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Abstract

:

We consider the Laplacian flow of locally conformal calibrated G2-structures as a natural extension to these structures of the well-known Laplacian flow of calibrated G2-structures. We study the Laplacian flow for two explicit examples of locally conformal calibrated G2 manifolds and, in both cases, we obtain a flow of locally conformal calibrated G2-structures, which are ancient solutions, that is they are defined on a time interval of the form (−∞,T), where T>0 is a real number. Moreover, for each of these examples, we prove that the underlying metrics g(t) of the solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric as t goes to −∞, and they blow-up at a finite-time singularity.
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1. Introduction


A G2-structure on a 7-manifold M can be characterized by the existence of a globally defined 3-form φ (the G2 form) on M, which can be written at each point as


φ=e127+e347+e567+e135−e146−e236−e245,



(1)




with respect to some local coframe {e1,…,e7} on M. Here, e127 stands for e1∧e2∧e7, and so on. A G2-structure φ induces a Riemannian metric gφ and a volume form dVgφ on M given by


gφ(X,Y)dVgφ=16iXφ∧iYφ∧φ,








for any pair of vector fields X,Y on M, where iX denotes the contraction by X.



The classes of G2-structures can be described in terms of the exterior derivatives of the 3-form φ and the 4-form ⋆φφ [1,2], where ⋆φ is the Hodge operator defined from gφ and dVgφ. If the 3-form φ is closed and coclosed, then the holonomy group of gφ is a subgroup of the exceptional Lie group G2 [2], and the metric gφ is Ricci-flat [3]. When this happens, the G2-structure is said to be torsion-free [4]. This condition has a variational formulation, due to Hitchin [5,6]. The first compact examples of Riemannian manifolds with holonomy G2 were constructed first by Joyce [7,8], and then by Kovalev [9]. Recently, other examples of compact manifolds with holonomy G2 were obtained in [10,11]. Explicit examples on solvable Lie groups were also constructed in [12]. A G2-structure φ is called locally conformal parallel if φ satisfies the two following conditions


dφ=θ∧φ,d(⋆φφ)=43θ∧⋆φφ,



(2)




for some closed non-vanishing 1-form θ, which is known as the Lee form of the G2-structure. Such a G2-structure is locally conformal to one which is torsion-free. Ivanov, Parton and Piccinni in [13] prove that a compact locally conformal parallel G2 manifold is a mapping torus bundle over the circle S1 with fibre a simply connected nearly Kähler manifold of dimension six and finite structure group.



We remind that a G2-structure φ is called closed (or calibrated according to [14]) if dφ=0. In this paper we will focus our attention on the class of locally conformal calibrated G2-structures, which are characterized by the condition


dφ=θ∧φ,








where θ is a closed non-vanishing 1-form, which is also known as the Lee form of the G2-structure. We will refer to a manifold equipped with such a structure as a locally conformal calibrated G2manifold. Each point of such a manifold has an open neighborhood U where θ=df, for some f∈F(U) with F(U) being the algebra of the real differentiable functions on U, and the 3-form e−fφ defines a calibrated G2-structure on U. Hence, locally conformal calibrated G2-structures are locally conformal equivalent to calibrated G2-structures, and they can be considered analogous in dimension 7 to the locally conformal symplectic manifolds, which have been studied in [15,16,17,18,19,20,21] and the references therein. Some results of locally conformal calibrated G2 manifolds were given in [22,23,24,25]. In fact, in [24] the first author and Ugarte introduced a differential complex for locally conformal calibrated G2 manifolds, and such manifolds were characterized as the ones endowed with a G2-structure φ for which the space of differential forms annihilated by φ becomes a differential subcomplex of the de Rham’s complex. Moreover, in [23] it is proved that a similar result to that of Ivanov, Parton and Piccinni holds for compact 7-manifolds with a suitable locally conformal calibrated G2-structure. More recently, a structure result for Lie algebras with an exact locally conformal calibrated G2-structure was proved by Bazzoni and Raffero in [22], where it is also shown that none of the non-Abelian nilpotent Lie algebras with closed G2-structures admits locally conformal calibrated G2-structures.



Compact G2-calibrated manifolds have interesting curvature properties. As we mentioned before, a G2 holonomy manifold is Ricci-flat or, equivalently, both Einstein and scalar-flat. But on a compact calibrated G2 manifold, both the Einstein condition [26] and scalar-flatness [27] are equivalent to the holonomy being contained in G2. In fact, Bryant in [27] shows that the scalar curvature is always non-positive.



