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Abstract: In this paper, we introduce a fractional q-extension of the q-differential operator Dq−1

and prove some of its main properties. Next, fractional q-extensions of some classical q-orthogonal
polynomials are introduced and some of the main properties of the newly-defined functions are
given. Finally, a fractional q-difference equation of Gaussian type is introduced and solved by means
of the power series method.
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1. Introduction

Q-fractional calculus is the field of mathematical analysis which deals with the investigation
and applications of derivatives and integrals of arbitrary (real or complex) order (see [1–8] and
the references therein). It is an interesting topic having interconnections with various problems
in function theory, integral and differential equations, and other branches of analysis. It has been
continually developed, stimulated by ideas and results in various fields of mathematical analysis.
This is demonstrated by the many publications—hundreds of papers in the past years—and by the
many conferences devoted to the problems of fractional calculus.

A family {Pn(x)}, (n ∈ N := {0, 1, 2 . . . }, kn 6= 0) of polynomials of degree exactly n is a family
of classical q-orthogonal polynomials of the q-Hahn class if it is the solution of a q-differential equation
of the type

σ(x)DqD1/qPn(x) + τ(x)DqPn(x) + λnPn(x) = 0, (1)

where σ(x) = ax2 + bx + c is a polynomial of at most second order and τ(x) = dx + e is a polynomial
of first order. Here, The q-difference operator Dq is defined by

Dq f (x) =
f (x)− f (qx)
(1− q)x

, x 6= 0, q 6= 1,

and Dq f (0) := f ′(0) by continuity, provided f ′(0) exists.
The polynomial systems that are a solution of (1) form the q-Hahn tableau (see [9,10] and

the references therein). These systems are contained in the so-called Askey–Wilson scheme [11].
The following systems are members of the q-Hahn tableau: the Big q-Jacobi polynomials,
the q-Hahn polynomials, the Big q-Laguerre polynomials, the Little q-Jacobi polynomials,
the q-Meixner polynomials, the Quantum q-Krawtchouk polynomials, the q-Krawtchouk polynomials,
the Affine q-Krawtchouk polynomials, the Little q-Laguerre polynomials, the q-Laguerre
polynomials, the Alternative q-Charlier (also called q-Bessel) polynomials, the q-Charlier polynomials,
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the Al-Salam–Carlitz I polynomials, the Al-Salam–Carlitz II polynomials, the Stieltjes–Wigert
polynomials, the Discrete q-Hermite I polynomials, and the Discrete q-Hermite II polynomials.

In [12], the authors have defined some fractional extensions of the Jacobi polynomials from their
Rodrigues representation and provided several properties of these new functions. They introduced a
fractional version of the Gauss hypergeometric differential equation and used the modified power
series method to provide some of its solutions. Note that, very recently, these Jacobi functions were
used in [3] to provide new connection formulas for Jacobi polynomials. Note also that the previous
Jacobi functions contain ultraspherical, Chebyshev of first, second, third and fourth kinds and Legendre
functions as special cases.

In [13], the authors defined the C-Laguerre functions from the Rodrigues representation of the
Laguerre polynomials by replacing the ordinary derivative by a fractional type derivative, then they
gave several properties of the new defined functions.

In this work, we introduce a new q-differential operator of fractional order and use it to
introduce the Little q-Jacobi, the Little q-Laguerre and the q-Laguerre functions. The hypergeometric
representations of the new defined functions are given and the limit transitions are provided. Note that
we obtained the results for the Big q-Jacobi, the Big q-Laguerre, the Big q-Legendre, the Al-Salam
Carlitz-I and II and the Stieltjes–Wigert polynomials but did not include them because they are not of
nice form.

The paper is organised as follows:

1. In Section 2, we present the preliminary results and definitions that are useful for a better reading
of this manuscript.

2. In Section 3, we introduce the fractional q-calculus
3. In Section 4, we introduce a new fractional q-differential operator Dα

q−1 and apply it to
some functions,

4. In Section 5, fractional q-extensions of some q-orthogonal polynomials are given and their basic
hypergeometric representation provided. We prove for some of these new defined functions some
limit transitions.

5. In Section 6, we introduce a fractional q-extension of the q-hypergeometric q-difference equation
and provide some of its solution.

2. Preliminary Definitions and Results

This section contains some preliminary definitions and results that are useful for a better reading
of the manuscript. The q-hypergeometric series, a fractional q-derivative and fractional q-integral
are defined. The reader will consult the References [4,6,11,14] for more informations about these
concepts and some applications.

Definition 1 (See [11]). The basic hypergeometric or q-hypergeometric series rφs is defined by the series

rφs

(
a1, · · · , ar

b1, · · · , bs

∣∣∣∣∣ q; z

)
:=

∞

∑
n=0

(a1, · · · , ar; q)n

(b1, · · · , bs; q)n

(
(−1)nq(

k
2)
)1+s−r zn

(q; q)n
,

where
(a1, · · · , ar)n := (a1; q)n · · · (ar; q)n,

with

(ai; q)n =


n−1
∏
j=0

(1− aiqj) if n = 1, 2, 3, · · ·

1 if n = 0
.

