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Abstract: A number of applications from mathematical programmings, such as minimax problems,
penalization methods and fixed-point problems can be formulated as a variational inequality model.
Most of the techniques used to solve such problems involve iterative algorithms, and that is why,
in this paper, we introduce a new extragradient-like method to solve the problems of variational
inequalities in real Hilbert space involving pseudomonotone operators. The method has a clear
advantage because of a variable stepsize formula that is revised on each iteration based on the
previous iterations. The key advantage of the method is that it works without the prior knowledge
of the Lipschitz constant. Strong convergence of the method is proved under mild conditions.
Several numerical experiments are reported to show the numerical behaviour of the method.

Keywords: pseudomonotone mapping; subgradient extragradient method; strong convergence;
Hilbert spaces; variational inequality problems

1. Introduction

In this article, we consider the classic variational inequalities problems (VIPs) [1,2] for an operator
F : E → E is formulated in the following way:

Find u∗ ∈ K such that
〈
F (u∗), y− u∗

〉
≥ 0, ∀ y ∈ K, (1)

where K is a nonempty, convex and closed subset of a real Hilbert space E . The inner product and
induced norm on E are denoted by 〈., .〉 and ‖.‖, respectively. Moreover, the set of real and natural
numbers are denoted byR and N , respectively. It is important to note that solving the problem (1) is
equivalent to solving the following problem:

Find an element u∗ ∈ K such that u∗ = PK[u∗ − ζF (u∗)].

We assume that the following requirements have been fulfilled:
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(B1) The solution set of the problem (1), represented by SVIP is nonempty.
(B2) A mapping F : E → E is called to be pseudomonotone, i.e.,〈

F (y1), y2 − y1
〉
≥ 0 =⇒

〈
F (y2), y1 − y2

〉
≤ 0, ∀ y1, y2 ∈ K.

(B3) A mapping F : E → E is said to be Lipschitz continuous, i.e., there exists L > 0 such that

‖F (y1)−F (y2)‖ ≤ L‖y1 − y2‖, ∀ y1, y2 ∈ K.

(B4) A mapping F : E → E is called to be sequentially weakly continuous, i.e., {F (un)} converges
weakly to F (u), where {un} weakly converges to u.

The concept of variational inequalities has been used as a powerful tool to study different
subjects, i.e., physics, engineering, economics and optimization theory. The problem (1) was firstly
introduced by Stampacchia [1] in 1964 and also provided that this problem (1) is a crucial problem in
nonlinear analysis. This is an efficient mathematical technique that integrates several key elements of
applied mathematics, i.e., the problems of network equilibrium, the necessary optimality conditions,
the complementarity problems and the systems of non-linear equations (for more details [3–9]).
On the other hand, the projection methods are important to find the numerical solution of variational
inequalities. Many authors have proposed and studied different projection methods to solve the
problem of variational inequalities (see for more details [10–20]) and others in [21–32]. In particular,
Karpelevich [10] and Antipin [33] introduced the following extragradient method:

un ∈ K,
vn = PK[un − ζF (un)],
un+1 = PK[un − ζF (vn)].

(2)

Recently, the subgradient extragradient algorithm was established by Censor et al. [12] for solving
problem (1) in real Hilbert space. Their method has the form

un ∈ K,
vn = PK[un − ζF (un)],
un+1 = PEn [un − ζF (vn)].

(3)

where En = {z ∈ E : 〈un − ζF (un)− vn, z− vn〉 ≤ 0}. Migorski et al. [34] proposed a viscosity-type
subgradient extragradient method to solve monotone variational inequalities problems. The main
contribution is the presence of a viscosity scheme in the algorithm that was used to improve the
convergence rate of the iterative sequence and provide strong convergence theorem. The iterative
sequence {un} was generated in the following way: (i) Let u0 ∈ K, µ ∈ (0, 1), ζ0 > 0 and a sequence
γn ⊂ (0, 1) with γn → 0 and ∑∞

n γn = +∞. (ii) Compute
vn = PK[un − ζnF (un)],

wn = PEn [un − ζnF (vn)],

un+1 = γn f (un) + (1− γn)wn,

(4)

where
En = {z ∈ E : 〈un − ζnF (un)− vn, z− vn〉 ≤ 0}.

(iii) Revised the stepsize in the following way:

ζn+1 =

{
min

{
ζn, µ‖un−vn‖
‖F (un)−F (vn)‖

}
if F (un) 6= F (vn),

ζn otherwise.
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In this paper, inspired by the iterative methods in [12,16,35,36], a modified subgradient
extragradient algorithm is proposed for solving variational inequalities problems involving
pseudomonotone mapping in real Hilbert space. It is important to note that our proposed scheme
is effective. In particular, by comparing the results of Migorski et al. [34], our algorithm can solve
pseudomonotone variational inequalities. Similar to the results of Migorski et al. [34] the proof of
strong convergence of the proposed algorithm is proved without knowing the Lipschitz constant
of the operator F . The proposed algorithm could be seen as a modification of the methods that
are appeared in [10,12,34–36]. Under mild conditions, a strong convergence theorem is proved.
Numerical experiments have been shown that the new approach tends to be more successful than the
existing one [34].

