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Abstract: After recalling the most important properties of the Bell polynomials, we show how to
approximate a positive compact operator by a suitable matrix. Then, we derive a representation
formula for functions of the obtained matrix, which can be considered as an approximate value for
the functions of the corresponding operator.
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1. Introduction

The Bell polynomials [1] are a standard mathematical tool for computing the nth derivative of a
composite function. They have also been applied in order to solve different problems as the Blissard
problem (see [2], p. 46), the representation of Lucas polynomials of the first and second kind [3],
the representation formulas for the elementary symmetric functions of a countable set of numbers [4].
In this article, after recalling the most important properties of the Bell polynomials, we will show
another possible application that is their connection with the orthogonal invariants of a positive
compact operator (shortly PCO).

The theory of the orthogonal invariants for a PCO was introduced by Fichera in order to
approximate the eigenvalues of linear elliptic differential problems satisfying suitable conditions [5,6].
An important tool in this framework is given by the so-called Robert’s formulas which permit to
reduce the order (or the degree) of orthogonal invariants. In [4], it was proven that the Robert’s
formulas are nothing but the recurrence relation and the Faà di Bruno formula for the Bell polynomials.
Further relations among orthogonal invariants, proven in the same article, are reported in Section 5.
All equations recalled there generalize the algebraic Newton–Girard formulas to the elementary
symmetric functions of a countable set of numbers, which seems to be a useful result, since, in Section 7,
the results on matrix functions derived by using the Dunford–Taylor (also called Riesz–Fantappiè)
integral [7] are extended for approximating matrix functions of strictly positive compact operators.

The first part of this article contains a survey about the use of Bell polynomials in connection with
the above-mentioned theory of orthogonal invariants. We think that the results achieved in [4] are
necessary for the understanding of what is subsequently exposed. It should also be noted that the
Journal on which this paper has been published is not accessible on the web.
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It is well known that positive compact operators, according to Fredholm’s theory, are the limit
in the norm of finite dimension operators, which can be represented by positive definite matrices.
This fact has been used several times in literature (see, for example, [8–10] and the references therein),
but referring to the eigenvalues of the matrices involved. In this article, instead, exploiting the theory
of the orthogonal invariants, we have used matrix entries (avoiding the knowledge of eigenvalues),
Bell’s polynomials, and Robert’s formulas. This is, to our knowledge, an unusual approach.

A few examples of the effectiveness of this procedure are shown in Section 8, by using the
Mathematica c© computer algebra program.

2. Recalling the Bell Polynomials

Consider the composite function Φ(t) := f (g(t)), where x = g(t) and y = f (x), are differentiable
functions (up to the considered order), defined in suitable intervals of the real axis, so that Φ(t) can be
differentiated n times with respect to t, by using the chain rule.
Here, and in what follows, we use the notations:

Φm := Dm
t Φ(t), fh := Dh

x f (x)|x=g(t), gk := Dk
t g(t).

Then, the n-th derivative of Φ(t) is represented by

Φn = Yn( f1, g1; f2, g2; . . . ; fn, gn),

where the Yn denote the Bell polynomials.
For example, one has:

Y1( f1, g1) = f1g1 (1)

Y2( f1, g1; f2, g2) = f1g2 + f2g2
1

Y3( f1, g1; f2, g2; f3, g3) = f1g3 + f2(3g2g1) + f3g3
1.

Further examples can be found in [2], p. 49.

Proposition 1. The Bell polynomials satisfy the recurrence relation:


Y0 := f1;
Yn+1( f1, g1; . . . ; fn, gn; fn+1, gn+1) =

=
n

∑
k=0

(
n
k

)
Yn−k( f2, g1; f3, g2; . . . ; fn−k+1, gn−k)gk+1.

An explicit expression for the Bell polynomials is given by the Faà di Bruno formula:

Φn = Yn( f1, g1; f2, g2; . . . ; fn, gn) =

= ∑
π(n)

n!
r1!r2! . . . rn!

fr

[ g1

1!

]r1
[ g2

2!

]r2
· · ·
[ gn

n!

]rn
,

where the sum runs over all partitions π(n) of the integer n, ri denotes the number of parts of size i,
and r = r1 + r2 + · · ·+ rn denotes the number of parts of the considered partition.

The proof of the Faà di Bruno formula can be found in the Riordan book [2]. See also [11,12],
where the proof is based on the umbral calculus.
However, the Faà di Bruno is not suitable by the computational point of view, owing the higher
complexity with respect to the recursion formula.
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The traditional form of the Bell polynomials [13] is given by:

Yn( f1, g1; f2, g2; . . . ; fn, gn) =
n−k

∑
h=0

Bn,k(g1, g2, . . . , gn−k+1) fk (2)

and the Bn,k coefficients satisfy the recursion:

Bn,k(g1, g2, . . . , gn−k+1) =
n−k

∑
h=0

(
n− 1
h− 1

)
Bn−h−1,k(g1, g2, . . . , gn−h−k+1) gh+1 . (3)

3. An Extension of the Newton–Girard Formulas

In our opinion, one of the most important applications of the Bell polynomials is the following
extension of the Newton–Girard formulas (see e.g., [14]):

Consider the (finite or infinite) sequence of real or complex numbers µ1, µ2, µ3, . . . , and denote by

σ1 = ∑
i

µi, σ2 = ∑
i<j

µiµj, . . . , σk = ∑
i1<i2<···<ik

µi1 µi2 · · · µik , . . . , (4)

the relevant elementary symmetric functions, and by

s1 = ∑
i

µi, s2 = ∑
i

µ2
i , . . . , sk = ∑

i
µk

i , . . . , (5)

the symmetric functions power sums.
Of course, in case of infinite sets of indices, we assume that all of the above considered expansions

are convergent.
In [4], the following result is proven:

Proposition 2. For any integer k, the following representation formulas hold true:

σk =
(−1)k

k!
Yk (1,−s1; 1,−s2; 1,−2!s3; . . . ; 1,−(k− 1)!sk) (6)

sk = −
1

(k− 1)!
Yk

(
1,−σ1;−1, 2!σ2; . . . ; (−1)k−1(k− 1)!, (−1)kk!σk

)
(7)

The above Formulas (6)–(7) constitute an extension of the Newton–Girard formulas and their
inverse, since we have, in particular:

σ1 = s1

σ2 = 1
2 (s

2
1 − s2)

σ3 = 1
6 (s

3
1 − 3s1s2 + 2s3)

σ4 = 1
24 (s

4
1 − 6s2

1s2 + 8s1s3 + 3s2
2 − 6s4)

. . .
s1 = σ1

s2 = σ2
1 − 2σ2

s3 = σ3
1 − 3σ1σ2 + 3σ3

s4 = σ4
1 − 4σ2

1 σ2 + 4σ1σ3 + 2σ2
2 − 4σ4

. . .
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Remark 1. Note that the above equation implies the following well known recursion:

σ1 = s1

σ2 = 1
2 (σ1s1 − s2)

σ3 = 1
3 (σ2s1 − σ1s2 + s3)

σ4 = 1
4 (σ3s1 − σ2s2 + σ1s3 − s4)

. . .

(8)

which permits recovering the elementary symmetric functions.

4. Orthogonal Invariants of PCO and Robert’s Formulas

The eigenvalues µk of a positive compact operator T in a complex Hilbert spaceH satisfy

µ1 ≥ µ2 ≥ µ3 ≥ · · · ≥ 0 (9)

and, when infinite many eigenvalues exist, zero is an accumulation point.
If the PCO is strictly positive, the above condition becomes:

µ1 ≥ µ2 ≥ µ3 ≥ · · · > 0 . (10)

A classical example of eigenvalue problem for a strictly positive operator is given by

Tφ = Kφ :=
∫

A
K(x, y)φ(y)dy = µφ(x), (11)

where the kernel K(x, y) of the second kind Fredholm operator K belongs to L2(A× A), and is such
that K(x, y) = K(y, x), (Kφ, φ) > 0 if φ 6= 0 ∈ L2(A) (see Mikhlin [15] and Tricomi [16]).

The orthogonal invariants, introduced by Fichera [5,6], are, by definition, symmetric functions of
the eigenvalues of T:

In
s (T) = ∑

k1<k2<···<ks

[µk1 µk2 · · · µks ]
n . (12)

The index s is called the order, and the exponent n the degree of the invariant.
In the infinite dimensional case, a connection with the basic invariants I1

s (T) (s = 1, 2, . . . , n),
or In

1 (T) (n = 1, 2, . . . , s) have been derived by Robert [17].
The relative formulas are as follows:

In
s (T) =

1
s

s

∑
q=1

(−1)q−1Iqn
1 (T)In

s−q(T) (13)

In
s (T) = (−1)s

s

∑
k=1

(−1)k

k! ∑
q1+···+qk=s

1≤qi≤s

Inq1
1 (T) · · · Inqk

1 (T)
q1 · · · qk

, (14)

which allow for reducing the orthogonal invariant In
s (T) to Ih

1 (T) (∀h = 1, 2, . . . , ns).
Since the eigenvalues of Tn are given by µn

i , in the following, denoting by n the smallest integer
such that In

s (T) < ∞, we will put T := Tn, so that I1
s (T ) = I1

s (Tn) = In
s (T), and the above

Equations (13) and (14) become:
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I1
s (T ) =

1
s

s

∑
q=1

(−1)q−1Iq
1 (T )I

1
s−q(T ) (15)

I1
s (T ) = (−1)s

s

∑
k=1

(−1)k

k! ∑
q1+···+qk=s

1≤qi≤s

Iq1
1 (T ) · · · Iqk

1 (T )
q1 · · · qk

. (16)

Under the above condition, the operator T is called to belong to the Trace-class [18], p. 521.

Remark 2. It is worth noting that there exist PCO not satisfying the above-mentioned condition that requires
the existence of an integer n such that In

s (T) = I1
s (T ) < ∞ [5,6]; however, this condition is satisfied by all

the PCO occurring in applications.

It is well known that, in the Hilbert space H = L2(A), the following results hold:

∀n, s ∈ N, In
s (T) < ∞ i f f Tn ϕ =

∫
A

K(x, y)ϕ(y)dy

where

K(x, y) =
∫

A
H(x, z)H(z, y)dz, H(x, y) = H(y, x) ∈ L2[A× A].

Furthermore, the orthogonal invariants can be represented by the multiple integrals [6]:

In
s (T) =

1
s!

∫
A
· · ·

∫
A

f (x1, . . . , xs) dx1 · · · dxs,

where f (x1, · · · , xs) denotes the Fredholm determinant:

f (x1, x2, · · · , xs) :=

∣∣∣∣∣∣∣∣∣
K(x1, x1) K(x1, x2) . . . K(x1, xs)

K(x2, x1) K(x2, x2) . . . K(x2, xs)

. . . . . . . . . . . . . . . . . . . . .
K(xs, x1) K(xs, x2) . . . K(xs, xs)

∣∣∣∣∣∣∣∣∣ .

In particular, for s = 1 we have:

In
1 (T) =

∫
A

K(x, x) dx =
∫∫

A×A
|H(x, y)| dxdy,

and, for s = 2:

In
2 (T) =

1
2

∫∫
A×A

K(x, x)K(y, y)− |K(x, y)|2 dxdy.