Locally conformal calibrated G2-structures φ whose underlying Riemannian metric gφ is Einstein have been studied in [25], where it was shown that in the compact case the scalar curvature of gφ can not be positive. Then, Fino and Raffero in [25] show that a compact homogeneous 7-manifold cannot admit an invariant Einstein locally conformal calibrated G2-structure φ unless the underlying metric gφ is flat. However, in contrast to the compact homogeneous case, a non-compact example of homogeneous manifold S endowed with a locally conformal calibrated G2-structure whose associated Riemannian metric is Einstein and non Ricci-flat was given in [25]. The manifold S is a simply connected solvable Lie group which is not unimodular (see Section 4.2 for details).



On the other hand, in [23] it is given an example of a compact manifold N with a locally conformal calibrated G2-structure. The manifold N is a compact solvmanifold, that is N is a compact quotient of a simply connected solvable Lie group K by a lattice, endowed with an invariant locally conformal calibrated G2-structure.



Since Hamilton introduced the Ricci flow in 1982 [28], geometric flows have been an important tool in studying geometric structures on manifolds. In G2 geometry, geometric flows for different G2-structures have been proposed. Let M be a 7-manifold endowed with a calibrated G2-structure φ. The Laplacian flow starting from φ is the initial value problem


ddtφ(t)=Δtφ(t),dφ(t)=0,φ(0)=φ,








where φ(t) is a closed G2 form on M, and Δt=dd*+d*d is the Hodge Laplacian operator associated with the metric g(t)=gφ(t) induced by the 3-form φ(t). This flow was introduced by Bryant in [27] as a tool to find torsion-free G2-structures on compact manifolds. Short-time existence and uniqueness of the solution when M is compact were proved in [29]. The analytic and geometric properties of the Laplacian flow have been deeply investigated in the series of papers [30,31,32]. Non-compact examples where the flow converges to a flat G2-structure have been given in [33].



In [34], a flow evolving the 4-form ψ=⋆φφ in the direction of minus its Hodge Laplacian was introduced, and it is called Laplacian coflow of φ. This flow preserves the condition of the G2-structure φ being coclosed, that is ψ(t) is closed for any t, and it was studied in [34] for two explicit examples of coclosed G2-structures. But no general result is known about the short time existence of the coflow. A modified Laplacian coflow was introduced by Grigorian in [35] (see also [36]). There it was proved that for compact manifolds, the modified Laplacian coflow has a unique solution ψ(t) for the short time period t∈[0,ϵ], for some ϵ>0. Geometric properties of both coflows on the 7-dimensional Heisenberg group and on 7-dimensional almost-abelian Lie groups were proved in [37,38], respectively.



Some work has also been done on other related flows of G2-structures—such as the Laplacian flow and the Laplacian coflow, for locally conformal parallel G2-structures. These flows has been originally proposed by the second author with Otal and Villacampa in [39], and the first examples of long time solutions of the flows are given in [39].



In this note, for any locally conformal calibrated G2-structure φ on a manifold M, we consider the Laplacian flow of φ given by


ddtφ(t)=Δtφ(t),dφ(t)=θ(t)∧φ(t),φ(0)=φ.











We do not known any general result on the short time existence of solution for this flow. Nevertheless, in Section 4 (Theorems 1 and 2), for each of the aforementioned examples of solvable Lie groups K and S with a locally conformal calibrated G2-structure, we show that the solution of the before Laplacian flow is ancient, that is it is defined on a time interval of the form (−∞,T), where T>0 is a real number. Moreover, for each of the two examples K and S, we show that the underlying metrics g(t)=gφ(t) of the solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric as t goes to −∞, and they blow-up in finite-time. As we mentioned before, the Lie group S has a locally conformal calibrated G2-structure inducing an Einstein metric. We prove that the solution φ(t) of the flow on S induces an Einstein metric for all time t where φ(t) is defined.




2. G2-Structures


Let M be a 7-dimensional manifold with a G2-structure defined by a 3-form φ. Denote by ψ the 4-form ψ=⋆φφ, where ⋆φ is the Hodge star operator of the metric gφ induced by φ. Let (Ω*(M),d) be the de Rham complex of differential forms on M. Then, Bryant in [27] proved that the forms dφ and dψ are such that


dφ=τ0ψ+3τ1∧φ+⋆φτ3,dψ=4τ1∧ψ−⋆φτ2,



(3)




where τ0∈Ω0(M),τ1∈Ω1(M),τ2∈Ω142(M) and τ3∈Ω273(M). Here Ω142(M) and Ω273(M) are the spaces


Ω142(M)={α∈Ω2(M)∣α∧φ=−⋆φα},










Ω273(M)={β∈Ω3(M)∣β∧φ=0=β∧⋆φφ}.











