≤ F  h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    max  d  ( T  x 0  ,  x 0  )  , d  ( T x , x )           








and


      ln 2    ≤    ln   1 3   x         ⟹    ln 2 + ln 1 ≤ ln  h d ( x , 0 )  = ln  h d ( x ,  x 0  )        ⟹    t + F  ( d  ( T x , x )  )  ≤ F  h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    d  ( T  x 0  ,  x 0  )  + d  ( T x , x )     .      











Also we obtain


   r = min  d ( T x , x ) : T x ≠ x  = 1 .   











Consequently, T fixes the circle    C  0 , 1   =  { − 1 , 1 }    and the disc    D  0 , 1   =  x ∈ X :  x  ≤ 1   . Notice that the self-mapping T has other fixed circles. The above results give us only one of these circles. Also, T has infinitely many fixed circles.





Now we consider the case if   T : X → X   is a self-mapping, then for all   x , y ∈ X  ,


  x ≠ y ⟹ d ( T y , x ) + d ( T x , y ) ≠ 0 .  











Definition 7.

Let   ( X , d )   be a metric space and   T : X → X   be a self-mapping. Then T is called a C-Khan type contraction if there exists    x 0  ∈ X   such that


  d  ( T x , x )  ≤ h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    d  ( T  x 0  , x )  + d  ( T x ,  x 0  )    ,  



(4)




where   h ∈  0 , 1    for all   x ∈ X −   x 0    .





We can give the following fixed-circle result.



Theorem 5.

Let   ( X , d )   be a metric space,   T : X → X   be a self-mapping and   C   x 0  , r    be a circle on X. If T satisfies the C-Khan type contractive condition (4) for all   x ∈  C   x 0  , r     with   T  x 0  =  x 0  ,   then T fixes the circle   C   x 0  , r   .





Proof. 

Let   x ∈  C   x 0  , r    . Suppose that   T x ≠ x  . Using the C-Khan type contractive condition with   T  x 0  =  x 0   , we find


     d ( T x , x )    ≤    h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    d  ( T  x 0  , x )  + d  ( T x ,  x 0  )          =     h r d ( T x , x )   r + d ( T x ,  x 0  )        ≤      h r d ( T x , x )  r  = h d  ( T x , x )  ,     








which is a contradiction since   h < 1  . Consequently, T fixes the circle   C   x 0  , r   . □





Theorem 6.

Let   ( X , d )   be a metric space,    x 0  ∈ X   and   T : X → X   be a self-mapping. If T is a C-Khan type contraction for all   x ∈ X −   x 0     with   T  x 0  =  x 0  ,   then T is the identity map   I X   on X.





Proof. 

Let   x ∈ X −   x 0     be any point. If   T x ≠ x   then using the C-Khan type contractive condition (4) with   T  x 0  =  x 0   , we find


     d ( T x , x )    ≤    h   d  ( T x , x )  d  ( T  x 0  , x )  + d  ( T  x 0  ,  x 0  )  d  ( T x ,  x 0  )    d  ( T  x 0  , x )  + d  ( T x ,  x 0  )          =    h   d  ( T x , x )  d  (  x 0  , x )    d  (  x 0  , x )  + d  ( T x ,  x 0  )          ≤    h   d  ( T x , x )  d  (  x 0  , x )  + d  ( T x , x )  d  ( T x ,  x 0  )    d  (  x 0  , x )  + d  ( T x ,  x 0  )          =    h   d  ( T x , x )   d  (  x 0  , x )  + d  ( T x ,  x 0  )     d  (  x 0  , x )  + d  ( T x ,  x 0  )          =    h d ( T x , x ) ,     








which is a contradiction since   h < 1  . Consequently, we have   T x = x   and hence T is the identity map   I X   on X. □





Example 2.

Let   X = R   be the usual metric space and consider the circle    C  0 , 3   =  { − 3 , 3 }   . Let us define the self-mapping   T : R → R   as


  T x =       − 9 x + 8   2 x − 9     i f    x ∈ { − 3 , 3 }      0   i f    x ∈ R − { − 3 , 3 }      ,  








for all   x ∈ R  . Then the self-mapping T satisfies the C-Khan type contractive condition for all   x ∈  C  0 , 3     and   T 0 = 0  . Consequently,   C  0 , 3    is a fixed circle of T.