In what follows, we consider only the operators T that belong to the Trace class. We put T = Tn,
so that it results in:

In
1 (T) = I1

1 (T
n) = I1

1 (T ) =
∫

A K(x, x) dx < ∞

In
2 (T) = I1

2 (T ) =
1
2

∫∫
A×A

K(x, x)K(y, y)− |K(x, y)|2 dxdy .

As a consequence, all the invariants are bounded.
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5. Orthogonal Invariants’ Reduction Formulas

Writing the representation formulas of Proposition 3.1 in terms of orthogonal invariants, we obtain:

I1
k (T ) =

(−1)k

k!
Yk

(
1,−I1

1 (T ); 1,−I2
1 (T ); 1,−2!I3

1 (T ); . . . ; 1,−(k− 1)!Ik
1(T )

)
(17)

Ik
1(T ) =

= − 1
(k− 1)!

Yk

(
1,−I1

1 (T );−1, 2!I1
2 (T ); . . . ; (−1)k−1(k− 1)!, (−1)kk!I1

k (T )
)

.
(18)

In [4], the following results have been proven:

Proposition 3. The first Robert formula is equivalent to the recurrence relation of the Bell polynomials.

Proposition 4. The second Robert formula is equivalent to the Faà di Bruno representation formula for the Bell
polynomials.

In particular, from the above Equation (17), we find:

I1
2 (T ) =

1
2 [(I1

1 (T ))2 − I2
1 (T )]

I1
3 (T ) =

1
6 [(I1

1 (T ))3 − 3I1
1 (T )I2

1 (T ) + 2I3
1 (T )]

I1
4 (T ) =

1
24 [(I1

1 (T ))4 − 6(I1
1 (T ))2(I2

1 (T )) + 8(I1
1 (T ))(I3

1 (T ))
+ 3((I2

1 (T ))2 − 6(I4
1 (T ))] .

Remark 3. Note that, recalling the representation in terms of seconk kind Bell polynomials, Equation (17)
becomes:

I1
k (T ) =

(−1)k

k!
Bn,k

(
−I1

1 (T ),−I2
1 (T ),−2!I3

1 (T ), . . . ,−(k− 1)!Ik
1(T )

)
(19)

so that the I1
k (T ) can be computed by using the recursion (3).

Proposition 5. For any integer k ≥ 1, the orthogonal invariant Ik
1(T ), is expressed in terms of I1

h (T ), k =

1, 2, . . . , s, by

Ik
1(T ) = ∑

π(k)
(−1)k+s k (s− 1)!

r1!r2! · · · rk!

(
I1

1 (T )
)r1
(
I1

2 (T )
)r2 · · ·

(
I1

k (T )
)rk

, (20)

where π(k) denotes the sum running on all partitions of k = r1 + 2r2 + · · ·+ krk and s = r1 + r2 + · · ·+ rk.

In particular, we have:

I2
1 (T ) = (I1

1 (T ))2 − 2I1
2 (T )

I3
1 (T ) = (I1

1 (T ))3 − 3I1
1 (T )I1

2 (T ) + 3I1
3 (T )

I4
1 (T ) = (I1

1 (T ))4 − 4(I1
1 (T ))2 I1

2 (T ) + 4I1
1 (T ) I1

3 (T ) + 2(I1
2 (T ))2 − 4I1

4 (T ) .

Note that Equation (19), making use of Bell polynomials, is more convenient by the computational
point of view with respect to Equation (20).



Axioms 2020, 9, 73 7 of 14

The recursion (7) becomes:

I1
1 (T ) = I1

1 (T )

I1
2 (T ) =

1
2 [(I1

1 (T ))2 − I2
1 (T )]

I1
3 (T ) =

1
3 [I1

2 (T ) I1
1 (T )− I1

1 (T ) I2
1 (T ) + I3

1 (T )]

I1
4 (T ) =

1
4 [I1

3 (T ) I1
1 (T ) + I1

2 (T ) I2
1 (T ) + I1

1 (T ) I3
1 (T )− I4

1 (T )]
. . .

(21)

6. Matrix Functions

We consider a r× r matrix A = {ah,k}, whose invariants

u1 := tr A = a11 + a22 + ... + arr

u2 :=
1,r

∑
i<j

∣∣∣∣∣ aii aij
aji ajj

∣∣∣∣∣
· · ·

ur := det A

(22)

are known, so that its characteristic polynomial is given by

P(λ) = λr − u1λr−1 + u2λr−2 + · · ·+ (−1)rur . (23)

Let f be a holomorphic in an open set ∆, containing all the eigenvaues of A. Then, the matrix
functions f (A) are given by the Dunford–Taylor (also called Riesz–Fantappiè) integral [18,19]:

f (A) = 1
2 π i

[
r

∑
k=1

∮
γ

f (λ) ∑k−1
h=0(−1)huh λk−h−1

P(λ)
dλ Ar−k

]
(24)

where γ denotes a simple contour enclosing all the zeros of P(λ).

7. Approximation of a Strictly PCO

Equation (24) is used in what follows, since we approximate a strictly positive compact operator
T by a r× r matrix A, where the integer r is such that the rth eigenvalue µr of T is negligible, i.e.,

µr < ε (25)

where ε is a prescribed small quantity.
We assume, for the characteristic polynomial, the following form:

P(λ) = λr − I1
1 (T )λr−1 + · · ·+ (−1)r−1I1

r−1(T )λ + (−1)rI1
r (T ) . (26)

Therefore, the companion matrix of A is given by

T ' A =



I1
1 (T ) 1 0 0 0
−I1

2 (T ) 0 1 0 0
I1

3 (T ) 0 0 1 0
. . . . . . . . . . . . . . .

