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Abstract: The paper is devoted to solutions of the third order pseudo-elliptic type equations.
An energy estimates for solutions of the equations considering transformation’s character of the body
form were established by using of an analog of the Saint-Venant principle. In consequence of this
estimate, the uniqueness theorems were obtained for solutions of the first boundary value problem
for third order equations in unlimited domains. The energy estimates are illustrated on two examples.
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1. Introduction

In the 19th century, A.J.C. Barré de Saint-Venant studied the planar theory of elasticity.
His principle is expressed as a prior estimate for a solution of a biharmonic equation satisfying
homogeneous boundary conditions of the first boundary value problem in the part of the domain
boundary (c.f., [1,2]). Many recent recent results are inspired by Saint-Venant principle (c.f., [3–5] and
many others).

The energetic estimates were received first in [6,7]. These estimates do not take into account
character of transformation of the body form at moving off from those part of the bound where exterior
forces are applied. In the paper [8], a proof of the Saint-Venant principle in the planar theory of elasticity
was obtained by different way. The energetic estimate was gained in the connection considered character
of transformation of the body form. The uniqueness theorem for the first boundary value problem of
the planar theory of elasticity in unlimited domains and also Pharagmen–Lindelöf type theorems were
obtained as a corollary of the energetic estimate. The proofs of the Pharagmen–Lindelöf type theorems
were done for equations of the theory of elasticity in [9] and for elliptic equations of higher order in the
papers [2,6,7,10–14]. The Saint-Venant principle for a cylindrical body was studied in [15].

Boundary value problems have applications in fluid dynamics, astrophysics, hydrodynamic,
hydromagnetic stability, astronomy, beam and long wave theory, induction motors, engineering,
and applied physics. Boundary value problems of higher order is studied in papers [16,17].
An overview of some results on the class of functions with subharmonic behaviour and their invariance
properties under conformal and quasiconformal mappings is presented in [18].

An analog of the Saint-Venant principle, uniqueness theorems in unlimited domains,
and Pharagmen–Lindelöf type theorems in the theory of elasticity were derived for the system
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of equations in the case of space with boundary conditions of the first boundary value problem
(c.f., [19,20]). Similar results were obtained for the mixed problems in [21].

We shall note else work [12,22], which by means of principle Saint-Venant’s is studied asymptotic
characteristic of the solutions of the third order equations of the composite type and dynamic systems.

Boundary value problems have applications in fluid dynamics, astrophysics, hydrodynamic,
hydromagnetic stability, astronomy, beam and long wave theory, induction motors, engineering,
and applied physics.

2. Notations and Formulation of the Problem

Consider in the unlimited domain Q the equation

L0lu + L1u + Mu = f (x, y, t) (1)

where
lu = ut + αk(x)uxk + α0(x)u, L1u = bij(x)uxixj + bi(x)uxi ,

Lou = ut − aij(x)uxixj + ai(x)uxi + a0(x)u,

Mu = cpq(x)uypyq + cp(x)uyp + c0(x)u.

We suppose here and later on that the summation is carried out by repeating indexes,
all coefficients in (1) and their derivatives are bounded and measurable in any finite subdomain
of the domain Q. Furthermore, we suppose that boundary of Q is smooth or piecewise-smooth.
We assume that the operators Lo, M are uniformly elliptic, i.e.,

aij = aji, λ0|ξ|2 ≤ aijξiξ j ≤ λ1|ξ|2, for all (x, y, t) ∈ Q ∪ ∂Q, for all ξ ∈ Rn+m+1

cpq = cqp, µ0|ξ|2 ≤ aijξiξ j ≤ µ1|ξ|2, for all (x, y, t) ∈ Q ∪ ∂Q, for all ξ ∈ Rn+m+1. (2)

Let G = D×Ω and ν(x) = (νx1 , . . . , νxn , νy1 , . . . , νym , νt) is a vector of the inner normal of Q in the
point (x, y, t).