For n = ∞ we set

(a; q)∞ =
∞

∏
n=0

(1− aqn), |q| < 1.
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The notation (a; q)n is the so-called q-Pochhammer symbol.

From the definition of (a; q)∞, it follows that for 0 < |q| < 1, and for a nonnegative integer n,
we have

(a; q)n =
(a; q)∞

(aqn; q)∞
.

Definition 2 (See [11]). For any complex number λ,

(a; q)λ =
(a; q)∞

(aqλ; q)∞
, 0 < |q| < 1,

where the principal value of qλ is taken.

We will also use the following common notations

[a]q =
1− qa

1− q
, a ∈ C, q 6= 1,

[
n
m

]
q
=

(q; q)n

(q; q)m(q; q)n−m
, 0 ≤ m ≤ n,

and
(x	 y)n

q = (x− y)(x− qy) · · · (x− qn−1y).

called the q-bracket and the q-binomial coefficients and the q-power respectively.

Proposition 1 ([11], Page 16). The basic hypergeometric series fulfil the following identities

1φ0

(
a

−

∣∣∣∣∣ q; z

)
=

∞

∑
n=0

(a; q)n

(q; q)n
zn =

(az; q)∞

(z; q)∞
, 0 < |q| < 1, |z| < 1, (2)

1φ1

(
a

c

∣∣∣∣∣ c
a

)
=

(c/a; q)∞

(c; q)∞
, 0 < |q| < 1. (3)

Relation (2) is the so-called q-binomial theorem.
The next proposition gives some important Heine transformation formulas for basic

hypergeometric series.

Proposition 2 ([15], p. 10). The following transformation formulas hold

2φ1

(
a, b

c

∣∣∣∣∣ z

)
=

(az, b; q)∞

(c, z; q)∞
2φ1

(
c/b, z

az

∣∣∣∣∣ q; b

)
, |z| < 1, (4)

2φ1

(
a, b

c

∣∣∣∣∣ q; z

)
=

(abz/c; q)∞

(z; q)∞
2φ1

(
c/a, b/a

c

∣∣∣∣∣ q; abz/c

)
, (5)

2φ1

(
a, b

c

∣∣∣∣∣ z

)
=

(az; q)∞

(z; q)∞
2φ2

(
a, c/b

c, az

∣∣∣∣∣ bz

)
, |z| < 1,

2φ1

(
a, b

0

∣∣∣∣∣ z

)
=

(az; q)∞

(z; q)∞
1φ1

(
a

az

∣∣∣∣∣ q; bz

)
, |z| < 1. (6)

Proposition 3 ([16]). The q-hypergeometric q-difference equation

z(qc − qa+b+1z)(D2
qu)(z) +

(
[c]q − (qb[a]q + qa[b + 1]q)z

)
(Dqu)(z)− [a]q[b]qu(z) = 0 (7)
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has particular solutions

u1(z) = 2φ1

(
qa, qb

qc

∣∣∣∣∣ q; z

)
, and u2(z) = z1−c

2φ1

(
q1+a−c, q1+b−c

q2−c

∣∣∣∣∣ q; z

)
.

Definition 3 (See [11]). The q-Gamma function is defined by

Γq(x) :=
(q; q)∞

(qx; q)∞
(1− q)1−x, 0 < q < 1. (8)

Remark 1. From Definition 2, the q-Gamma function is also represented by

Γq(x) = (1− q)1−x(q; q)x−1.

Note also that the q-Gamma function satisfies the functional equation

Γq(x + 1) = [x]qΓq(x), with Γq(1) = 1.

Note that for arbitrary complex α,[
α

k

]
q
=

(q−α; q)k
(q; q)k

(−1)kqαk−(k
2) =

Γq(α + 1)
Γq(k + 1)Γq(α− 1)

. (9)

The exponential function has two different natural q-extensions, denoted by eq(z) and Eq(z),
which can be defined by

eq(z) := 1φ0

(
0

−

∣∣∣∣∣ q; z

)
=

∞

∑
n=0

zn

(q; q)n
=

1
(z; q)∞

, 0 < |q| < 1, |z| < 1, (10)

and

Eq(z) := 0φ0

(
−
−

∣∣∣∣∣ q,−z

)
=

∞

∑
n=0

q(
n
2)

(q; q)n
zn = (−z; q)∞, 0 < |q| < 1. (11)

These q-analogues of the exponential function are clearly related by

eq(z)Eq(−z) = 1.

Corollary 1. The following expansions apply.

eq(αz)
eq(βz)

=
∞

∑
n=0

(βα−1; q)n

(q; q)n
(αz)n = 1φ0

(
βα−1

−

∣∣∣∣∣ q; αz

)
;

eq(αz)
Eq(βz)

=
∞

∑
n=0

[
n

∑
k=0

[
n
k

]
q

(
− α

β

)k
]
(−βz)n

(q; q)n
.