(−1)r−2I1
r−1(T ) 0 0 0 1

(−1)r−1I1
r (T ) 0 0 0 0


. (27)
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and Equation (24) becomes:

f (A) = 1
2 π i

[
r

∑
k=1

∮
γ

f (λ) ∑k−1
h=0(−1)hI1

h (T ) λk−h−1

P(λ)
dλ Ar−k

]
(28)

Note that the powers of the companion matrix A can be computed by using the results in [20],
Theorem 2.

8. Numerical Examples

8.1. Kernels of Positive Compact Operators

In the literature, there are a few classical kernels of PCO reported, such as:

1. A kernel considered by S.G. Miklin (see [21], p. 364):

K(x, y) =

 x(1− y) if 0 ≤ x ≤ y ≤ 1

y(1− x) if 0 ≤ y ≤ x ≤ 1
(29)

2. A kernel considered by Ostrowski (see [22,23]):

K(x, y) =


2 log

y(1− x)
x− y

if 0 ≤ x ≤ y ≤ 1

2 log
x(1− y)

x− y
if 0 ≤ y ≤ x ≤ 1

(30)

3. A kernel considered by Tricomi (see [16]:

K(x, y) = cos nπ(x− y) , n = 1, 2, . . . (31)

or, more generally, for a fixed N:

K(x, y) =
N

∑
n=0

an cos nπ(x− y) , an > 0 . (32)

The kernel # 2 is considered as an example in what follows.

8.1.1. Example 1

Let us consider the Ostrowski’s kernel K(x, y) in (30). As demonstrated by means of the inverse
iteration method in [22,23], the relevant operator T displays the eigenvalues:

λ1 ' 1.205965762856735
λ2 ' 0.734006078303625
λ3 ' 0.528546963103265
λ4 ' 0.413767155184915
λ5 ' 0.342859803772745

(33)

and, therefore, can be approximated by a matrix of order r = 5 with a characteristic polynomial:

P(λ) = ∏r
k=1 (λ− λk) . (34)
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Starting from (34), the invariants are readily evaluated as:

u1 = I1
1 (T ) ' 3.225145763221285

u2 = I1
2 (T ) ' 3.920164426948163

u3 = I1
3 (T ) ' 2.263632211150296

u4 = I1
4 (T ) ' 0.625036213142174

u5 = I1
5 (T ) ' 0.066372901341124

(35)

so that the companion matrix A can be written as:

A ≃

3.22515 1 0 0 0

-3.92016 0 1 0 0

2.26363 0 0 1 0

-0.625036 0 0 0 1

0.0663729 0 0 0 0

By making use of the Dunford–Taylor integral Formula (24), the matrix function:

f (A) = W(A) (36)

with W(·) denoting the product logarithm, can be computed as:

f(A)

1.24924 0.225931 -0.0813618 0.0645175 -0.0767021

-1.11528 0.520573 0.488335 -0.28944 0.311893

0.566562 -0.22959 0.201622 0.741254 -0.590125

-0.146616 0.0551363 -0.0454167 0.055578 0.91488

0.0149957 -0.00540022 0.00428221 -0.00509094 0.00763645

8.1.2. Example 2

Let us consider the kernel K(x, y) relevant to the positive compact operator T which describes
the transverse vibrations of a wedge-shaped beam [24]. By using the inverse iteration method, one can
prove that T features the following eigenvalues:

λ1 ' 1.9717553675× 10−2

λ2 ' 1.1930198795× 10−3

λ3 ' 2.3684105195× 10−4

λ4 ' 7.5156070990× 10−5

λ5 ' 3.0836121615× 10−5

λ6 ' 1.4889262790× 10−5

λ7 ' 8.0483648760× 10−6

λ8 ' 4.7300057890× 10−6

λ9 ' 2.9688104105× 10−6

λ10 ' 1.9692639370× 10−6

λ11 ' 1.3727098565× 10−6

λ12 ' 1.0037480315× 10−6

λ13 ' 7.6076195215× 10−7

(37)

and, therefore, can be approximated by a matrix of order r = 13 with characteristic polynomial:

P(λ) = ∏r
k=1 (λ− λk) . (38)
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Starting from (38), the invariants are readily evaluated as:

u1 = I1
1 (T ) ' 2.128914972669765× 10−2

u2 = I1
2 (T ) ' 3.147982936967773× 10−5

u3 = I1
3 (T ) ' 9.746686526750313× 10−9

u4 = I1
4 (T ) ' 9.799739677748166× 10−13

u5 = I1
5 (T ) ' 4.058777349187134× 10−17

u6 = I1
6 (T ) ' 8.015136142635608× 10−22

u7 = I1
7 (T ) ' 8.297854829897979× 10−27

u8 = I1
8 (T ) ' 4.787022852309753× 10−32

u9 = I1
9 (T ) ' 1.593001334376288× 10−37

u10 = I1
1 0(T ) ' 3.084794075371912× 10−43

u11 = I1
1 1(T ) ' 3.391992870896023× 10−49

u12 = I1
1 2(T ) ' 1.945386222042645× 10−55

u13 = I1
1 3(T ) ' 4.485002305839361× 10−62

(39)

so that the companion matrix A can be written as:

A ≃

0.0212891 1 0 0 0 0 0 0 0 0 0 0 0

-0.0000314798 0 1 0 0 0 0 0 0 0 0 0 0

9.74669 × 10-9
0 0 1 0 0 0 0 0 0 0 0 0

-9.79974 × 10-13
0 0 0 1 0 0 0 0 0 0 0 0

4.05878 × 10-17
0 0 0 0 1 0 0 0 0 0 0 0

-8.01514 × 10-22
0 0 0 0 0 1 0 0 0 0 0 0

8.29785 × 10-27
0 0 0 0 0 0 1 0 0 0 0 0

-4.78702 × 10-32
0 0 0 0 0 0 0 1 0 0 0 0

1.593 × 10-37
0 0 0 0 0 0 0 0 1 0 0 0

-3.08479 × 10-43
0 0 0 0 0 0 0 0 0 1 0 0

3.39199 × 10-49
0 0 0 0 0 0 0 0 0 0 1 0

-1.94539 × 10-55
0 0 0 0 0 0 0 0 0 0 0 1

4.485 × 10-62
0 0 0 0 0 0 0 0 0 0 0 0

By making use of the Dunford–Taylor integral Formula (24), the matrix function:

f (A) = e−10A

A10 + 1
(40)

can be computed as:

f(A)