We break up the bound of Q. Denote

σ0 = {(x, y, t) ∈ ∂G× (0, T) : αkνk = 0},

σ1 = {(x, y, t) ∈ ∂G× (0, T) : αkνk > 0},

σ2 = {(x, y, t) ∈ ∂G× (0, T) : αkνk < 0},

Consider in Q the boundary value problem

L0lu + L1u + Mu = f (x, y, t),

u|∂Q = 0, αkuxk |σ2 = 0. (3)

Define the operator d:

du = (bij + αkaij
xk − α0aij + aij

t )uxixj + (bi + α0ai − αiak
xk
+ αia0 − ai

t)uxi + (a0t − α0a0)u ≡

dijuxixj + diuxi + du.

Assume that the condition

dij = dji, γ0|ξ|2 ≤ dijξiξ j ≤ γ1|ξ|2, for all (x, y, t) ∈ Q ∪ ∂Q, for all ξ ∈ Rn+m+1 (4)

holds.
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Let
Qτ = Q ∩ {(x, y, t) : 0 < y1 < τ}, ∂Gτ = ∂G ∩ {y : 0 < y1 < τ},

σ0,τ = {(x.y.t) ∈ ∂Gτ × (0, T) : αkνk = 0},

σ1,τ = {(x, y, t) ∈ ∂Gτ × (0, T) : αkνk > 0},

σ2,τ = {(x, y, t) ∈ ∂Gτ × (0, T) : αkνk < 0}.

For some h > 0, define

σ2,h,τ = {(x, y, t) ∈ σ2,τ : ρ((x, y, t), ∂σ2,τ) > h}, σh
2,τ = σ2,τ \ σ2,h,τ .

Let E(Qτ) be a set of functions υ ∈ C2 (Qτ

)
such that υ = 0 in ∂Gτ × (0, T) and αkυxk = 0 on

σ0,τ ∪ σ1,τ ∪ σh
2,τ for some h > 0.

We denote as H(Qτ) the Hilbert space obtained by closing E(Qτ) with respect to the norm

‖u‖H(Qτ) =


∫

Qτ

(
dij

1 uxi uxj + uyp uyq + u2
t + u2

)
dx dy dt−

∫
σ2,τ

αkνkaijuxi uxj ds


1
2

,

where
dij

1 = −1
2

αjaij
xj −

1
2

aij
t + αjai + dij − 1

2λ0
aij,

dij
1 = dji

1 , β0|ξ|2 ≤ dij
1 ξiξ j ≤ β1|ξ|2, for all (x, y, t) ∈ Q ∪ ∂Q, for all ξ ∈ Rn+m+1.

Now consider bilinear form

a(u, υ) =
∫

Qτ

[
αkaijuxi υxjxk + aijuxi υxjt +

(
αkaij

xj − αiak
)

uxi υxj+

dijuxi υxj +
(

di − dij
xj

)
uυxi +

(
aij

xi + ai + αi
)

uxi υt + cpquyp υyq +
(

cp − cpq
yq

)
uυyp+

utυt + (α0 + a0) uυt +
(

cp
yp − c0 − cpq

ypyq + d + di
xi
+ dij

xixj

)
uυ dx dy dt.

Definition 1. If u(x, y, t) ∈ H(Qτ) for any τ < +∞ and

a(u, υ) =
∫

Qτ

f υ dx dy dt (5)

for an arbitrary function υ ∈ E(Qτ), υ|Sτ
= 0 where Sτ = Q ∩ {(x, y, t) : y1 = τ}, then the function

u(x, y, t) is said to be a generalized solution of the problem (1),(3) in the domain Q.