Next, we recall some basic knowledge about fractional q-calculus. The usual starting point
for a definition of fractional operators in q-calculus taken in [1,2,7,8,17], is the q-analogue of the
Riemann–Liouville fractional integral

Iα
q f (z) =

zα−1

Γq(α)

∫ z

0
(tq/z; q)α−1 f (t)dqt =

1
Γq(α)

∫ z

0
(z	 qt)α−1

q f (t)dqt. (12)
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This q-integral was motivated from the q-analogue of the Cauchy formula for a repeated q-integral

In
q,a f (z) =

∫ z

a
dqt

∫ t

a
dqtn−1

∫ tn−1

a
dqtn−2 · · ·

∫ t2

a
f (t1)dqt1 (13)

=
zn−1

[n− 1]q!]

∫ z

0
(tq/z; q)n−1 f (t)dqt.

The reduction of the multiple q-integral to a single one was considered by Al-Salam in [18]. In [8],
the authors allow the lower parameter in (12) to be any real number a ∈ (0, z). There are several
definitions of the fractional q-integral and fractional q-derivatives. We adopt in this work the definition
of the fractional q-integral given in [7].

Definition 4 (See [7]). The fractional q-integral is

(Iα
q,c f )(x) =

xα−1

Γq(α)

∫ x

c
(qt/x; q)α−1 f (t)dqt =

1
Γq(α)

∫ x

c
(x	 qt)α−1

q f (t)dqt, (α ∈ R+).

In [7], it is proved that for α ∈ R+, λ, λ + α ∈ R \ {−1,−2, · · · }, equation is valid:

Iα
q,c(x	 c)λ

q =
Γq(λ + 1)

Γq(α + λ + 1)
(x	 c)α+λ

q , (0 < c < x). (14)

Definition 5 (See [7]). The fractional q-derivative of Riemann–Liouville type of order α ∈ R+ is

(Dα
q,c f )(x) = (Ddαeq Idαe−α

q,c f )(x), (15)

where dαe denotes the smallest integer greater or equal to α.

Mahmoud Annaby and Zeinab Mansour ([17], p. 148) prove that the Riemann–Liouville fractional
operator Dα

q,0 coincides with a q-analogue of the Grünwald Letnikov fractional operator defined by

(Dα
q f )(x) =

1
xα(1− q)α

∞

∑
n=0

(−1)n
[

α

n

]
q

f (qnx)

q
n(n−1)

2 +n(α−n)

=
1

xα(1− q)α

∞

∑
n=0

(q−α; q)n

(q; q)n
qn f (qnx). (16)

3. More q-Fractional Operator

Since many Rodrigues-type formulas for some of the orthogonal polynomials of the q-Hahn class
are expressed in terms of the q-operator Dq−1 instead of Dq, and since our new functions are defined
using the Rodrigues-type formula of each family, there is a need to develop a fractional calculus
for Dq−1 . The more natural way to do it is to start by the power derivative of Dq−1 . The following
proposition (see [19]) gives the result.

Proposition 4 (See [19]). Let n ∈ N0 and f a given function defined on {qk, k ∈ Z}. Then the following
power derivative rule for Dq−1 applies

Dn
q−1 f (x) =

q(
n+1

2 )

(1− q)nxn

n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2)−(n−1)k f (qk−nx). (17)
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Proof. This proof is also from [19]. The result is clear for n = 0. Assume the assertion is true for
n ≥ 0, then:

Dn+1
q−1 f (x) =

q(
n+1

2 )

(1− q)n Dq−1

(
x−n

n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2)−(n−1)k f (qk−nx)

)

=
q(

n+1
2 )

(1− q)n
q

(1− q)x

(
x−n

n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2)−(n−1)k f (qk−nx)

−qnx−n
n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2)−(n−1)k f (qk−n−1x)

)

=
−q(

n+1
2 )qn+1

(1− q)n+1xn+1

(
n+1

∑
k=1

(−1)k+1
[

n
k− 1

]
q
q(

k−1
2 )−(n−1)(k−1)−n f (qk−n−1x)

−
n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2)−(n−1)k f (qk−n−1x)

)

=
q(

n+2
2 )

(1− q)n+1xn+1

(
n+1

∑
k=1

(−1)k
[

n
k− 1

]
q
q(

k−1
2 )−(n−1)(k−1)−n f (qk−n−1x)

−
n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2)−(n−1)k f (qk−n−1x)

)

=
q(

n+2
2 )

(1− q)n+1xn+1

n

∑
k=0

(−1)k
[

n + 1
k

]
q
q(

k
2)−nk f (qk−n−1x).