-5.59 × 102� -2.84 × 1022 -1.44 × 1024 -7.29 × 1025 -3.7 × 1027 -1.88 × 1029 -9.52 × 1030 -4.83 × 1032 -2.45 × 1034 -1.24 × 103� -6.31 × 1037 -3.22 × 1039 -8.71 × 1040

8.79 × 1017 4.46 × 1019 2.26 × 1021 1.15 × 1023 5.81 × 1024 2.95 × 1026 1.5 × 1028 7.58 × 1029 3.85 × 1031 1.95 × 1033 1.01 × 1035 5.4 × 1036 -1.36 × 1039

-2.75 × 1014 -1.39 × 1016 -7.07 × 1017 -3.59 × 1019 -1.82 × 1021 -9.23 × 1022 -4.68 × 1024 -2.37 × 1026 -1.2 × 1028 -6.11 × 1029 -3.17 × 1031 -2. × 1032 2.66 × 1036

2.77 × 1010 1.41 × 1012 7.13 × 1013 3.62 × 1015 1.83 × 1017 9.31 × 1018 4.72 × 1020 2.39 × 1022 1.21 × 1024 6.17 × 1025 3.15 × 1027 -3.11 × 1029 6.49 × 1032

-1.15 × 106 -5.83 × 107 -2.96 × 109 -1.5 × 1011 -7.61 × 1012 -3.86 × 1014 -1.96 × 1016 -9.92 × 1017 -5.03 × 1019 -2.56 × 1021 -1.31 × 1023 -3.54 × 1024 -3.96 × 1029

2.27 × 101 1.15 × 103 5.84 × 104 2.96 × 106 1.5 × 108 7.62 × 109 3.87 × 1011 1.96 × 1013 9.94 × 1014 5.05 × 1016 2.58 × 1018 -7.78 × 1019 0.

-2.35 × 10-4 -1.19 × 10-2 -6.05 × 10-1 -3.07 × 101 -1.56 × 103 -7.89 × 104 -4. × 106 -2.03 × 108 -1.03 × 1010 -5.23 × 1011 -2.67 × 1013 2.09 × 1015 -1.48 × 1020

1.36 × 10-9
6.88 × 10-8

3.49 × 10-6
1.77 × 10-4

8.98 × 10-3
4.55 × 10-1

2.31 × 101 1.17 × 103 5.94 × 104 3.02 × 106 1.54 × 108 1.28 × 1010 2.81 × 1015

-4.52 × 10-15 -2.29 × 10-13 -1.16 × 10-11 -5.89 × 10-10 -2.99 × 10-8 -1.52 × 10-6 -7.69 × 10-5 -3.9 × 10-3
8.02 × 10-1 -2. × 101 -4.62 × 102 3.53 × 104 8.59 × 109

8.75 × 10-21
4.44 × 10-19

2.25 × 10-17
1.14 × 10-15

5.79 × 10-14
2.94 × 10-12

1.49 × 10-10
7.55 × 10-9

3.83 × 10-7
1. -1. × 101 5. × 101 4.92 × 104

-9.62 × 10-27 -4.88 × 10-25 -2.47 × 10-23 -1.25 × 10-21 -6.36 × 10-20 -3.23 × 10-18 -1.64 × 10-16 -8.3 × 10-15 -4.21 × 10-13 -2.14 × 10-11
1. -1. × 101 5. × 101

5.52 × 10-33
2.8 × 10-31

1.42 × 10-29
7.2 × 10-28

3.65 × 10-26
1.85 × 10-24

9.39 × 10-23
4.76 × 10-21

2.42 × 10-19
1.23 × 10-17

6.26 × 10-16
1. -1. × 101

-1.27 × 10-39 -6.45 × 10-38 -3.27 × 10-36 -1.66 × 10-34 -8.41 × 10-33 -4.27 × 10-31 -2.16 × 10-29 -1.1 × 10-27 -5.57 × 10-26 -2.83 × 10-24 -1.44 × 10-22 -3.91 × 10-21
1.

8.2. Kernels of Inverse of Differential PCO

In [5], many problems relevant to strictly positive definite differential operators have been
considered. In particular, for the one connected with the free vibrations of a clamped plate,
large numbers of eigenvalues were determined by using the orthogonal invariants method. It is
also recalled there that the Fredholm integer function associated with a given kernel K(x, y), where
T φ =

∫
A K(x, y)φ(y)dy = µφ(x) is given by:

G(µ, K) = 1 +
∞

∑
k=1

(−1)kI1
k (T )µ

k . (41)
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Putting λ = µ−1, and considering the partial sum, of order r, of the series (30), we recover the
polynomial P(λ) in Equation (26) as an approximation of the Fredholm integer function (41).
In [5], Fichera, considering the biharmonic operator

∆4 u(x, y) = ∆2 ∆2 u =
∂4u
∂x4 + 2

∂4u
∂x2∂y2 +

∂4u
∂y4 (42)

was able to find lower and upper approximations of the eigenvalues of the biharmonic problem
∆4 u(x, y) = λ u(x, y) (in D)

u =
∂u
∂x

=
∂u
∂y

= 0 (on ∂D) .
(43)

both for the circular and the square clamped plate.
In what follows, we choose the mean value, as the most probable one, of the very close

approximation of the eigenvalues in [5]. Then, considering the reciprocal of these numbers, we apply
the results of Section 7 to the inverse operator of the problem (43), which is the relevant Green function,
finding, as examples, a few elementary functions of this operator.

