Repeated Derivatives of Hyperbolic Trigonometric Functions and Associated Polynomials
Abstract
:1. Introduction
2. Higher Order Derivatives of Trigonometric Functions
3. Final Comments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adamchik, V.S. On the Hurwitz function for rational arguments. Appl. Math. Comput. 2007, 187, 3–12. [Google Scholar] [CrossRef]
- Neto, A.F. Higher Order Derivatives of Trigonometric Functions, Stirling Numbers of the Second Kind and Zeon Algebra. J. Integer Seq. 2014, 17, 14.9.3. [Google Scholar]
- Feinsilver, P. Zeon algebra, Fock space, and Markov chains. Commun. Stoch. Anal. 2008, 2, 6. [Google Scholar] [CrossRef]
- Cvijović, D. Derivative Polynomials and Closed-Form Higher Derivative Formulae. Appl. Math. Comput. 2009, 215, 3002–3006. [Google Scholar] [CrossRef] [Green Version]
- Boyadzhiev, K.N. Derivative polynomials for tanh, tan, sech and sec in explicit form. Fibonacci Q. 2007, 45, 291–303. [Google Scholar]
- Hoffman, M.E. Derivative polynomials for tangent and secant. Am. Math. Mon. 1995, 102, 23–30. [Google Scholar] [CrossRef]
- Hoffman, M.E. Derivative polynomials, Euler polynomials and associated integer sequences. Electron. J. Comb. 1999, 6, R21. [Google Scholar]
- Johnson, W.P. The Curious History of Faa di Bruno’s Formula. Am. Math. Mon. 2002, 109, 217–234. [Google Scholar]
- Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Roman, S. The Umbral Calculus; Dover Publications: New York, NY, USA, 2005. [Google Scholar]
- Licciardi, S. Umbral Calculus, a Different Mathematical Language. Ph.D. Thesis, Department of Mathematics and Computer Sciences, XXIX Cycle, University of Catania, Catania, Italy, 2018. [Google Scholar]
- Dattoli, G.; Germano, B.; Martinelli, M.R.; Ricci, P.E. Touchard like polynomials and generalized Stirling numbers. Appl. Math. Comput. 2012, 218, 6661–6665. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1994. [Google Scholar]
- Mansour, T.; Schork, M. Commutation Relations, Normal Ordering, and Stirling Numbers; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015; p. 504. ISBN 9781466579880. [Google Scholar]
- Dattoli, G. Generalized polynomials, operational identities and their applications. J. Comp. Appl. Math. 2000, 118, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Riordan, J. An Introduction to Combinatorial Analysis; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Bell, E.T. Exponential Polynomials. Ann. Math. 1934, 35, 258–277. [Google Scholar] [CrossRef]
- Dattoli, G.; Srivastava, H.M.; Sacchetti, D. Mixed and higher-order generating functions: An extension to new families. Int. J. Math. Stat. Sci. 1999, 8, 79–87. [Google Scholar]
- Babusci, D.; Dattoli, G.; Gorska, K.; Penson, K. Repeated derivatives of composite functions and generalizations of the Leibniz rule. Appl. Math. Comput. 2014, 241, 193. [Google Scholar] [CrossRef] [Green Version]
- Wintucky, E.G. Formulas for nth Order Derivatives of Hyperbolic and Trigonometric Functions; NASA Lewis Research Center: Cleveland, OH, USA, 1971. [Google Scholar]
- Andrews, L.C. Special Functions For Engeneers and Applied Mathematicians; Mc Millan: New York, NY, USA, 1985. [Google Scholar]
- Dattoli, G.; Germano, B.; Martinelli, M.R.; Ricci, P.E. A novel theory of Legendre polynomials. Math. Comput. Modell. 2011, 54, 80–87. [Google Scholar] [CrossRef]
- Dattoli, G.; Germano, B.; Martinelli, M.R.; Ricci, P.E. Sheffer and Non-Sheffer Polynomial Families. Int. J. Math. Math. Sci. 2012, 2012, 323725. [Google Scholar] [CrossRef] [Green Version]
- Appél, P.; Kampé de Fériét, J. Fonctions Hypergeometriques and Hyperspheriques. Polynomes d’Hermite; Gauthiers-Villars: Paris, France, 1926. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan: New York, NY, USA, 1960. [Google Scholar]
- Dattoli, G.; Ottaviani, P.L.; Torre, A.; Vazquez, L. Evolution operator equations-integration with algebraic and finite-difference methods-applications to physical problems in classical and quantum mechanics and quantum field theory. La Rivista del Nuovo Cimento 1997, 20, 3–133. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dattoli, G.; Licciardi, S.; Pidatella, R.M.; Sabia, E. Repeated Derivatives of Hyperbolic Trigonometric Functions and Associated Polynomials. Axioms 2019, 8, 138. https://doi.org/10.3390/axioms8040138
Dattoli G, Licciardi S, Pidatella RM, Sabia E. Repeated Derivatives of Hyperbolic Trigonometric Functions and Associated Polynomials. Axioms. 2019; 8(4):138. https://doi.org/10.3390/axioms8040138
Chicago/Turabian StyleDattoli, Giuseppe, Silvia Licciardi, Rosa Maria Pidatella, and Elio Sabia. 2019. "Repeated Derivatives of Hyperbolic Trigonometric Functions and Associated Polynomials" Axioms 8, no. 4: 138. https://doi.org/10.3390/axioms8040138
APA StyleDattoli, G., Licciardi, S., Pidatella, R. M., & Sabia, E. (2019). Repeated Derivatives of Hyperbolic Trigonometric Functions and Associated Polynomials. Axioms, 8(4), 138. https://doi.org/10.3390/axioms8040138