Note that, using the obvious relation
[

n
k

]
q
=

[
n

n− k

]
q
, and reversing the order of summation,

(17) reads

Dn
q−1 f (x) =

q(
n+1

2 )

(1− q)nxn

n

∑
k=0

(−1)n−k
[

n
n− k

]
q
q(

n−k
2 )−(n−1)(n−k) f (xq−k)

=
q(

n+1
2 )

(q− 1)nxn

n

∑
k=0

(−1)k
[

n
k

]
q
q(

n−k
2 )−(n−1)(n−k) f (xq−k).

Next, using the fact that(
n− k

2

)
− (n− 1)(n− k) =

(n− k)(n− k− 1)− 2(n− 1)(n− k)
2

= −
(

n
2

)
+

(
k
2

)
,

we get

Dn
q−1 f (x) =

q(
n+1

2 )

(q− 1)nxn

n

∑
k=0

(−1)k
[

n
k

]
q
q−(

n
2)+(k

2) f (xq−k)

=
qn

(q− 1)nxn

n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2) f (xq−k). (18)

Remark 2 (See [19,20]). It is known that

Dn
q f (x) =

1
(1− q)nxn

n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2)−(n−1)k f (qkx). (19)
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Note that replacing q by q−1 in (19), it follows that

Dn
q−1 f (x) =

1
(1− q−1)nxn

n

∑
k=0

(−1)k
[

n
k

]
q−1

q−(
k
2)−(n−1)k f (q−kx)

=
qn

(q− 1)nxn

n

∑
k=0

(−1)k
[

n
k

]
q−1

q−(
k
2)−(n−1)k f (q−kx).

Taking care that

[n]q−1 =
1− q−n

1− q−1 =
1

qn−1 [n]q,

it follows that
[n]q−1 ! = q−(

n
2)[n]q!,

and so we get [
n
k

]
q−1

=
q−(

n
2)[n]q!

q−(
k
2)[k]q!q−(

n−k
2 )[n− k]q!

= q(
k
2)+(n−k

2 )−(n
2)

[
n
k

]
q
.

Now, we can write

Dn
q−1 f (x) =

1
(1− q−1)nxn

n

∑
k=0

(−1)kq(
k
2)+(n−k

2 )−(n
2)

[
n
k

]
q
q−(

k
2)−(n−1)k f (q−kx)

=
qn

(q− 1)nxn

n

∑
k=0

(−1)k
[

n
k

]
q
q(

n−k
2 )−(n

2)−(n−1)k f (q−kx)

=
qn

(q− 1)nxn

n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2)−2(n

2)+(n−1)(n−k)−(n−1)k f (q−kx)

=
qn

(q− 1)nxn

n

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2) f (xq−k).

This is exactely another way to write the result (17) obtained in [19] thanks to (18).

We are about to define a fractional extension of Dq−1 . Since
[

n
k

]
q
= 0 for k > n, we can write (18) as

Dn
q−1 f (x) =

qn

(q− 1)nxn

∞

∑
k=0

(−1)k
[

n
k

]
q
q(

k
2) f (xq−k). (20)

We extend Equation (20) to any arbitrary complex number α, Dα
q−1 in the following way:

Dα
q−1 f (x) =

qα

(q− 1)αxα

∞

∑
k=0

(−1)k
[

α

k

]
q
q(

k
2) f (xq−k),

provided that the infinite series of the right hand side converges. Now, using Equation (9), we obtain

Dα
q−1 f (x) =

qα

(q− 1)αxα

∞

∑
k=0

(−1)k (q
−α; q)k
(q; q)k

(−1)kqαk−(k
2)q(

k
2) f (xq−k)

=
qα

(q− 1)αxα

∞

∑
k=0

(q−α; q)k
(q; q)k

qαk f (xq−k).

We then set the following definition.
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Definition 6. For any complex number α, we define the fractional operator Dα
q−1 by

Dα
q−1 f (x) =

qα

(q− 1)αxα

∞

∑
k=0

(q−α; q)k
(q; q)k

qαk f (xq−k), (21)

provided that the right hand side of (21) converges.

Note also that we could use directly (17) to write

?Dα
q−1 f (x) =

q
α(α−1)

2

(1− q)αxα

∞

∑
k=0

(−1)k
[

α

k

]
q
q(

k
2)−(α−1)k f (qk−αx)

=
q

α(α−1)
2

(1− q)αxα

∞

∑
k=0

(−1)k (q
−α; q)k
(q; q)k

(−1)kqαk−(k
2)q(

k
2)−(α−1)k f (qk−αx)

=
q

α(α−1)
2

(1− q)αxα

∞

∑
k=0

(q−α; q)k
(q; q)k

qk f (qk−αx),

which may be looked as another fractional extension of Dq−1 .