3. Common Fixed-Circle Results


Recently, it was obtained some coincidence and common fixed-point theorems using Wardowski’s technique and the Ćirić type contractions (see [17] for more details). In this section, we extend the notion of a Khan type   F C  -contraction to a pair of maps to obtain a solution to the Open Problem   C C  . At first, we give the following definition.



Definition 8.

Let   ( X , d )   be a metric space and   T , S : X → X   be two self-mappings. A pair of self-mappings   ( T , S )   is called a Khan type   F  T , S   -contraction if there exist   F ∈  F k   ,   t > 0   and    x 0  ∈ X   such that for all   x ∈ X   if the following condition holds


  max  d  ( T  x 0  ,  x 0  )  , d  ( S  x 0  ,  x 0  )   ≠ 0 ,  








then


  t + F  ( d  ( T x , S x )  )  ≤ F  h   d  ( T x , S x )  d  ( T x ,  x 0  )  + d  ( T  x 0  , S  x 0  )  d  ( S x ,  x 0  )    max  d  ( T  x 0  ,  x 0  )  , d  ( S  x 0  ,  x 0  )      ,  








where   h ∈  0 ,  1 2     and if   max  d  ( T  x 0  ,  x 0  )  , d  ( S  x 0  ,  x 0  )   = 0   then   T x = S x  .





An immediate consequence of this definition is the following proposition.



Proposition 3.

Let   ( X , d )   be a metric space and   T , S : X → X   be two self-mappings. If the pair of self-mappings   ( T , S )   is a Khan type   F  T , S   -contraction with    x 0  ∈ X   then   x 0   is a coincidence point of T and S, that is,   T  x 0  = S  x 0   .





Proof. 

We prove this proposition under the following cases:



Case 1: Let   T  x 0  =  x 0    and   S  x 0  ≠  x 0   . Then using the hypothesis, we get


  max  d  ( T  x 0  ,  x 0  )  , d  ( S  x 0  ,  x 0  )   = d  ( S  x 0  ,  x 0  )  ≠ 0  








and so


     t + F ( d  ( T  x 0  , S  x 0  )  )    ≤    F  h   d  ( T  x 0  , S  x 0  )  d  ( T  x 0  ,  x 0  )  + d  ( T  x 0  , S  x 0  )  d  ( S  x 0  ,  x 0  )    d ( S  x 0  ,  x 0  )          =    F ( h d  ( T  x 0  , S  x 0  )  ) ,     








which is a contradiction since   h ∈  0 ,  1 2     and   t > 0  .



Case 2: Let   T  x 0  ≠  x 0    and   S  x 0  =  x 0   . By the similar arguments used in the proof of Case 1, we get a contradiction.



Case 3: Let   T  x 0  =  x 0    and   S  x 0  =  x 0   . Then we get   T  x 0  = S  x 0   .



Case 4: Let   T  x 0  ≠  x 0   ,   S  x 0  ≠  x 0    and   T  x 0  ≠ S  x 0   . Using the hypothesis, we obtain


  max  d  ( T  x 0  ,  x 0  )  , d  ( S  x 0  ,  x 0  )   ≠ 0  








and so


  t + F  ( d  ( T  x 0  , S  x 0  )  )  ≤ F  h   d  ( T  x 0  , S  x 0  )  d  ( T  x 0  ,  x 0  )  + d  ( T  x 0  , S  x 0  )  d  ( S  x 0  ,  x 0  )    max  d  ( T  x 0  ,  x 0  )  , d  ( S  x 0  ,  x 0  )      .  