The rest of this article has been arranged as follows: Section 2 contains some definitions and basic
results that have been used throughout the paper. Section 3 contains our main algorithm and a strong
convergence theorem. Section 4 presents the numerical results showing the algorithmic efficacy of the
proposed method.

2. Preliminaries

This section contains useful lemmas and basic identities that have been used throughout the
article. The metric projection PK(u1) for u1 ∈ E onto a closed and convex subset K of E is defined by

PK(u1) = arg min{‖u2 − u1‖ : u2 ∈ K}.

Lemma 1. [37,38] AssumeK is a nonempty, convex and closed subset of a real Hilbert space E and PK : E → K
is a metric projection from E onto K.

(i) Let u1 ∈ K and u2 ∈ E , we have

‖u1 − PK(u2)‖2 + ‖PK(u2)− u2‖2 ≤ ‖u1 − u2‖2.

(ii) u3 = PK(u1) if and only if
〈u1 − u3, u2 − u3〉 ≤ 0, ∀ u2 ∈ K.

(iii) For u2 ∈ K and u1 ∈ E
‖u1 − PK(u1)‖ ≤ ‖u1 − u2‖.

Lemma 2. [37] Let u, v ∈ E and v ∈ R.

(i) ‖vu + (1−v)v‖2 = v‖u‖2 + (1−v)‖v‖2 −v(1−v)‖u− v‖2.

(ii) ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉.

Lemma 3. [39] Assume that {χn} be a sequence of non-negative real numbers satisfying

χn+1 ≤ (1− τn)χn + τnδn, ∀ n ∈ N ,

where {τn} ⊂ (0, 1) and {δn} ⊂ R satisfy the following conditions:

lim
n→∞

τn = 0,
∞

∑
n=1

τn = ∞, and lim sup
n→∞

δn ≤ 0.

Then, limn→∞ χn = 0.
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Lemma 4. [40] Assume that {χn} is a sequence of real numbers such that there exists a subsequence {ni}
of {n} such that χni < χni+1 for all i ∈ N . Then, there exists a non decreasing sequence mk ⊂ N such that
mk → ∞ as k→ ∞, and the following conditions are fulfilled by all (sufficiently large) numbers k ∈ N :

χmk ≤ χmk+1 and χk ≤ χmk+1 .

In fact, mk = max{j ≤ k : χj ≤ χj+1}.

Lemma 5. [41] Assume that F : K → E is a pseudomonotone and continuous mapping. Then, u∗ is a solution
of the problem (1) if and only if u∗ is a solution of the following problem.

Find x ∈ K such that 〈F (y), y− x〉 ≥ 0, ∀ y ∈ K.

3. Main Results

We provide a method consisting of two convex minimization problems through a viscosity scheme
and an explicit stepsize formula which is being used to improve the convergence rate of the iterative
sequence and to make the method independent of the Lipschitz constants. The detailed method is
provided in Algorithm 1.

Algorithm 1 (Explicit method for pseudomonotone variational inequalities problems).

Step 0: Let u0 ∈ K, µ ∈ (0, 1), ζ0 > 0 and a sequence γn ⊂ (0, 1) satisfying

lim
n→∞

γn = 0 and
∞

∑
n

γn = +∞.

Step 1: Evaluate
vn = PK[un − ζnF (un)].

If un = vn; STOP. Otherwise, go to Step 2.
Step 2: Evaluate

wn = PEn [un − ζnF (vn)],

where En = {z ∈ E : 〈un − ζnF (un)− vn, z− vn〉 ≤ 0}.
Step 3: Compute

un+1 = γn f (un) + (1− γn)wn.
Step 4: Evaluate

ζn+1 =

 min
{

ζn, µ‖un−vn‖2+µ‖wn−vn‖2

2
〈
F (un)−F (vn),wn−vn

〉} if
〈
F (un)−F (vn), wn − vn

〉
> 0,

ζn else.

Lemma 6. The stepsize sequence {ζn} is monotonically decreasing with a lower bound min
{ µ

L , ζ0
}

and
converges to a fixed ζ > 0.

Proof. Let
〈
F (un)−F (vn), wn − vn

〉
> 0, such that

µ(‖un − vn‖2 + ‖wn − vn‖2)

2
〈
F (un)−F (vn), wn − vn

〉 ≥ 2µ‖un − vn‖‖wn − vn‖
2‖F (un)−F (vn)‖‖wn − vn‖

≥ 2µ‖un − vn‖‖wn − vn‖
2‖un − vn‖‖wn − vn‖

(5)

≥ µ

L
.



Axioms 2020, 9, 115 5 of 15

Clearly, from above we can conclude that {ζn} has a lower bound min
{ µ

L , ζ0
}

. Moreover,
there exists a real number ζ > 0, such that limn→∞ ζn = ζ.