Proposition 5. For α ∈ R \ {1, 2, 3, · · · }, the following derivative rule applies

Dλ
q−1 xα =


qλ

(q− 1)λ

(q−α; q)∞

(qλ−α; q)∞
xα−λ, if α− λ ∈ R \N

0, if α− λ ∈ N
. (22)

Proof. From (21), we get

Dλ
q−1 xα =

qλ

(q− 1)λxλ

∞

∑
k=0

(q−λ; q)k
(q; q)k

qλk(xq−k)α

=
qλxα

(q− 1)λxλ

∞

∑
k=0

(q−λ; q)k
(q; q)k

q(λ−α)k

=
qλ

(q− 1)λ
xα−λ

1φ0

(
q−λ

−

∣∣∣∣∣ q; qλ−α

)

=
qλ

(q− 1)λ

(q−α; q)∞

(qλ−α; q)∞
xα−λ.

Before we state the semi-group property of the operator Dα
q−1 , we state the following summation

results that will be useful for the proof.

Lemma 1. (See [14], Lemma 10) The following relation applies:

∞

∑
n=0

∞

∑
k=0

A(k, n) =
∞

∑
n=0

n

∑
k=0

A(k, n− k). (23)

Lemma 2. (See [15], Exercise 1.3) The following multiplication formula holds true

(ab; q)n =
n

∑
k=0

[
n
k

]
q
bk(a; q)k(b; q)n−k =

n

∑
k=0

[
n
k

]
q
an−k(a; q)k(b; q)n−k.
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Using Lemmas 1 and 2 and the definition of Dλ
q−1 , we prove the following proposition.

Proposition 6 (Semi-group property). The following equation applies

Dα
q−1 Dβ

q−1 f (x) = Dα+β

q−1 f (x). (24)

Proof. We have

Dβ

q−1 Dα
q−1 f (x) = Dβ

q−1

[
Dα

q−1 f (x)
]

=
qα

(q− 1)α
Dβ

q−1

[
1
xα

∞

∑
k=0

(q−α; q)k
(q; q)k

qαk f (xq−k)

]

=
qα

(q− 1)α

qβ

(q− 1)βxβ

∞

∑
n=0

(q−β; q)n

(q; q)n
qβn

(
1

(xq−n)α

∞

∑
k=0

(q−α; q)k
(q; q)k

qαk f (xq−n−k)

)

=
qα+β

(q− 1)α+βxα+β

∞

∑
n=0

∞

∑
k=0

(q−β; q)n

(q; q)n

(q−α; q)k
(q; q)k

qα(n+k)qβn f (xq−n−k)

=
qα+β

(q− 1)α+βxα+β

∞

∑
n=0

(
n

∑
k=0

(q−β; q)n−k
(q; q)n−k

(q−α; q)k
(q; q)k

q−βk

)
q(α+β)n f (xq−n)

=
qα+β

(q− 1)α+βxα+β

∞

∑
n=0

(q−(α+β); q)n

(q; q)n
q(α+β)n f (xq−n) = Dα+β

q−1 f (x).

This proves the proposition.

4. Fractional q-Extensions of Some q-Orthogonal Polynomials

In this section we introduce some fractional q-extensions of some orthogonal polynomials of
the q-Hahn class. The families that are of interest here are those which use Dq and Dq−1 in their
Rodrigues representations.

4.1. The Little q-Jacobi Functions

The Little q-Jacobi polynomials have the q-hypergeometric representation ([11], p. 482)

pn(x; a, b|q) = 2φ1

(
q−n, abqn+1

aq

∣∣∣∣∣ q; qx

)
.

They can also be represented by the Redrigues-type formula

w(x; α, β; q)pn(x; qα, qβ|q) = qnα+(n
2)(1− q)n

(qα+1; q)n
Dn

q−1 [w(x; α + n, β + n; q)],

where

w(x; α, β; q) =
(qx; q)∞

(qβ+1x; q)∞
xα.

Definition 7. Let λ ∈ R, we define the fractional Little q-Jacobi functions by

Pλ(x; qα, qβ|q) = qλα+ λ(λ−1)
2 (1− q)λ

w(x; α, β; q)(qα+1; q)λ
Dλ

q−1 [w(x; α + λ, β + λ; q)]. (25)
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Proposition 7. The fractional Little q-Jacobi functions defined by relation (25) have the following basic
hypergeometric representation

Pλ(x; qα, qβ|q) = (−1)λqλα+ λ(λ+1)
2

(q−(α+λ); q)∞

(qα+1; q)λ(q−α; q)∞
2φ1

(
q−λ, qα+β+λ+1

qα+1

∣∣∣∣∣ q; qx

)
.

Proof. Applying the q-binomial theorem (2), we have

w(x; α, β; q) = xα (qx; q)∞

(qβ+1x; q)∞

=
∞

∑
n=0

(q−β; q)n

(q; q)n
qn(β+1)xn+α.

Thus,

w(x; α + λ, β + λ; q) =
∞

∑
n=0

(q−(β+λ); q)n

(q; q)n
qn(β+λ+1)xn+α+λ.