(5)







Assume that   d  ( T  x 0  ,  x 0  )  > d  ( S  x 0  ,  x 0  )   . Using the inequality (5), we get


     t + F ( d  ( T  x 0  , S  x 0  )  )    ≤    F  h   d  ( T  x 0  , S  x 0  )  d  ( T  x 0  ,  x 0  )  + d  ( T  x 0  , S  x 0  )  d  ( S  x 0  ,  x 0  )    d ( T  x 0  ,  x 0  )          =    F  h d  ( T  x 0  , S  x 0  )  + h   d  ( T  x 0  , S  x 0  )  d  ( S  x 0  ,  x 0  )    d ( T  x 0  ,  x 0  )          <    F  ( 2 h d  ( T  x 0  , S  x 0  )  )  < F  ( d  ( T  x 0  , S  x 0  )  )  ,     








which is a contradiction. Suppose that   d  ( T  x 0  ,  x 0  )  < d  ( S  x 0  ,  x 0  )   . Using the inequality (5), we find


  t + F  ( d  ( T  x 0  , S  x 0  )  )  < F  ( d  ( T  x 0  , S  x 0  )  )  ,  








which is a contradiction. Consequently,   x 0   is a coincidence point of T and S, that is,   T  x 0  = S  x 0   . □





Now we use the following number given in [17] (see Definition 3.1 on page 183):


  M  ( x , y )  = max  d  ( S x , S y )  , d  ( S x , T x )  , d  ( S y , T y )  ,   d ( S x , T y ) + d ( S y , T x )  2   .  



(6)







We give the following definition.



Definition 9.

Let   ( X , d )   be a metric space and   T , S : X → X   be two self-mappings. A pair of self-mappings   ( T , S )   is called a Ćirić type   F  T , S   -contraction if there exist   F ∈  F k   ,   t > 0   and    x 0  ∈ X   such that for all   x ∈ X  


   d  ( T x , x )  > 0 ⟹ t + F  ( d  ( T x , x )  )  ≤ F  ( M  ( x ,  x 0  )  )  .   













We get the following proposition.



Proposition 4.

Let   ( X , d )   be a metric space and   T , S : X → X   be two self-mappings. If the pair of self-mappings   ( T , S )   is both a Khan type   F  T , S   -contraction and a Ćirić type   F  T , S   -contraction with    x 0  ∈ X   then   x 0   is a common fixed point of T and S, that is,   T  x 0  = S  x 0  =  x 0   .





Proof. 

By the Khan type   F  T , S   -contractive property and Proposition 3, we know that   x 0   is a coincidence point of T and S, that is,   T  x 0  = S  x 0   . Now we prove that   x 0   is a common fixed point of T and S. Let   T  x 0  ≠  x 0   . Then using the Ćirić type   F  T , S   -contractive condition, we get


     t + F ( d  ( T  x 0  ,  x 0  )  )    ≤    F ( M  (  x 0  ,  x 0  )  )       =    F  max      d  ( S  x 0  , S  x 0  )  , d  ( S  x 0  , T  x 0  )  , d  ( S  x 0  , T  x 0  )  ,        d  ( S  x 0  , T  x 0  )  + d  ( S  x 0  , T  x 0  )   2             =    F  ( d  ( S  x 0  , T  x 0  )  )  = F  ( 0 )  ,     








which is a contradiction because of the definition of F. Therefore it should be   T  x 0  =  x 0   . Consequently,   x 0   is a common fixed point of T and S, that is,   T  x 0  = S  x 0  =  x 0   . □





Notice that we get a coincidence point result for a pair of self-mappings using the Khan type   F  T , S   -contractive condition by Proposition 3. We obtain a common fixed-point result for a pair of self-mappings using the both of Khan type   F  T , S   -contractive condition and the Ćirić type   F  T , S   -contractive condition by Proposition 4.



We prove the following common fixed-circle theorem as a solution to the Open Problem   C C  .



Theorem 7.

Let   ( X , d )   be a metric space,   T , S : X → X   be two self-mappings and r be defined as in (2). If   d  ( T x ,  x 0  )  = d  ( S x ,  x 0  )  = r   for all   x ∈  C   x 0  , r     and the pair of self-mappings   ( T , S )   is both a Khan type   F  T , S   -contraction and a Ćirić type   F  T , S   -contraction with    x 0  ∈ X   then   C   x 0  , r    is a common fixed circle of T and S, that is,   T x = S x = x   for all   x ∈  C   x 0  , r    .





