Some New Results Involving the Generalized Bose–Einstein and Fermi–Dirac Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generalized Bose–Einstein and Fermi–Dirac Functions
2.2. A Class of Functions and the Representation Theorem
- is well defined for ;
- ();
- ().
3. Results
Application of the General Representation Theorem to the Generalized Bose–Einstein and Fermi–Dirac and Related Functions
- 1.
- Using the contour integral to state the involved function
- 2.
- Using the Cauchy residue theorem from complex analysis
- 3.
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaudhry, M.A.; Iqbal, A.; Qadir, A. A representation for the anyon integral function. arXiv 2005, arXiv:math-ph/0504081. [Google Scholar]
- Chaudhry, M.A.; Qadir, A. Operator representation of Fermi-Dirac and Bose-Einstein integral functions with applications. Int. J. Math. Math. Sci. 2007, 80515. [Google Scholar] [CrossRef]
- Tassaddiq, A. A new representation of the k-gamma functions. Mathematics 2019, 7, 133. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Qadir, A. Fourier transform and distributional representation of the generalized gamma function with some applications. Appl Math. Comput. 2011, 218, 1084–1088. [Google Scholar] [CrossRef]
- Bayad, A.; Chikhi, J. Reduction and duality of the generalized Hurwitz-Lerch zetas. Fixed Point Theory Appl. 2013, 82, 1–14. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Chaudhry, M.A.; Qadir, A.; Tassaddiq, A. Some extensions of the Bose-Einstein and Fermi-Dirac functions with applications to zeta and related functions. Russ. J. Math. Phys. 2011, 18, 107–121. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Qadir, A. Fourier transform representation of the extended Bose-Einstein and Fermi-Dirac functions with applications to the family of the zeta and related functions. Integral Transforms Spec. Funct. 2011, 22, 453–466. [Google Scholar] [CrossRef]
- Tassaddiq, A. Some Representations of the Extended Fermi-Dirac and Bose-Einstein Functions with Applications. Ph.D. Dissertation, National University of Sciences and Technology, Islamabad, Pakistan, 2012. [Google Scholar]
- Tassaddiq, A. A New Representation of the Extended Fermi-Dirac and Bose-Einstein Functions. Int. J. Appl. Math. 2017, 5, 435–446. [Google Scholar]
- Carlitz, L. Weighted Stirling numbers of the first and second kind—I. Fibonacci Q. 1980, 18, 147–162. [Google Scholar]
- Carlitz, L. Weighted Stirling numbers of the first and second kind—II. Fibonacci Q. 1980, 18, 242–257. [Google Scholar]
- Tassaddiq, A. A new representation of the Srivastava λ-generalized Hurwitz-Lerch zeta functions. Symmetry 2018, 10, 733. [Google Scholar] [CrossRef]
- Tassaddiq, A. Some difference equations for Srivastava’s λ-generalized Hurwitz–Lerch zeta functions with applications. Symmetry 2019, 11, 311. [Google Scholar] [CrossRef]
- Srivastava, H.M. A new family of the λ-generalized Hurwitz-Lerch Zeta functions with applications. Appl. Math. Inf. Sci. 2014, 8, 1485–1500. [Google Scholar] [CrossRef]
- Truesdell, C. On a function which occurs in the theory of the structure of polymers. Ann. Math. 1945, 46, 144–157. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Chaudhry, M.A.; Qadir, A.; Tassaddiq, A. A new generalization of the Riemann zeta function. Adv. Differ. Equ. 2011, 2011, 20. [Google Scholar] [CrossRef]
- Titchmarsh, E.C. The Theory of the Riemann Zeta Function; Oxford University Press: Oxford, UK, 1951. [Google Scholar]
- Chaudhry, M.A.; Qadir, A. Extension of Hardy’s class for Ramanujan’s interpolation formula and master theorem with applications. J Inequal Appl. 2012, 2012, 52. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E. Contributions to the Theory of the Riemann Zeta function and the Theory of the Distribution of Primes. Acta Math. 1918, 41, 119–196. [Google Scholar] [CrossRef]
- Hardy, G.H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work; Chelsea Publishing Company: New York, NY, USA, 1959. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies; Elsevier (North- Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications (“Nauka i Tekhnika”, Minsk, 1987); Gordon and Breach Science Publishers: Reading, UK; Tokyo, Japan; Paris, French; Berlin, Germany; Langhorne, PA, USA, 1993. [Google Scholar]
- Zayed, A.I. Handbook of Functions and Generalized Function Transforms; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Gomez-Aguilar, J.F.; Abro, K.A.; Kolebaje, O.; Yildirim, A. Chaos in a calcium oscillation model via Atangana-Baleanu operator with strong memory. Eur. Phys. J. Plus. 2019, 134, 140. [Google Scholar] [CrossRef]
- Tassaddiq, A. MHD flow of a fractional second grade fluid over an inclined heated plate. Chaos Solitons Fractals 2019, 123, 341–346. [Google Scholar] [CrossRef]
- He, Y.; Araci, S.; Srivastava, H.M.; Abdel-Aty, M. Higher-order convolutions for apostol-bernoulli, apostol-euler and apostol-genocchi polynomials. Mathematics 2018, 6, 329. [Google Scholar] [CrossRef]
- Liu, G.-D.; Srivastava, H.M. Explicit formulas for the Nörlund polynomials and . Comput. Math. Appl. 2006, 51, 1377–1384. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, R.; Naaz, H.; Kazi, S.; Tassaddiq, A. Some New Results Involving the Generalized Bose–Einstein and Fermi–Dirac Functions. Axioms 2019, 8, 63. https://doi.org/10.3390/axioms8020063
Srivastava R, Naaz H, Kazi S, Tassaddiq A. Some New Results Involving the Generalized Bose–Einstein and Fermi–Dirac Functions. Axioms. 2019; 8(2):63. https://doi.org/10.3390/axioms8020063
Chicago/Turabian StyleSrivastava, Rekha, Humera Naaz, Sabeena Kazi, and Asifa Tassaddiq. 2019. "Some New Results Involving the Generalized Bose–Einstein and Fermi–Dirac Functions" Axioms 8, no. 2: 63. https://doi.org/10.3390/axioms8020063
APA StyleSrivastava, R., Naaz, H., Kazi, S., & Tassaddiq, A. (2019). Some New Results Involving the Generalized Bose–Einstein and Fermi–Dirac Functions. Axioms, 8(2), 63. https://doi.org/10.3390/axioms8020063