The differential forms τi (i=0,1,2,3) that appear in (3), are called the intrinsic torsion forms of φ.



In terms of the torsion forms, some classes of G2-structures with the defining conditions are recalled in the Table 1.



Note that if a manifold M has a locally conformal calibrated G2-structure φ, then


dφ=θ∧φ,








with θ the Lee form of φ. Thus, taking into account (3), the torsion form τ1 of the G2 form φ can be expressed in terms of the Lee form θ as τ1=13θ. Moreover (see [24]), the torsion forms τ1 and τ2 of φ can be obtained as follows:


τ1=−112⋆φ⋆φdφ∧φ,τ2=⋆φ4τ1∧(⋆φφ)−d⋆φφ.



(4)








3. The Laplacian Flow of Locally Conformal Calibrated G2-Structures


In this section, we introduce the Laplacian flow of a locally conformal calibrated G2-structure on a manifold M and, for its equations, we show some properties that help us solve the flow when M is a Lie group.



Definition 1.

Let M be a 7-manifold with a locally conformal calibrated G2-structure φ. We say that a time-dependent G2-structure φ(t) on M, defined for t in some real open interval, satisfies the Laplacian flow system of φ if, for all times t for which φ(t) is defined, we have


ddtφ(t)=Δtφ(t),dφ(t)=θ(t)∧φ(t),φ(0)=φ,



(5)




where θ(t) is the Lee form of φ(t), and Δt=dd*+d*d is the Hodge Laplacian operator associated with the metric g(t)=gφ(t) induced by the 3-form φ(t).





In order to solve the first equation of the flow (5) for our examples, we follow the approach of [39].



Let G be a simply connected solvable Lie group of dimension 7 with Lie algebra g. Let {e1,⋯,e7} be a basis of the dual space g* of g, and let fi=fi(t)(i=1,⋯,7) be some differentiable real functions depending on a parameter t∈I⊂R such that fi(0)=1 and fi(t)≠0, for any t∈I, where I is a real open interval. For each t∈I, we consider the basis {x1,⋯,x7} of g* defined by


xi=xi(t)=fi(t)ei,1≤i≤7.











We consider the one-parameter family of left invariant G2-structures φ(t) on G given by


φ(t)=x127+x347+x567+x135−x146−x236−x245=f127e127+f347e347+f567e567+f135e135−f146e146−f236e236−f245e245,



(6)




where fijk=fijk(t) stands for the product fi(t)fj(t)fk(t).



Now, we introduce the function ε(i,j,k) on ordered indices (i,j,k) as follows:


ε(i,j,k)=1if (i,j,k)∈A={(1,2,7),(1,3,5),(3,4,7),(5,6,7)};−1if (i,j,k)∈B={(1,4,6),(2,3,6),(2,4,5)};0otherwise.











Thus, the G2 form φ defined in (1), can be rexpressed as φ=∑(i,j,k)∈A∪Bε(i,j,k)eijk, and the G2 form φ(t) given by (6) becomes


φ(t)=∑(i,j,k)∈A∪Bε(i,j,k)xijk.











Therefore,


ddtφ(t)=∑(i,j,k)∈A∪Bε(i,j,k)dfijkdteijk=∑(i,j,k)∈A∪Bε(i,j,k)(fijk)′fijkxijk=∑(i,j,k)∈A∪Bε(i,j,k)ddtlnfijkxijk.











Moreover, we have


Δtφ(t)=∑(i,j,k)∈A∪Bε(i,j,k)Δijkxijk+∑1≤l<m<n≤7,(l,m,n)∉A∪BΔlmnxlmn,








where ε(i,j,k)Δijk is the coefficient in xijk of Δtφ(t) if (i,j,k)∈A∪B (i.e., if ε(i,j,k)≠0), and Δlmn is the coefficient in xlmn of Δtφ(t) if 1≤l<m<n≤7 and ε(l,m,n)=0. Consequently, the first equation of the flow (5) is equivalent to the system of differential equations


Δijk=(fijk)′fijkif (i,j,k)∈A∪B,Δlmn=0if 1≤l<m<n≤7and(l,m,n)∉A∪B,



(7)




that is,


Δijk=ddtln(fijk)if (i,j,k)∈A∪B,Δlmn=0if 1≤l<m<n≤7 and (l,m,n)∉A∪B.



(8)







We will also use the following properties of Δijk.



Lemma 1.