Proof. 

Let   x ∈  C   x 0  , r    . We show that x is a coincidence point of T and S. Using Proposition 4, we get


  max  d  ( T  x 0  ,  x 0  )  , d  ( S  x 0  ,  x 0  )   = 0  








and so by the definition of the Khan type   F  T , S   -contraction we obtain


  T x = S x .  











Now we prove that   C   x 0  , r    is a common fixed circle of T and S. Assume that   T x ≠ x  . Using Proposition 4 and the hypothesis Ćirić type   F  T , S   -contractive condition, we find


     t + F ( d ( T x , x ) )    ≤    F ( M  ( x ,  x 0  )  )       =    F  max      d  ( S x , S  x 0  )  , d  ( S x , T x )  , d  ( S  x 0  , T  x 0  )  ,        d  ( S x , T  x 0  )  + d  ( S  x 0  , T x )   2             =    F  max  d  ( S x ,  x 0  )  , d  ( S x , T x )  ,   d  ( S x ,  x 0  )  + d  (  x 0  , T x )   2          =    F  ( max  r , d ( S x , T x ) , r  )  = F  ( r )  ,     








which contradicts with the definition of r. Consequently, we have   T x = x   and so   C   x 0  , r    is a common fixed circle of T and S. □





Corollary 3.

Let   ( X , d )   be a metric space,   T , S : X → X   be two self-mappings and r be defined as in (2). If   d  ( T x ,  x 0  )  = d  ( S x ,  x 0  )  = r   for all   x ∈  C   x 0  , r     and the pair of self-mappings   ( T , S )   is both a Khan type   F  T , S   -contraction and a Ćirić type   F  T , S   -contraction with    x 0  ∈ X   then T and S fix the disc   D   x 0  , r   , that is,   T x = S x = x   for all   x ∈  D   x 0  , r    .





We give an illustrative example.



Example 3.

Let   X =  1 , ∞  ∪  { − 1 , 0 }    be the metric space with the usual metric. Let us define the self-mappings   T : X → X   and   S : X → X   as


  T x =      x 2    i f    x ∈ { 0 , 1 , 3 }       − 1    i f    x = − 1       x + 1     otherwise      








and


  S x =      1 x    i f    x ∈ { − 1 , 1 }       3 x    i f    x ∈ { 0 , 3 }       x + 1     otherwise     ,  








for all   x ∈ X  . The pair of the self-mappings   ( T , S )   is both a Khan type   F  T , S   -contraction and a Ćirić type   F  T , S   -contraction with   F = ln x  ,   t = ln  3 2    and    x 0  = 0  . Indeed, we get


  max { d ( T 0 , 0 ) , d ( S 0 , 0 ) } = 0  








and so   T x = S x  . Therefore, the pair   ( T , S )   is a Khan type   F  T , S   -contraction. Also we get


  d ( T 3 , 3 ) = 6 ≠ 0 ,  








for   x = 3   and


  d ( T x , x ) = 1 ≠ 0 ,  








for all   x ∈ X \ { − 1 , 0 , 1 , 3 }  . Then we have


     ln  3 2     ≤    ln 9       ⟹    ln  3 2  + ln 6 ≤ ln 9       ⟹    ln  3 2  + ln  ( d  ( T 3 , 3 )  )  ≤ ln  ( M  ( 3 , 0 )  )      








and


     ln  3 2     ≤    ln  x + 1        ⟹    ln  3 2  + ln 1 ≤ ln  x + 1        ⟹    ln  3 2  + ln  ( d  ( T x , x )  )  ≤ ln  ( M  ( x , 0 )  )  .     








Hence the pair   ( T , S )   is a Ćirić type   F  T , S   -contraction. Also we obtain


  r = min { d ( T x , x ) : T x ≠ x } = min { 1 , 6 } = 1 .  








Consequently, T fixes the circle    C  0 , 1   =  { − 1 , 1 }    and the disc   D  0 , 1   .





In closing, we want to bring to the reader attention the following question, under what conditions we can prove the results in [18,19,20] in fixed circle?
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