Hence,

Dλ
q−1 [w(x; α + λ, β + λ; q)]

=
∞

∑
n=0

(q−(β+λ); q)n

(q; q)n
qn(β+λ+1)Dλ

q−1

[
xn+α+λ

]
=

qλ

(q− 1)λ

∞

∑
n=0

(q−(β+λ); q)n

(q; q)n

(q−nq−(α+λ); q)∞

(q−nq−α; q)∞
qn(β+λ+1)xn+α.

Using the fact that

(aq−n; q)∞ = (−a)n(a−1q; q)nq−(
n+1

2 )(a; q)∞,

we have
(q−nq−(α+λ); q)∞

(q−nq−α; q)∞
=

(q−(α+λ); q)∞

(q−α; q)∞

(qα+λ+1; q)n

(qα+1; q)n
q−λn.

Whence

Dλ
q−1 [w(x; α + λ, β + λ; q)]

=
qλxα

(q− 1)λ

(q−(α+λ); q)∞

(q−α; q)∞

∞

∑
n=0

(q−(β+λ); q)n

(q; q)n

(qα+λ+1; q)n

(qα+1; q)n
qn(β+1)xn

=
qλxα

(q− 1)λ

(q−(α+λ); q)∞

(q−α; q)∞
2φ1

(
q−(β+λ), qα+λ+1

qα+1

∣∣∣∣∣ q; xqβ+1

)
.

Now, applying the Heine–Euler transformation formula (5), we have

2φ1

(
q−(β+λ), qα+λ+1

qα+1

∣∣∣∣∣ q; xqβ+1

)
=

(qx; q)∞

(qβ+1; q)∞
2φ1

(
q−λ, qα+β+λ+1

qα+1

∣∣∣∣∣ q; qx

)
.

So we have

Dλ
q−1 [w(x; α + λ, β + λ; q)]

w(x; α, β; q)
=

qλ

(q− 1)λ

(q−(α+λ); q)∞

(q−α; q)∞
2φ1

(
q−λ, qα+β+λ+1

qα+1

∣∣∣∣∣ q; qx

)
.
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We finally obtain

Pλ(x; qα, qβ; q) = (−1)λqλα+ λ(λ+1)
2

(q−(α+λ); q)∞

(qα+1; q)λ(q−α; q)∞
2φ1

(
q−λ, qα+β+λ+1

qα+1

∣∣∣∣∣ q; qx

)
.

Proposition 8. The following limit transition holds:

lim
λ→n

Pλ(x; qα, qβ; q) = pn(x; qα, qβ; q),

where n is a nonnegative integer.

Proof. It is not difficult to see that

lim
λ→n

(
(−1)λqλα+ λ(λ+1)

2
(q−(α+λ); q)∞

(qα+1; q)λ(q−α; q)∞

)

= (−1)nqnα+(n+1
2 ) (q−(α+n); q)∞

(qα+1; q)n(q−α; q)∞

= (−1)nqnα+(n+1
2 ) (−1)nq−αnq−(

n+1
2 )(qα+1; q)n(q−α; q)∞

(qα+1; q)n(q−α; q)∞
= 1,

so,
lim
λ→n

Pλ(x; qα, qβ; q) = pn(x; qα, qβ; q).

4.2. The Little q-Laguerre Functions

The Little q-Laguerre polynomials have the q-hypergeometric representation ([11], p. 518)

pn(x, a|q) = 2φ1

(
q−n, 0

aq

∣∣∣∣∣ q; qx

)
.

They can also be represented by the Rodrigues-type formula ([11], p. 520)

w(x; α; q)pn(x; qα; q) =
qnα+(n

2)(1− q)n

(qα+1; q)n
Dn

q−1 [w(x; α + n; q)],

with
w(x; α; q) = xα(qx; q)∞.

Definition 8. Let λ ∈ R, we define the fractional Little q-Laguerre functions by

Pλ(x; qα; q) =
qλα+(λ

2)(1− q)λ

w(x; α; q)(qα+1; q)λ
Dλ

q−1 [w(x; α + λ; q)]. (26)

Proposition 9. The fractional Little q-Laguerre functions defined by relation (26) have the following
representation

Pλ(x; qα|q) = (−1)λqλα+ λ(λ+1)
2

(q−(α+λ); q)∞

(qα+1; q)λ(q−α; q)∞
2φ1

(
q−λ, 0

qα+1

∣∣∣∣∣ qx

)
.
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Proof. It is easy to see that

w(x; α; q) = xα(qx; q)∞ =
∞

∑
n=0

q(
n+1

2 )

(q; q)n
(−1)nxn+α.

So,

w(x; α + λ; q) =
∞

∑
n=0

q(
n+1

2 )

(q; q)n
(−1)nxn+α+λ.