Let φ(t) be a family of left invariant G2-structures on the Lie group G solving the system (7), and such that φ(t) can be expressed as (6), for some functions fi=fi(t). For ordered indices (i,j,k) and (p,q,r)∈A∪B (that is, ε(i,j,k) and ε(p,q,r) are both non-zero) we have

	i) 

	
if Δijk=Δpqr, then fijk=fpqr;




	ii) 

	
if fijkΔijk=fpqrΔpqr, then fijk=fpqr;




	iii) 

	
if Δijk+Δpqr=0, then fijkfpqr=1;




	iv) 

	
if fijkΔijk+fpqrΔpqr=0, then fijk+fpqr=2.











Proof. 

The first statement of this Lemma was proved in [39]. Nevertheless, we point out how to prove it. Since Δijk=Δpqr, the system (8) implies that ddtlnfijk=ddtlnfpqr. Hence, lnfijk=lnfpqr+C, for some constant C. Now, using that fi(0)=1, for i=1,…,7, we have that C=0. So, fijk=fpqr, which proves i).



Now, let us suppose that fijkΔijk=fpqrΔpqr, for some i,j,k,p,q,r with 1≤i<j<k≤7 and 1≤p<q<r≤7. From (7), we get


(fijk)′=(fpqr)′.











Integrating this equation, we obtain fijk=fpqr+C, for some constant C. Since fi(0)=1, for all i=1,…,7, we have C=0, and so fijk=fpqr. This proves ii).



To prove iii), we use (8), and we obtain


ln(fijk·fpqr)=C,








for some constant C. But fi(0)=1, for all i=1,…,7, imply that C=0, that is


fijk·fpqr=1.











Finally, let us suppose that fijkΔijk+fpqrΔpqr=0, for some i,j,k,p,q,r with 1≤i<j<k≤7 and 1≤p<q<r≤7. Then, using (7), we get (fijk)′=−(fpqr)′. Integrating this equation, we obtain fijk=−fpqr+C, for some constant C. But C=2 since fi(0)=1, for all i=1,…,7. Thus, fijk+fpqr=2, which completes the proof. □






4. Solutions of the Laplacian Flow on Locally Conformal Calibrated G2 Solvmanifolds


Lie groups admitting left invariant locally conformal calibrated G2-structures constitute a convenient setting where it is possible to investigate the behaviour of the Laplacian flow (5) in the non-compact case.



In this section, we consider two examples of solvable Lie groups K and S, each of them with a left invariant locally conformal calibrated G2-structure, and we show that in both cases the solution is ancient (i.e., it is defined in some interval (−∞,T), with 0<T<+∞) and the induced metrics blow-up at a finite-time singularity.



4.1. The Laplacian Flow on K


Let K be the simply connected and solvable Lie group of dimension 7 whose Lie algebra k is defined by


k=e37,e47,−e17,−e27,e14+e23,e13−e24,0.











Here, e37 stands for e3∧e7, and so on; and e37,e47,−e17,−e27,e14+e23,e13−e24,0 means that there is a basis {e1,⋯,e7} of the dual space k* of k, satisfying


de1=e37,de2=e47,de3=−e17,de4=−e27,de5=e14+e23,de6=e13−e24,de7=0,



(9)




where d denotes the Chevalley-Eilenberg differential on k*.



The 3-form φ on K given by


φ=e127+e347+e567+e135−e146−e236−e245



(10)




defines a left invariant locally conformal calibrated G2-structure on the Lie group K, with Lee form θ=e7, and so with torsion form τ1=13e7. In fact,


dφ=−e1357+e1467+e2367+e2457=e7∧φ.











In [23] it is proved that there exists a lattice Γ in K, so that the quotient space of right cosets Γ∖K is a compact solvmanifold endowed with an invariant locally conformal calibrated G2-structure φ, with Lee form θ=e7.



However, we should note that in the following Theorem, we will show a solution of the Laplacian flow (5) of the G2 form φ (defined by (10)) on the Lie group K. Such a solution does not solve the Laplacian flow of φ on the compact quotient Γ∖K since we will consider the Hodge Laplacian operator Δt on the Lie algebra k of K and we cannot check the Hodge Laplacian operator on the compact space Γ∖K.



Theorem 1.

The family of locally conformal calibrated G2-structures φ(t) on K given by


φ(t)=e127+e347+1−83t−3/2e567+e135−e146−e236−e245



(11)




is the solution for the Laplacian flow (5) of the G2 form φ given by (10), where t∈−∞,38. The Lee form θ(t) of φ(t) is θ(t)=e7. Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in K, as t goes to −∞, and they blow-up as t goes to 38.





Proof. 