8.2.1. Example 3

In the case of a square clamped plate with D ≡ {0 ≤ x ≤ π 0 ≤ y ≤ π}, the operator T which
describes the relevant free vibrations features the eigenvalues:

λ1 ' 0.07522320605817612
λ2 = λ3 ' 0.018083584860929095
λ4 ' 0.008318170002599427
λ5 ' 0.005626648256273572
λ6 ' 0.005573530190419659
λ7 = λ8 ' 0.0035787778473651247
λ9 = λ10 ' 0.0021993489926981614
λ11 ' 0.0020129229654381126
λ12 ' 0.0016618597373763058

(44)

and, therefore, can be approximated by a matrix of order r = 12 with characteristic polynomial:

P(λ) = ∏r
k=1 (λ− λk) . (45)

Starting from (45), the invariants are readily evaluated as:

u1 = I1
1 (T ) ' 0.146139760612268

u2 = I1
2 (T ) ' 7.435124123661688× 10−3

u3 = I1
3 (T ) ' 1.923841312742190× 10−4

u4 = I1
4 (T ) ' 2.933369354737111× 10−6

u5 = I1
5 (T ) ' 2.845078672719340× 10−8

u6 = I1
6 (T ) ' 1.830841553974511× 10−10

u7 = I1
7 (T ) ' 7.975992951293202× 10−13

u8 = I1
8 (T ) ' 2.357390178302073× 10−15

u9 = I1
9 (T ) ' 4.646069994825235× 10−18

u10 = I1
1 0(T ) ' 5.833548132502803× 10−21

u11 = I1
1 1(T ) ' 4.213005422976779× 10−24

u12 = I1
1 2(T ) ' 1.329866701687217× 10−27

(46)
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so that the companion matrix A can be written as:

A ≃

0.14614 1 0 0 0 0 0 0 0 0 0 0

-0.00743512 0 1 0 0 0 0 0 0 0 0 0

0.000192384 0 0 1 0 0 0 0 0 0 0 0

-2.93337 × 10-6
0 0 0 1 0 0 0 0 0 0 0

2.84508 × 10-8
0 0 0 0 1 0 0 0 0 0 0

-1.83084 × 10-10
0 0 0 0 0 1 0 0 0 0 0

7.97599 × 10-13
0 0 0 0 0 0 1 0 0 0 0

-2.35739 × 10-15
0 0 0 0 0 0 0 1 0 0 0

4.64607 × 10-18
0 0 0 0 0 0 0 0 1 0 0

-5.83355 × 10-21
0 0 0 0 0 0 0 0 0 1 0

4.21301 × 10-24
0 0 0 0 0 0 0 0 0 0 1

-1.32987 × 10-27
0 0 0 0 0 0 0 0 0 0 0

By making use of the Dunford–Taylor integral Formula (24), the matrix function:

f (A) = log(A) (47)

can be computed as:

f(A)

4.56 × 10-1 3.46 × 101 2.37 × 102 7.36 × 103 -1.1 × 105 1.58 × 107 -2.25 × 109 5.18 × 1011 -1.86 × 1014 1.08 × 1017 -1.12 × 1020 2.7 × 1023

-2.44 × 10-1 -4.6 -4.49 × 10-2 -8.39 × 102 2.35 × 104 -2.42 × 106 3.45 × 108 -7.79 × 1010 2.76 × 1013 -1.59 × 1016 1.64 × 1019 -3.96 × 1022

6.21 × 10-3
1.26 × 10-2 -2.83 5.47 × 101 -1.66 × 103 1.41 × 105 -1.92 × 107 4.19 × 109 -1.46 × 1012 8.29 × 1014 -8.46 × 1017 2.02 × 1021

-9.62 × 10-5 -4.43 × 10-4 -3.3 × 10-2 -4.25 7.59 × 101 -4.69 × 103 5.74 × 105 -1.19 × 108 3.99 × 1010 -2.22 × 1013 2.23 × 1016 -5.28 × 1019

9.46 × 10-7
5.25 × 10-6

2.52 × 10-4 -1.14 × 10-2 -4.57 1.22 × 102 -1.13 × 104 2.09 × 106 -6.63 × 108 3.56 × 1011 -3.5 × 1014 8.14 × 1017

-6.16 × 10-9 -3.71 × 10-8 -1.49 × 10-6
4.22 × 10-5 -8.23 × 10-3 -5.02 1.86 × 102 -2.6 × 104 7.37 × 106 -3.73 × 109 3.53 × 1012 -8.03 × 1015

2.7 × 10-11
1.71 × 10-10

6.22 × 10-9 -1.39 × 10-7
2.2 × 10-5 -5.34 × 10-3 -5.44 2.81 × 102 -6. × 104 2.71 × 107 -2.42 × 1010 5.3 × 1013