3. Energy Inequalities

Theorem 1. (Analog of the Saint-Venant principle)
Let −1 ≤ aij

xi + ai + a0 ≤ 0; θ ≡ d0 − 1
2 dij

xixj +
1
2 di

xi
− 1

2 cpq
ypyq + 1

2 cp
yp − c0 ≤ θ0 <

0, for all (x, y, t) ∈ Q ∪ ∂Q.
If u(x, y, t)is generalized solution of the problem (1), (3) and f (x, y, t) = 0 at y1 ≤ τ2, then for any τ1

such that 0 ≤ τ1 ≤ τ2, takes place∫
Qτ1

E(u)dx dy dt ≤ Φ−1(τ1, τ2)
∫

Qτ2

E(u)dx dy dt (6)

where E(u) = dijuxi uxj + cpquyp uyq + u2
t − θu2.
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Here Φ(τ, τ2) is a solution of the problem

Φ′ = −µ(τ)Φ, τ1 ≤ τ ≤ τ2,

Φ(τ2, τ2) = 1,
(7)

µ(τ) is an arbitrary continuous function such that

0 < µ(τ) ≤ inf
N


∫
Sτ

E(υ)dx dy′ dt

∣∣∣∣∣∣
∫
Sτ

P(υ)dx dy′ dt

∣∣∣∣∣∣
−1
 , (8)

y′ = (y2, y3, . . . , ym),

P(υ) = −cp1υυyp +
1
2

(
c1 − c1q

yq

)
υ2, (9)

N is the set of continuously differentiable functions in the neighborhood of Sτ which are equal to zero in
Sτ ∩ (∂Gτ × (0, T)) .

Proof. Assume in (5) υ = um(Ψ(y1)− 1) where Ψ(y1) = Φ(τ1, τ2) if 0 ≤ y1 ≤ τ1, Ψ(y1) = Φ(y1, τ2) if
τ1 ≤ y1 ≤ τ2, and Ψ(y1) = 1 if τ2 ≤ y1.

um ∈ E(Qτ), ‖um − u‖H(Qτ) → 0, u ∈ H(Q).

Then
a(u− um + um, um(Ψ− 1)) = 0 in Qτ2 .

Therefore
a(um, um(Ψ− 1)) = δm in Qτ2 (10)

where δm = −a(u− um, um(Ψ− 1)).
It is obvious that δm → 0 at m→ +∞. Integrating by parts (10), we have∫

Qτ2

E(um)(Ψ− 1)dx dy dt ≤
∫

Qτ2

P(um)Ψ′dx dy dt + δm.

Hence ∫
Qτ2

E(um)(Ψ− 1)dx dy dt ≤
∫

Qτ2\Qτ1

P(um)µΨdx dy dt + δm. (11)

The estimation (6) follows from (8) and (11) at m→ +∞.

Now we will estimate µ(y1) in case when Sτ can be included to the (n + m)-dimensional
parallelepiped which smallest edge is equal to λ(τ). Suppose that

max
Sτ

{(
1
2

c1 − c1q
yq

)
, 0
}

= γ(τ), max
Sτ

cp1 = β(τ).

Applying the Friedreich and Cauchy–Bunyakovsky inequalities, we have from (9)∣∣∣∣∣∣
∫
Sτ

P(υ)dx dy′ dt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
Sτ

cp1υυyp dx dy′ dt

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
Sτ

1
2

(
c1 − c1q

yq

)
υ2dx dy′ dt

∣∣∣∣∣∣ ≤
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β(τ)

∫
Sτ

υ2dx dy′ dt

 1
2
∫

Sτ

υ2
yp dx dy′ dt

 1
2

+ γ(τ)
∫
Sτ

υ2dx dy′ dt ≤

(
β(τ)λ(τ)

πγ0
+

γ(τ)λ2(τ)

π2γ0

) ∫
Sτ

E(υ)dx dy′ dt.

Therefore we can set

µ(τ) = π2γ0

(
πβ(τ)λ(τ) + λ2(τ)γ(τ)

)−1
.

If
(

c1 − 2c1q
yq

)
≤ 0 in Sτ , then γ(τ) = 0. Consequently

µ(τ) =
πγ0

β(τ)λ(τ)
. (12)

Example 1.