As in Section 2, let fi=fi(t) (i=1,⋯,7) be some differentiable real functions depending on a parameter t∈I⊂R such that fi(0)=1 and fi(t)≠0, for any t∈I, where I is a real open interval. For each t∈I, we consider the basis {x1,⋯,x7} of left invariant 1-forms on K defined by


xi=xi(t)=fi(t)ei,1≤i≤7.











Taking into account (9), the structure equations of K with respect to the basis {x1,⋯,x7} are


dx1=f1f37x37,dx2=f2f47x47,dx3=−f3f17x17,dx4=−f4f27x27,dx5=f5f14x14+f5f23x23,dx6=f6f13x13−f6f24x24,dx7=0.



(12)







From now on, we write fij=fij(t)=fi(t)fj(t), fijk=fijk(t)=fi(t)fj(t)fk(t), and so forth. Then, for any t∈I, we consider the G2-structure φ(t) on K given by


φ(t)=x127+x347+x567+x135−x146−x236−x245=f127e127+f347e347+f567e567+f135e135−f146e146−f236e236−f245e245.



(13)







Note that the 3-form φ(t) defined by (13) is such that φ(0)=φ and, for any t, φ(t) determines the metric g(t) on K such that the basis {xi=1fiei;i=1,⋯,7} of left invariant vector fields on K dual to {x1,⋯,x7} is orthonormal. So, g(t)(ei,ei)=fi2, and hence fi=fi(t)>0.



To solve the flow (5) of φ we determine firstly the functions fi and the interval I so that ddtφ(t)=Δtφ(t), for t∈I. We know that


Δtφ(t)=(⋆td⋆td−d⋆td⋆t)φ(t).











We calculate separately each of the terms ⋆td⋆tdφ(t) and −d⋆td⋆tφ(t) of Δtφ(t). Taking into account (12) and the fact that the basis {x1(t),⋯,x7(t)} is orthonormal, we have


⋆td⋆tdφ(t)=−f1f4−f2f3f2f3+f1f4f5f1f2f32f42f7x126−f1f4−f2f3f12f22+f32f42f1f22f32f4f72x146−f2f3−f1f4f12f22+f32f42f12f2f3f42f72x236+f1f4−f2f3f2f3+f1f4f5f12f22f3f4f7x346+f22f32f52+f12f42f52+f12f32f62+f22f42f62f12f22f32f42x567,



(14)




and, on the other hand, we obtain


d⋆td⋆tφ(t)=f1f2−f3f4f22f32+f12f42f12f22f3f4f72x127−f6f2f3f5+f1f4f5+f1f3f6+f2f4f6f12f2f32f4x135+f5f2f3f5+f1f4f5+f1f3f6+f2f4f6f12f2f3f42x146+f5f2f3f5+f1f4f5+f1f3f6+f2f4f6f1f22f32f4x236+f6f2f3f5+f1f4f5+f1f3f6+f2f4f6f1f22f3f42x245−f1f2−f3f4f22f32+f12f42f1f2f32f42f72x347.



(15)







Since (1,2,6) and (3,4,6)∉A∪B, the system (7) implies that Δ126=0=Δ346. Moreover, from (14) and (15) we have


Δ126=f5f7f2f1f42−f1f2f32,








and


Δ346=f5f7f4f22f3−f3f12f4.











Each of these equalities implies that f142=f232, and so


f14=f23



(16)




since fi=fi(t)>0.



Also (14) and (15) imply that the coefficients Δijk, with (i,j,k)∈A∪B, are given by


Δ127=−f3f1B23+f4f2B14,Δ347=f2f4B23−f1f3B14,Δ135=f6f13A,Δ245=f6f24A,Δ146=f5f14A−f1f3B12+f4f2B34,Δ236=f5f23A+f2f4B12−f3f1B34,Δ567=A2,



(17)




where


A=f51f23+1f14+f61f13+1f24,A2=f521f232+1f142+f621f132+1f242,B12=1f72f2f4−f1f3,B34=1f72f4f2−f3f1,B23=1f72f2f4−f3f1,B14=1f72f4f2−f1f3.



(18)







Using (17), one can check that f135Δ135=f245Δ245. Thus, f13=f24 by Lemma 1– ii). This equality and (16) imply


f1=f2,f3=f4.



(19)







The equalities (19) imply that the functions B12 and B34 defined in (18) are such that B12=0=B34. Hence, Δ146=f5f14A. So, from (17), we have f146Δ146=f245Δ245. Now, Lemma 1– ii) and (19) imply


f5=f6.



(20)







Moreover, from (18) and (19) we get B14=−B23. Then, from (17) we have f127Δ127+f347Δ347=0. Now, Lemma 1– iv) implies


f12+f34=2/f7.











Thus,


f7=2(f12+f32).