-8.04 × 10-14 -5.23 × 10-13 -1.8 × 10-11
3.49 × 10-10 -5.16 × 10-8

9.4 × 10-6 -3.54 × 10-3 -5.85 4.29 × 102 -1.46 × 105 1.16 × 108 -2.4 × 1011

1.59 × 10-16
1.06 × 10-15

3.49 × 10-14 -6.14 × 10-13
8.89 × 10-11 -1.44 × 10-8

4.09 × 10-6 -2.32 × 10-3 -6.29 6.83 × 102 -4.09 × 105 7.53 × 108

-2.01 × 10-19 -1.35 × 10-18 -4.34 × 10-17
7.12 × 10-16 -1.02 × 10-13

1.56 × 10-11 -3.94 × 10-9
1.69 × 10-6 -1.46 × 10-3 -6.79 1.2 × 103 -1.66 × 106

1.45 × 10-22
9.88 × 10-22

3.12 × 10-20 -4.85 × 10-19
6.95 × 10-17 -1.02 × 10-14

2.43 × 10-12 -9.26 × 10-10
6.03 × 10-7 -8.29 × 10-4 -7.44 2.78 × 103

-4.6 × 10-26 -3.15 × 10-25 -9.79 × 10-24
1.46 × 10-22 -2.1 × 10-20

3. × 10-18 -6.88 × 10-16
2.47 × 10-13 -1.43 × 10-10

1.48 × 10-7 -3.59 × 10-4 -8.58

8.2.2. Example 4

In the case of a circular clamped plate with D ≡ x2 + y2 ≤ 1, the operator T which describes the
relevant free vibrations features the eigenvalues:

λ1 ' 0.009581894052997456
λ2 = λ3 ' 0.0022123673547497866
λ4 ' 0.0008220946148692253
λ5 ' 0.005626648256273572
λ6 ' 0.0006322131569880101
λ7 = λ8 ' 0.00038401499194528553
λ9 = λ10 ' 0.00027026150503226925

(48)

and, therefore, can be approximated by a matrix of order r = 10 with characteristic polynomial:

P(λ) = ∏r
k=1 (λ− λk) . (49)
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Starting from (49), the invariants are readily evaluated as:

u1 = I1
1 (T ) ' 2.239613778458294× 10−2

u2 = I1
2 (T ) ' 1.834047170883283× 10−4

u3 = I1
3 (T ) ' 7.231844608387320× 10−7

u4 = I1
4 (T ) ' 1.549026411656578× 10−9

u5 = I1
5 (T ) ' 1.916470543643900× 10−12

u6 = I1
6 (T ) ' 1.421413780191233× 10−15

u7 = I1
7 (T ) ' 6.388300810511680× 10−19

u8 = I1
8 (T ) ' 1.698427046738193× 10−22

u9 = I1
9 (T ) ' 2.451210499521412× 10−26

u10 = I1
1 0(T ) ' 1.477289762215714× 10−30

(50)

so that the companion matrix A can be written as:

A ≃

0.0223961 1 0 0 0 0 0 0 0 0

-0.000183405 0 1 0 0 0 0 0 0 0

7.23184 × 10-7
0 0 1 0 0 0 0 0 0

-1.54903 × 10-9
0 0 0 1 0 0 0 0 0

1.91647 × 10-12
0 0 0 0 1 0 0 0 0

-1.42141 × 10-15
0 0 0 0 0 1 0 0 0

6.3883 × 10-19
0 0 0 0 0 0 1 0 0

-1.69843 × 10-22
0 0 0 0 0 0 0 1 0

2.45121 × 10-26
0 0 0 0 0 0 0 0 1

-1.47729 × 10-30
0 0 0 0 0 0 0 0 0

By making use of the Dunford–Taylor integral Formula (24), the matrix function:

f (A) = tan−1(A) (51)

can be computed as:

f(A)

2.24 × 10-2 1. -7.71 × 10-3 -3.56 × 10-1 -1.86 -1.17 × 102 -1.43 × 103 1. × 106 1.44 × 108 6.44 × 109

-1.83 × 10-4
1.16 × 10-6

1. 2.61 × 10-4 -3.14 × 10-1
7.63 × 10-1 -8.53 × 101 -2.39 × 104 -2.23 × 106 0.

7.23 × 10-7 -5.03 × 10-9 -2.55 × 10-7
1. -8.08 × 10-5 -3.36 × 10-1

5.01 × 10-1
9.84 × 101 2.61 × 103 -1.05 × 106

-1.55 × 10-9
1.13 × 10-11

5.48 × 10-10
2.66 × 10-9

1. 3.93 × 10-6 -3.35 × 10-1 -2.23 × 10-1 -5.98 -2.05 × 103

1.92 × 10-12 -1.43 × 10-14 -6.79 × 10-13 -3.4 × 10-12 -2.22 × 10-10
1. 1.72 × 10-6 -3.33 × 10-1

6.28 × 10-4
4.

-1.42 × 10-15
1.07 × 10-17

5.05 × 10-16
2.57 × 10-15

1.66 × 10-13
2.64 × 10-12

1. -1.99 × 10-7 -3.33 × 10-1 -1.17 × 10-2

6.39 × 10-19 -4.86 × 10-21 -2.27 × 10-19 -1.17 × 10-18 -7.46 × 10-17 -1.08 × 10-15
6.16 × 10-13

1. 5.98 × 10-9 -3.33 × 10-1

-1.7 × 10-22
1.3 × 10-24

6.04 × 10-23
3.13 × 10-22

1.99 × 10-20
2.67 × 10-19 -1.67 × 10-16 -2.38 × 10-14

1. 1.86 × 10-9

2.45 × 10-26 -1.88 × 10-28 -8.72 × 10-27 -4.55 × 10-26 -2.87 × 10-24 -3.64 × 10-23
2.43 × 10-20

3.53 × 10-18
6.85 × 10-16

1.

-1.48 × 10-30
1.14 × 10-32

5.26 × 10-31
2.75 × 10-30

1.73 × 10-28
2.11 × 10-27 -1.48 × 10-24 -2.13 × 10-22 -9.52 × 10-21

5.27 × 10-16

9. Conclusions

The use of Bell polynomials allows for extending to a countable set of numbers the Newton–Girard
formulas originally stated in the framework of polynomials.