1. Let as y1 ≥ τ1 ≥ 0, the domain Q lies inside the rotation body |y′| ≤ M
2
(y1 + 1), i.e., λ(y1) ≤

M(y1 + 1), M > 0. We have from (15)

µ(y1) =
πc(y1)

M(y1 + 1)
, c(y1) =

d0

β(y1)
.

Suppose that c(x1) = c = const > 0.

In this case, from the inequality (6) we have

∫
Qτ1

E(u)dx dy dt ≤ Φ−1(τ1, τ2)
∫

Qτ2

E(u)dx dy dt ≤
(

τ1 + 1
τ2 + 1

)πc ∫
Qτ2

E(u)dx dy dt.

2. Consider an example of Q for which

λ(y1) ≤ πc
[
(y1 + 1)k−1

]−1
, k = const > 0.

It is clear that if k > 1, the domain Q is narrowing at x1 → +∞. If k = 1, then λ(x1) ≤ πc and this case
includes domains lying in the band with the width πc. If 0 < k < 1, then Q can be extended respectively
at x1 → +∞. For this kind of domains, we can assume

µ(y1) ≤ (y1 + 1)k−1.

Then the estimate (6) is valid for considered domains if

Φ−1(τ1, τ2) = 2 exp
[
−(τ2 + 1)k + (τ1 + 1)k

]
.

As a corollary of the Saint-Venant principle, we have the uniqueness theorem for the problem (1),
(3) in unlimited domain Q for classes of functions increasing in infinity depending from λ(τ).
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Theorem 2. Let f (x, y, t) = 0 in Q and conditions of theorem 1 hold. If u(x, y, t) is a generalized solution of
the problem (1), (3) in Q and for a sequence τm → +∞ at m→ +∞ and some r∗ = const > 0,∫

Qτm

E(u)dx dy dt ≤ ε(τm)Φ(r∗, τm) (13)

where ε(τm)→ 0 at τm → +∞, then u = 0 in Qr∗ .

Proof. We have from (6) considering (13)∫
Qr∗

E(u)dx dy dt ≤ Φ−1(r∗, τm)
∫

Qτ2

E(u)dx dy dt ≤ ε(τm)→ 0

at τm → +∞. Hence u = 0 in Ωd∗ .
Further for any fixed r1 > r∗, we have

Φ(r∗, τm) = e

τm∫
r∗

µ(s)ds
= e

τm∫
r1

µ(s)ds
e

r1∫
r∗

µ(s)ds
= cΦ(r1, τm)

Therefore∫
Qe1

E(u)dx dy dt ≤ Φ−1(r1, τm)
∫

Qτm

E(u)dx dy dt ≤ Φ−1(r1, τm)ε(τm)Φ(r∗, τm) =

c−1ε(τm)→ 0 as τm → +∞.

Hence, u = 0 in Qr1 . Since r1 was chosen arbitrary, u = 0 in Q.

4. Conclusions

In the present paper, the analogy of the Saint-Venant principle is established for the generalized
solution of the third order pseudoelliptical type equation. Furthermore, uniqueness theorems are
obtained for solutions of the first boundary value problem in classes of functions increasing in infinity
depending on the geometric characteristics of the domain Q = D×Ω× (0, T), were D ⊂ Rn

+ = {y :
y1 > 0}, Ω is bounded domain. Boundary value problems for the third order pseudoelliptical type
equations in bounded domains were considered in [13].

The main goal of our research on these problems consists of the following parts:

(1) Establish energy estimates (analogous to the Saint-Venant’s principle) that allow us to determine
the widest class of uniqueness of solutions to the problem depending on the geometric
characteristics of the domain.

(2) Construction of the solution of the problem under study on an unbounded domain in classes of
functions growing at infinity.

(3) Establish estimates for solutions of the problem and its derivatives at infinitely remote
boundary points.

The first part of our research on these problems is given in this paper. The remaining two parts
will be studied in the future, which will be performed on the basis of this paper. Therefore, the results
of this article are necessary and relevant for further qualitative research to solve third-order equations
in the vicinity of irregular boundary points.
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