(21)







Using the equalities (19) and (21), we obtain that Δ135=Δ567. Therefore, by Lemma 1– i) we have


f13=f67.











From this equality and (21), we obtain


f6=12f13(f12+f32).



(22)







In summary, from (19)–(22), we have


f1=f2,f3=f4,f5=f6=12f13(f12+f32),f7=2f12+f32.











Now, we can suppose that f3=f1=f (see below Lemma 2). Then, the previous conditions reduce to


f1=f2=f3=f4=f,f5=f6=f4,f7=f−2.



(23)







Then, by (18), B14=0=B23 since f1=f2=f3=f4 by (23). So, Δ127=0=Δ347.



This implies that the unique non-zero components Δijk of the Laplacian of Δtφ(t) are


Δ567=Δ135=Δ146=Δ236=Δ245=4f4.











Then, the system of differential Equations (7) reduces to


f−5f′=23.











Integrating this equation, we obtain


f=C−83t−14,C=constant.



(24)







But f(0)=1 implies C=1. Hence,


f=f(t)=1−83t−14.











Therefore, the one-parameter family of 3-forms φ(t) given by (11) is the solution of the Laplacian flow of φ on K, and it exists for every t∈−∞,38.



A simple computation shows that


dφ(t)=f6−e1357+e1467+e2367+e2457=e7∧φ(t),








and so the Lee form θ(t) of φ(t) is θ(t)=e7.



Now we study the behavior of the underlying metric g(t) of such a solution in the limit for t→−∞. If we think of the Laplacian flow as a one parameter family of G2 manifolds with a locally conformal calibrated G2-structure, it can be checked that, in the limit, the resulting manifold has vanishing curvature. For t∈−∞,38, let us consider the metric g(t) on K induced by the G2 form φ(t) given by (11). Then,


g(t)=1−83t−12(e1)2+1−83t−12(e2)2+1−83t−12(e3)2+1−83t−12(e4)2+1−83t−2(e5)2+1−83t−2(e6)2+1−83t−1(e7)2.











Then, taking into account the symmetry properties of the Riemannian curvature R(t) we obtain


R1234=R1256=R3456=−12(1−83t),R1313=R1414=R2323=R2424=34(1−83t),R1515=R1616=R2525=R2626=R3535=R3636=R4545=R4646=R1324=R1432=R1526=R1652=R3546=R3654=−14(1−83t),Rijkl=0otherwise,








where Rijkl=R(t)(ei,ej,ek,el). Therefore, limt→−∞R(t)=0.



Furthermore, the curvatures Rg(t) of g(t) blow-up as t goes to 38, and the finite-time singularity is of Type I since Rg(t)=O(1−83t)−1 as t→38; in fact,


limt→38|Rg(t)|(1−83t)−1<∞.








 □





To complete the proof of Theorem 1, we show that under the conditions (19)–(22) the assumption f1=f3, that we made in its proof, is correct.



Lemma 2.

If the 3-form φ(t) defined in (13) is the solution for the Laplacian flow (5) of the G2 form φ given by (10), then f1(t)=f3(t).





Proof. 

Take u=f1 and v=f3. We know that if the 3-form φ(t) defined in (13) is the solution for the Laplacian flow (5) of the G2 form φ, then the equalities (19)–(22) are satisfied. Now, taking into account (17), the equalities (19)–(22) imply that the Hodge Laplacian Δtφ(t) of φ(t) has the following expression


Δtφ(t)=−(u2−v2)(u2+v2)22u2x127+(u2−v2)(u2+v2)22v2x347++(u2+v2)2x567+x135−x146−x236−x245.











Thus, for (i,j,k)∈{(1,2,7),(3,4,7)}, the equation Δijk=(fijk)′fijk of the system (7) becomes in both cases


dudt=−u2−2v2u2+v2312uv2,








while for (i,j,k)∈A∪B with (1,2,7)≠(i,j,k)≠(3,4,7), the equation Δijk=(fijk)′fijk is expressed as


dvdt=2u2−v2u2+v2312u2v.











Therefore, the system (7) becomes


dudt=−u2−2v2u2+v2312uv2,dvdt=2u2−v2u2+v2312u2v,u(0)=v(0)=1.



(25)







Thus,


dvdu=−v(2u2−v2)u(u2−2v2).



(26)







To solve this differential equation, we consider the change of variable w=v/u. Then, (26) can be expressed as follows:


udwdu+w=−w2−w21−2w2.