Thus, using the definitions of the fractional Little q-Laguerre functions and the fractional
q-derivative (21), combined with the transformations (4) and (6) we have:

Dλ
q−1 [w(x; α + λ; q)] =

∞

∑
n=0

q(
n+1

2 )

(q; q)n
(−1)nDλ

q−1 [xn+α+λ]

=
∞

∑
n=0

q(
n+1

2 )

(q; q)n
(−1)n qλ

(q− 1)λ

(q−nq−(α+λ); q)∞

(q−nq−α; q)∞
xn+α

=
xαqλ

(q− 1)λ

(q−(α+λ); q)∞

(q−α; q)∞

∞

∑
n=0

(qα+λ+1; q)n

(qα+1; q)n

(
(−1)nq(

n
2)
) (q1−λx)n

(q; q)n

=
xαqλ

(q− 1)λ

(q−(α+λ); q)∞

(q−α; q)∞
1φ1

(
qα+λ+1

qα+1

∣∣∣∣∣ q; xq−λ+1

)
(6)
=

xαqλ

(q− 1)λ

(q−(α+λ); q)∞

(q−α; q)∞

(q−λ; q)∞

(qα+1; q)∞
2φ0

(
qα+λ+1, qx

0

∣∣∣∣∣ q−λ

)
(4)
=

xα(qx; q)∞qλ

(q− 1)λ

(q−(α+λ); q)∞

(q−α; q)∞
2φ1

(
q−λ, 0

qα+1

∣∣∣∣∣ qx

)

= (−1)λqλα+ λ(λ+1)
2

(q−(α+λ); q)∞

(qα+1; q)λ(q−α; q)∞
2φ1

(
q−λ, 0

qα+1

∣∣∣∣∣ qx

)
.

Proposition 10. Let n be a nonnegative integer, then the following limit transition holds true

lim
λ→n

Pλ(x; qα; q) = pn(x; qα; q).

Proof. Since

lim
λ→n

(
(−1)λqλα+ λ(λ+1)

2
(q−(α+λ); q)∞

(qα+1; q)λ(q−α; q)∞

)

= (−1)nqnα+(n+1
2 ) (q−(α+n); q)∞

(qα+1; q)n(q−α; q)∞

= (−1)nqnα+(n+1
2 ) (−1)nq−αnq−(

n+1
2 )(qα+1; q)n(q−α; q)∞

(qα+1; q)n(q−α; q)∞
= 1,

we have, lim
λ→n

Pλ(x; qα; q) = pn(x; qα; q).
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4.3. The q-Laguerre Functions

The q-Laguerre polynomials have the q-hypergeometric representation ([11], p. 522)

L(α)
n (x; q) =

(qα+1; q)n

(q; q)n
1φ1

(
q−n

qα+1

∣∣∣∣∣ q;−qn+α+1x

)
.

They can also be represented by the Rodrigues-type formula ([11], p. 524)

w(x; α; q)L(α)
n (x; q) =

(1− q)n

(q; q)n
Dn

q [w(x; α + n; q)],

with
w(x; α; q) =

xα

(−x; q)∞
.

Definition 9. Let λ ∈ R, we define the fractional q-Laguerre functions by

Lα
λ(x; q) =

(1− q)λ (−x, ; q)∞
(q; q)λxα

Dλ
q

[
xα+λ

(−x; q)∞

]
. (27)

Proposition 11. The fractional q-Laguerre functions defined by relation (27) have the following basic
hypergeometric representation

Lα
λ(x; q) =

1
(q; q)λ

2φ1

(
q−λ,−x

0

∣∣∣∣∣ q; qα+λ+1

)

=
(qα+1; q)λ

(q; q)λ
1φ1

(
q−λ

qα+1

∣∣∣∣∣ q;−xqα+λ+1

)
.

Proof. From the definition of the q-exponential (10), it follows that

xα+λ

(−x; q)∞
= xα+λeq(−x) =

∞

∑
n=0

(−1)nxα+λ+n

(q; q)n
.

Then,

Dλ
q,0

[
xα+λ

(−x; q)∞

]
=

∞

∑
n=0

(−1)n

(q; q)n

Γq(α + λ + n + 1)
Γq(α + n + 1)

xα+n

= xα Γq(α + λ + 1)
Γq(α + 1)

∞

∑
n=0

(qα+λ+1; q)n

(q; q)n(qα+1; q)n
(−x)n

= xα Γq(α + λ + 1)
Γq(α + 1) 2φ1

(
0, qα+λ+1

qα+1

∣∣∣∣∣ q;−x

)

=
xα

(1− q)λ

(qα+1; q)∞

(qα+λ+1; q)∞
2φ1

(
0, qα+λ+1

qα+1

∣∣∣∣∣ q;−x

)
.

Using the Heine transformation (4), we have

2φ1

(
0, qα+λ+1

qα+1

∣∣∣∣∣ q;−x

)
=

(qα+λ+1; q)∞

(qα+1; q)∞(−x; q)∞
2φ1

(
q−λ;−x

0

∣∣∣∣∣ q; qα+λ+1

)
.
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Hence, we have

Dλ
q,0

[
xα+λ

(−x; q)∞

]
=

xα

(1− q)λ(−x; q)∞
2φ1

(
q−λ;−x

0

∣∣∣∣∣ q; qα+λ+1

)
.