Then, the Robert’s formulas for the orthogonal invariants of a positive compact operator are
recognized as the recursion or the Faà di Bruno [25] formula for the Bell polynomials. Therefore,
the reduction of the order (or the grade) of the orthogonal invariants is easily established.

By using the results on matrix functions, based on the Dunford–Taylor integral, an approximation
to holomorphic function of positive compact operators is obtained considering a truncation of
Fredholm’s integral function whose coefficients are precisely the orthogonal invariants of the PCO.
This is possible since the eigenvalues of such operators often tend to zero in a very fast way so that a
finite set of eigenvalues gives a sufficient idea of the behavior of the considered function. Numerical
examples obtained by using the computer algebra program Mathematica c© are included. The results
matches with the theoretical approach.



Axioms 2020, 9, 73 14 of 14

Author Contributions: Methodology, P.E.R.; software, D.C.; validation, D.C.; formal analysis, P.E.R. and P.N.;
investigation, D.C.; data curation, D.C.; writing—original draft preparation, P.E.R.; writing—review and editing,
D.C.; visualization, D.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bell, E.T. Exponential polynomials. Ann. Mathematics 1934, 35, 258–277. [CrossRef]
2. Riordan, J. An Introduction to Combinatorial Analysis; J. Wiley & Sons: Chichester, UK, 1958.
3. Bruschi, M.; Ricci, P.E. I polinomi di Lucas e di Tchebycheff in più variabili. Rend. Mat. 1980, 13, 507–530.
4. Cassisa, C.; Ricci, P.E. Orthogonal invariants and the Bell polynomials. Rend. Mat. Appl. 2000, 20, 293–303.
5. Fichera, G. Abstract and Numerical Aspects of Eigenvalue Theory; Lecture Notes; Department of Mathematics,

The University of Alberta: Edmonton, AB, Canada, 1973.
6. Fichera, G. Metodi e risultati concernenti l’analisi numerica e quantitativa. Atti Accad. Nazion. Lincei Mem.

1974, 7, 1–202.
7. Caratelli, D.; Ricci, P.E. A Numerical Method for Computing the Roots of Non-Singular Complex-Valued

Matrices. Symmetry 2020, 12, 966. [CrossRef]
8. Dodds, P.G. Positive compact operators. Quaest. Math. 1995 18, 21–45. [CrossRef]
9. Osborn, J.E. Spectral Approximation for Compact Operators. Math. Comput. 1975 29, 712–715. [CrossRef]
10. Zerner, M. Quelques propriétés spectrales des opérateurs positifs. J. Funct. Anal. 1987 72, 381–417. [CrossRef]
11. Roman, S.M. The Faà di Bruno Formula. Am. Math. Mon. 1980, 87, 805–809. [CrossRef]
12. Roman, S.M.; Rota, G.C. The umbral calculus. Adv. Math. 1978 27, 95–188. [CrossRef]
13. Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; D. Reidel Publishing Co.:

Dordrecht, The Netherlands, 1974. Available online: https://doi.org/10.1007/978-94-010-2196-8 (accessed
on 12 February 2020).

14. Kurosh, A. Cours d’Algèbre Supérieure; Éditions Mir: Moscou, Russia, 1971.
15. Mikhlin, S.G. Integral Equations and Their Applications, 2nd ed.; Pergamon Press: Oxford, UK, 1964.
16. Tricomi, F.G. Su di una classe di nuclei definiti positivi. Boll. Dell’Unione Mat. Ital. 1967, 22, 1–3.
17. Robert, D. Invariants orthogonaux pour certaines classes d’operateurs. Ann. Mathém. Pures Appl. 1973,

52, 81–114.
18. Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany, 1966.
19. Bruschi, M.; Ricci, P.E. An explicit formula for f (A) and the generating function of the generalized Lucas

polynomials. SIAM J. Math. Anal. 1982 13, 162–165. [CrossRef]
20. Caratelli, D.; Ricci, P.E. A note on integer powers of a Companion matrix and Applications. Tbilisi Math. J.

2020, to appear.
21. Krall, G. Meccanica Tecnica Delle Vibrazioni; Veschi: Roma, Italy, 1970; Volume I.
22. Fichera, G.; Sneider, M.A. Un problema di autovalori proposto da Alexander M. Ostrowski. Rend. Mat. 1975,

8, 201–224.
23. Natalini, P.; Noschese, S.; Ricci, P.E. An iterative method for computing the eigenvalues of second kind

Fredoholm operators and applications. Electron. Trans. Numer. Anal. 1999, 9, 128–136.
24. Belingeri, C.; Germano, B. Numerical approximation of eigenvalues for transverse vibrations of a

wedge-shaped beam. Appl. Math. Inf. Tbil. 1999, 4, 1–10.
25. Faà di Bruno, F. Théorie des Formes Binaires; Brero: Turin, Italy, 1876.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/1968431
http://dx.doi.org/10.3390/sym12060966
http://dx.doi.org/10.1080/16073606.1995.9631787
http://dx.doi.org/10.1090/S0025-5718-1975-0383117-3
http://dx.doi.org/10.1016/0022-1236(87)90094-2
http://dx.doi.org/10.1080/00029890.1980.11995156
http://dx.doi.org/10.1016/0001-8708(78)90087-7
https://doi.org/10.1007/978-94-010-2196-8
http://dx.doi.org/10.1137/0513012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Recalling the Bell Polynomials
	An Extension of the Newton–Girard Formulas
	Orthogonal Invariants of PCO and Robert's Formulas
	Orthogonal Invariants' Reduction Formulas
	Matrix Functions
	Approximation of a Strictly PCO
	Numerical Examples
	Kernels of Positive Compact Operators
	Example 1
	Example 2

	Kernels of Inverse of Differential PCO
	Example 3
	Example 4


	Conclusions
	References