We solve this differential equation by applying separation of variables, and we get the following solution


lnu+C=−16ln1−w2+2lnw=16lnv2u2−v2u4,








for some constant C. This equation is equivalent to


C˜u2=v2u2−v2,








for some constant C˜. Thus, C˜=0 since u(0)=v(0)=1. Therefore, since v(t)=f3(t)≠0 for all t, for the functions u and v we have three possibilities: u=v, u=−v or v=0. But u(0)=1=v(0), hence the only possibility is u(t)=v(t), that is, f1(t)=f3(t). (Here, we would like to note that since u(t)=v(t), the second differential equation of the system (25) reduces to 6ududt=4u4, that is the differential Equation (24), which we have solved before.) □





Remark 1.

Note that proceeding in a similar way as Lauret did in [40] for the Ricci flow, we can evolve the Lie brackets μ(t) instead of the 3-form defining the G2-structure, and we can show that the corresponding bracket flow has a solution for every t. In fact, if we fix on R7 the 3-form x127+x347+x567+x135−x146−x236−x245, the basis {x1(t),…,x7(t)} defines, for every real number t∈−∞,38, a solvable Lie algebra with bracket μ(t) such that μ(0) is the Lie bracket of the Lie algebra k of K. Moreover, the solution of the bracket flow converges to the null bracket corresponding to the abelian Lie algebra as t goes to −∞, and it blows-up as t goes to 38.





Remark 2.

Taking into account (4) and (11), one can check that the torsion form τ2(t) of φ(t) is given by


τ2(t)=431−83t−1e12+e34−831−83t−5/2e56.











Thus, limt→−∞τ2(t)=0. However, the solution φ(t) does not converge to a locally conformal parallel G2-structure as t goes to −∞ since, by (11), the G2 forms φ(t) degenerate when t→−∞. Moreover, φ(t) blows-up as t goes to 38.






4.2. The Laplacian Flow on S


Now we consider the simply connected and solvable Lie group S whose Lie algebra s is defined as follows:


s=12e17,12e27,12e37,12e47,e14+e23+e57,e13−e24+e67,0.



(27)







Then, the 3-form φ given by


φ=e127+e347+e567+e135−e146−e236−e245



(28)




defines a left invariant locally conformal calibrated G2-structure on the Lie group S, with Lee form θ=−e7, and so with torsion form τ1=−13e7. In fact,


dφ=e1357−e1467−e2367−e2457=−e7∧φ.











Since S is a nonunimodular Lie group, S cannot admit a lattice Γ such that the quotient space Γ∖S is a compact solvmanifold. In fact, the linear map s→R, X→tr(adX) is such that tr(ade7) is non-zero, where {e1,⋯,e7} is the basis of s dual to the basis {e1,⋯,e7} of s*.



Theorem 2.

The family of locally conformal calibrated G2-structures φ(t) on S given by


φ(t)=(1−4t)3/4e127+(1−4t)3/4e347+e567+e135−e146−e236−e245



(29)




is the solution for the Laplacian flow (5) of the G2 form φ given by (28), where t∈−∞,14. The Lee form θ(t) of φ(t) is θ(t)=−e7. Moreover, the underlying metrics g(t) of this solution converge smoothly, up to pull-back by time-dependent diffeomorphisms, to a flat metric, uniformly on compact sets in S, as t goes to −∞, and they blow-up as t goes to 14.





Proof. 

To study the flow (5) of the G2 form φ defined in (28), we should proceed as in Theorem 1. However, in order to short the proof, we will show directly that the one-parameter family of G2-structures given by (29) is the solution for the flow (5). For this, we consider the differentiable real functions fi=fi(t)(i=1,⋯,7) given by


fi(t)=1−4t1/8,i=1,2,3,4,f5(t)=f6(t)=1−4t−1/4,f7(t)=1−4t1/2.



(30)







These functions are defined for all t∈−∞,14; moreover, fi(t)>0, for t∈−∞,14.



Now, for each t∈−∞,14, we consider the basis {x1,⋯,x7} of left invariant 1-forms on S defined by


xi=xi(t)=fi(t)ei,1≤i≤7.











Taking into account (30) and (27), the structure equations of S with respect to the basis {x1,⋯,x7} are


dx1=121−4t−1/2x17,dx2=121−4t−1/2x27,dx3=121−4t−1/2x37,dx4=121−4t−1/2x47,dx5=1−4t−1/2x14+x23+x57,dx6=1−4t−1/2x13−x24+x67,dx7=0.



(31)







For any t∈−∞,14, we consider the 3-form φ(t) on S given by


φ(t)=x127+x347+x567+x135−x146−x236−x245.