Finally it follows that

L(α)
λ (x; q) =

1
(q; q)λ

2φ1

(
q−λ;−x

0

∣∣∣∣∣ q; qα+λ+1

)
.

Next, using the transformation formula (6) we get

1
(q; q)λ

2φ1

(
q−λ;−x

0

∣∣∣∣∣ q; qα+λ+1

)
=

1
(q; q)λ

(qα+1; q)∞

(qα+λ+1; q)∞
1φ1

(
q−λ

qα+1

∣∣∣∣∣ q;−xqα+λ+1

)

=
(qα+1; q)λ

(q; q)λ
1φ1

(
q−λ

qα+1

∣∣∣∣∣ q;−xqα+λ+1

)
.

This ends the proof of the proposition.

5. Fractional q-Gauss Differential Equation

In this section, we give a fractional version of the q-hypergeometric q-difference equation given
by Koorwinder in [16]. Next, we solve this fractional q-difference equation by means of modified
power series.

Definition 10. The fractional q-hypergeometric q-difference equation is defined for 0 < λ ≤ 1 by

zλ(qc − qa+b+1zλ)(D2λ
q u)(z)

+
(
[c]q − (qb[a]q + qa[b + 1]q)zλ

)
(Dλ

q u)(z)− [a]q[b]qu(z) = 0. (28)

Definition 11. The fractional q-Gauss function is defined as the series

2φ
µ
1

(
qa, qb

qc

∣∣∣∣∣ q; z

)
= u0zρ

∞

∑
n=0

n

∏
k=0

gq,k(ρ)

fq,k+1(ρ)
znλ, 0 < λ ≤ 1, (29)

where

fq,k(ρ) = qc Γq(1 + ρ + kλ)

Γq(1 + ρ + (k− 2)λ)
+ [c]q

Γq(1 + ρ + kλ)

Γq(1 + ρ + (k− 1)λ)
, (30)

gq,k(ρ) = qa+b+1 Γq(1 + ρ + kλ)

Γq(1 + ρ + (k− 2)λ)
(31)

+(qb[a]q + qa[b + 1]q)
Γq(1 + ρ + kλ)

Γq(1 + ρ + (k− 1)λ)
+ [a]q[b]q,

and ρ > −1 satisfies the equation

fq,0(ρ) =
Γq(1 + ρ)

Γq(1 + ρ− 2λ)
+ [c]q

Γq(1 + ρ)

Γq(1 + ρ− λ)
= 0. (32)

The following assertion is valid.
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Theorem 1. The fractional q-Gauss function (29) is a solution of the fractonal q-Gauss hypergeometric
Equation (28) where fq,k(ρ) and gq,k(ρ) are given by (30) and (31), repectively and ρ satisfies the condition (32).

Proof. We look for the solution under the following modified formal power series form

u(z) =
∞

∑
n=0

dnznλ+ρ.

Then,

Dλ
q u(z) =

∞

∑
n=0

dn
Γq(nλ + ρ + 1)

Γq((n− 1)λ + ρ + 1)
z(n−1)λ+ρ,

and

D2λ
q u(z) =

∞

∑
n=0

dn
Γq(nλ + ρ + 1)

Γq((n− 2)λ + ρ + 1)
z(n−2)λ+ρ.

Inserting these fractional q-derivatives in (28), we obtain the following recurrence relation for the
coefficients an,

fq,n(ρ)dn+1 − gq,n+1(ρ)dn = 0,

with fq,0(ρ) = 0, where fq,n(ρ) and gq,n(ρ) are given by (30) and (31) respectively. The theorem
follows easily.

6. Conclusions and Further Perspectives

In this work we have introduced a new fractional q-differential operator Dα
q−1 and have proved

some of its main important properties. Then, we have used it to extend some families of classical
q-orthogonal polynomials. We have also defined a fractional q-Gauss differential equation, extending
the one introduced by Koorwinder in [16], and solve them by means of the power series method.
It should be noted that we obtained the results the Big q-Jacobi, the Big q-Laguerre, the Big q-Legendre,
the Al-Salam Carlitz-I and II and the Stieltjes–Wigert polynomials but did not include them because
they are not of nice form.

As future works, we plan to provide similar extensions to classical orthogonal polynomials on
quadratic and q-quadratic lattices. To do it, it will be necessary to introduce new differential operators
of fractional order, namely, the Wilson operator [11,21]

D f (x) =
f (x + i/2)− f (x− i/2)

2ix

or the Askey–Wilson divided difference operator [11]

Dq f (x) =
f̂ (q1/2eiθ)− f̂ (q−1/2eiθ)

i(q1/2 − q−1/2) sin θ

with
f̂ (eiθ) = f (x), x = cos θ.

For these operators, the paper of Cooper [22] will help to define their fractional extensions.
This work is ongoing.
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