F-Transform Inspired Weak Solution to a Boundary Value Problem †
Abstract
:1. Introduction
- functions are bounded and measurable in ,
- function ,
- , ,
2. Prelimanaries
2.1. Basic Notions about and Sobolev Space
2.2. Cut-Off Function
2.3. Generalized Uniform Fuzzy Partition
- (i)
- A triangular generating function
- (ii)
- A raised cosine generating function
- (iii)
- A b-spline generating function of degree n
2.4. Fuzzy Transform of a Higher Degree
- (i)
- The direct F-transform () of f with respect to is the set polynomialsis called the k-th component of the direct F-transform.
- (ii)
- The inverse F-transform of f with respect to and the set of the direct F-transform components of f, is the function defined as follows:
3. Test Spaces Constructed with a Generalized Fuzzy Partition
4. Illustration
5. Real-Life Application
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brenner, S.; Scott, R. The Mathematical Theory of Finite Element Methods; Springer Science & Business Media: New York, NY, USA, 2007; Volume 15. [Google Scholar]
- Cassel, K.W. Variational Methods with Applications in Science and Engineering; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Rektorys, K. Variational Methods in Mathematics, Science and Engineering. Space 1977, 50, 2. [Google Scholar]
- Fletcher, C.A. Computational galerkin methods. In Computational Galerkin Methods; Springer: New York, NY, USA, 1984; pp. 72–85. [Google Scholar]
- Keller, H.B. Numerical Methods for Two-Point Boundary-Value Problems; Courier Dover Publications: Philadelphia, PA, USA, 2018. [Google Scholar]
- Nguyen, L.; Perfilieva, I.; Holčapek, M. Weak Boundary Value Problem: Fuzzy Partition in Galerkin Method; World Scientific: London, UK, 2018. [Google Scholar]
- Reddy, B.D. Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements; Springer Science & Business Media: New York, NY, USA, 2013; Volume 27. [Google Scholar]
- Babuška, I.; Banerjee, U.; Osborn, J.E. Survey of meshless and generalized finite element methods: A unified approach. Acta Numer. 2003, 12, 1–125. [Google Scholar] [CrossRef] [Green Version]
- Melenk, J.M. On approximation in meshless methods. In Frontiers of Numerical Analysis; Springer: Berlin, Germany, 2005; pp. 65–141. [Google Scholar]
- Wang, J.; Liu, G. A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 2002, 54, 1623–1648. [Google Scholar] [CrossRef]
- Linh Nguyen, I.P.; Holčapek, M. Boundary value problem: Weak solution induced by fuzzy partition. Discret. Contin. Dyn. Syst. B 2020, in press. [Google Scholar]
- Holčapek, M.; Perfilieva, I.; Novák, V.; Kreinovich, V. Necessary and sufficient conditions for generalized uniform fuzzy partitions. Fuzzy Sets Syst. 2015, 277, 97–121. [Google Scholar] [CrossRef] [Green Version]
- Perfilieva, I.; Daňková, M.; Bede, B. Towards a Higher Degree F-transform. Fuzzy Sets Syst. 2011, 180, 3–19. [Google Scholar] [CrossRef]
- Perfilieva, I. Fuzzy Transforms: Theory and applications. Fuzzy Sets Syst. 2006, 157, 993–1023. [Google Scholar] [CrossRef]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Höllig, K.; Reif, U.; Wipper, J. Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 2001, 39, 442–462. [Google Scholar] [CrossRef]
- Holčapek, M.; Nguyen, L. Suppression of high frequencies in time series using fuzzy transform of higher degree. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems; Springer International Publishing: Cham, Switzerland, 2016; pp. 705–716. [Google Scholar]
- Holčapek, M.; Nguyen, L.; Tichý, T. Polynomial alias higher degree fuzzy transform of complex-valued functions. Fuzzy Sets Syst. 2018, 342, 1–31. [Google Scholar] [CrossRef]
- Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970; Volume 2. [Google Scholar]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; North-Holland Publishing Company: Amsterdam, The Netherlands, 2002; Volume 40. [Google Scholar]
- Černá, D. Cubic spline wavelets with four vanishing moments on the interval and their applications to option pricing under Kou model. Int. J. Wavel. Multiresolut. Inf. Process. 2019, 17, 1850061. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The valuation of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Holcapek, M.; Valášek, R. Numerical solution of partial differential equations with the help of fuzzy transform technique. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017; pp. 1–6. [Google Scholar]
- Hozman, J. Discontinous Galerkin method for the numerical solution of option pricing. Aplimat J. Appl. Math. 2012, 5, 271–280. [Google Scholar]
# Basis | GFPP | FPP | FEM | |||
---|---|---|---|---|---|---|
Functions | Error | Rate | Error | Rate | Error | Rate |
8 | _ | _ | _ | |||
16 | 7.5 | 2.9 | 1.8 | |||
32 | 6.4 | 3.1 | 1.9 | |||
64 | 5.7 | 2.9 | 1.9 | |||
128 | 5.3 | 3.0 | 2.2 |
# Basis | GFPP | FPP | FEM | |||
---|---|---|---|---|---|---|
Functions | Error | Rate | Error | Rate | Error | Rate |
8 | _ | _ | _ | |||
16 | 2.1 | 2.2 | 2.0 | |||
32 | 1.3 | 1.4 | 1.7 | |||
64 | 1.1 | 1.1 | 1.4 | |||
128 | 1.1 | 1.0 | 1.2 |
# Basis | GFPP | FPP | FEM | |||
---|---|---|---|---|---|---|
Functions | Error | Rate | Error | Rate | Error | Rate |
8 | _ | _ | _ | |||
16 | 1.8 | 5.1 | 2.3 | |||
32 | 1.3 | 1.5 | 1.6 | |||
64 | 1.3 | 2.7 | 1.9 | |||
128 | 1.7 | 2.9 | 2.0 |
# Basis | Linear | # Basis | Quadratic | ||
---|---|---|---|---|---|
Functions | GFPP | DGM | Functions | GFPP | DGM |
16 | 12 | ||||
32 | 24 | ||||
64 | 48 | ||||
128 | 96 | ||||
256 | 192 | ||||
512 | 384 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.; Perfilieva, I.; Holčapek, M. F-Transform Inspired Weak Solution to a Boundary Value Problem. Axioms 2020, 9, 5. https://doi.org/10.3390/axioms9010005
Nguyen L, Perfilieva I, Holčapek M. F-Transform Inspired Weak Solution to a Boundary Value Problem. Axioms. 2020; 9(1):5. https://doi.org/10.3390/axioms9010005
Chicago/Turabian StyleNguyen, Linh, Irina Perfilieva, and Michal Holčapek. 2020. "F-Transform Inspired Weak Solution to a Boundary Value Problem" Axioms 9, no. 1: 5. https://doi.org/10.3390/axioms9010005
APA StyleNguyen, L., Perfilieva, I., & Holčapek, M. (2020). F-Transform Inspired Weak Solution to a Boundary Value Problem. Axioms, 9(1), 5. https://doi.org/10.3390/axioms9010005