(32)







Then, this 3-form φ(t) defines a G2-structure on S, and it is equal to the 3-form φ(t) defined in (29). Note that the 3-form φ(t) is such that φ(0)=φ and, for any t, φ(t) determines the metric g(t) on S such that the basis {xi=1fiei;i=1,⋯,7} of left invariant vector fields on S dual to {x1,⋯,x7} is orthonormal. So, g(t)(ei,ei)=fi2.



Moreover, for every t∈−∞,14, φ(t) defines a locally conformal calibrated G2-structure on S. In fact,


dφ(t)=e1357−e1467−e2367−e2457=−e7∧φ(t),








since on the right-hand side of (29) the terms e127 and e347 are both closed and de567+e135−e146−e236−e245=e1357−e1467−e2367−e2457. So, the Lee form θ(t) of φ(t) is θ(t)=−e7.



Next, we show that ddtφ(t)=Δtφ(t)=(⋆td⋆td−d⋆td⋆t)φ(t). Using (31) and (32), we obtain


ddtφ(t)=−3(1−4t)−1x127+x347.



(33)







On the other hand, we have


(⋆td⋆td)φ(t)=−4(1−4t)−1x567−2(1−4t)−1x135−x146−x236−x245,



(34)




and


(−d⋆td⋆t)φ(t)=−3(1−4t)−1x127+x347+4(1−4t)−1x567+2(1−4t)−1x135−x146−x236−x245.



(35)







Therefore, (33), (34) and (35) imply ddtφ(t)=Δtφ(t).



To complete the proof, we study the behavior of the underlying metrics of such a solution in the limit for t→−∞. If we think of the Laplacian flow as a one parameter family of G2 manifolds with a locally conformal calibrated G2-structure, it can be checked that, in the limit, the resulting manifold has vanishing curvature. Denote by g(t), t∈−∞,14, the metric on S induced by the G2 form φ(t) given by (29). Then, g(t) has the following expression


g(t)=1−4t14(e1)2+1−4t14(e2)2+1−4t14(e3)2+1−4t14(e4)2+1−4t−12(e5)2+1−4t−12(e6)2+1−4t(e7)2.











Now, one can check that every non-vanishing coefficient appearing in the expression of the Riemannian curvature R(g(t)) of g(t) is proportional to 1(1−4t). Therefore, limt→−∞R(t)=0.



Furthermore, the curvatures Rg(t) of g(t) blow-up as t goes to 14, and the finite-time singularity is of Type I since Rg(t)=O(1−4t)−1 as t→14; in fact


limt→14|Rg(t)|(1−4t)−1<∞.








 □





Remark 3.

As we have noticed in Remark 1, we can also evolve the Lie brackets ν(t) instead of the 3-form defining the left invariant G2-structure on S, and we can show that the corresponding bracket flow has a solution for every t∈−∞,14. In fact, if we fix on R7 the 3-form x127+x347+x567+x135−x146−x236−x245, the basis {x1(t),…,x7(t)} defines, for every real number t∈−∞,14, a solvable Lie algebra with bracket ν(t) such that ν(0) is the Lie bracket of the Lie algebra s of S. As for the Lie group K (see Remark 1), the solution of the bracket flow converges to the null bracket corresponding to the abelian Lie algebra as t goes to −∞, and it blows-up as t goes to 14.





Remark 4.

Taking into account (4) and (29), one can check that the torsion form τ2(t) of φ(t) is given by


τ2(t)=53(1−4t)−1/4e12+e34−103(1−4t)−1e56.











Thus, limt→−∞τ2(t)=0. However, the solution φ(t) does not converge to a locally conformal parallel G2-structure as t goes to −∞ since, by (29), the G2 forms φ(t) blow-up when t→−∞, and φ(t) degenerate as t goes to 14. Note that the metrics behaves differently for S than for K. Indeed, the induced metrics by the solution of the Laplacian flow on S blow-up at infinity and at the finite time, while the induced metrics by the solution of the Laplacian flow on K only blow-up as t goes to 38.





Remark 5.

Note that, for every t∈−∞,14, the metric g(t) is an Einstein metric with negative scalar curvature on the Lie group S. In fact, with respect to the orthonormal basis {x1(t),⋯,x7(t)}, we have


Ric(g(t))=−31−4tg(t)=−31−4t∑1≤i≤7(xi)2.
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Table 1. Some classes of G2-structures.






Table 1. Some classes of G2-structures.





	Class
	Type
	Conditions





	X0
	parallel
	τ0,τ1,τ2,τ3=0



	X2
	closed, calibrated
	τ0,τ1,τ3=0



	X4
	locally conformal parallel
	τ0,τ2,τ3=0



	X2⊕X4
	locally conformal calibrated
	τ0,τ3=0
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