Lemma 7. Assume that F : E → E satisfies the conditions (B1)–(B4). For a given u∗ ∈ SVIP 6= ∅, we have

‖wn − u∗‖2 ≤ ‖un − u∗‖2 −
(

1− µζn

ζn+1

)
‖un − vn‖2 −

(
1− µζn

ζn+1

)
‖wn − vn‖2.

Proof. Consider that

‖ wn − u∗ ‖2= ‖ PEn [un − ζnF (vn)]− u∗ ‖2

= ‖ PEn [un − ζnF (vn)] + [un − ζnF (vn)]− [un − ζnF (vn)]− u∗ ‖2

= ‖ [un − ζnF (vn)]− u∗ ‖2 + ‖ PEn [un − ζnF (vn)]− [un − ζnF (vn)] ‖2

+2 〈PEn [un − ζnF (vn)]− [un − ζnF (vn)] , [un − ζnF (vn)]− u∗〉 .

(6)

Given that u∗ ∈ SVIP ⊂ K ⊂ En, we get

‖ PEn [un − ζnF (vn)]− [un − ζnF (vn)] ‖2

+ 〈PEn [un − ζnF (vn)]− [un − ζnF (vn)] , [un − ζnF (vn)]− u∗〉
= 〈[un − ζnF (vn)]− PEn [un − ζnF (vn)] , u∗ − PEn [un − ζnF (vn)]〉 ≤ 0,

(7)

which implies that

〈PEn [un − ζnF (vn)]− [un − ζnF (vn)] , [un − ζnF (vn)]− u∗〉

≤ −‖ PEn [un − ζnF (vn)]− [un − ζnF (vn)] ‖2.
(8)

Using expressions (6) and (8), we obtain

‖ wn − u∗ ‖2 ≤ ‖ un − ζnF (vn)− u∗ ‖2 − ‖ PEn [un − ζnF (vn)]− [un − ζnF (vn)] ‖2

≤‖un − u∗ ‖2 −‖ un − wn ‖2 + 2ζn 〈F (vn) , u∗ − wn〉 .
(9)

Since u∗ is the solution of problem (1), we have

〈F (u∗), y− u∗〉 ≥ 0, for all y ∈ K.

Due to the pseudomonotonicity of F on K, we get

〈F (y), y− u∗〉 ≥ 0, for all y ∈ K.

By substituting y = vn ∈ K, we get

〈F (vn), vn − u∗〉 ≥ 0.

Thus, we have〈
F (vn), u∗ − wn

〉
=
〈
F (vn), u∗ − vn

〉
+
〈
F (vn), vn − wn

〉
≤
〈
F (vn), vn − wn

〉
. (10)

Combining expressions (9) and (10), we obtain

‖ wn − u∗ ‖2 ≤‖un − u∗ ‖2 −‖ un − wn ‖2 + 2ζn 〈F (vn) , vn − wn〉
≤‖un − u∗ ‖2 −‖ un − vn + vn − wn ‖2 + 2ζn 〈F (vn) , vn − wn〉
≤‖un − u∗ ‖2 − ‖un − vn ‖2 −‖ vn − wn ‖2 + 2 〈un − ζnF (vn)− vn, wn − vn〉 .

(11)
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Note that wn = PEn [un − ζnF (vn)] and by the definition of ζn+1, we have

2 〈un − ζnF (vn)− vn, wn − vn〉
= 2 〈un − ζnF (un)− vn, wn − vn〉+ 2ζn 〈F (un)−F (vn) , wn − vn〉

≤ 2ζn

ζn+1
ζn+1 〈F (un)−F (vn) , wn − vn〉 ≤

ζn

ζn+1

[
µ ‖un − vn ‖2 +µ‖ wn − vn ‖2

]
.

(12)

Combining expressions (11) and (12), we obtain

‖ wn − u∗ ‖2

≤‖un − u∗ ‖2 − ‖un − vn ‖2 −‖ vn − wn ‖2 +
ζn

ζn+1

[
µ ‖un − vn ‖2 +µ‖ wn − vn ‖2

]
≤‖un − u∗ ‖2 −

(
1− µζn

ζn+1

)
‖ un − vn ‖2 −

(
1− µζn

ζn+1

)
‖ wn − vn ‖2.

(13)

Lemma 8. Suppose that conditions (B1)–(B4) hold. Let {un} be a sequence generated by Algorithm 1. If there
is a subsequence {unk} which is weakly convergent to û ∈ E and limn→∞ ‖un − vn‖ = 0, then û ∈ SVIP.

Proof. We have
vnk = PK[unk − ζnkF (unk )], (14)

which is equivalent to
〈unk − ζnkF (unk )− vnk , y− vnk 〉 ≤ 0, ∀ y ∈ K. (15)

From expression (15), we can write

〈unk − vnk , y− vnk 〉 ≤ ζnk 〈F (unk ), y− vnk 〉, ∀ y ∈ K. (16)

Therefore, we get

1
ζnk

〈unk − vnk , y− vnk 〉+ 〈F (unk ), vnk − unk 〉 ≤ 〈F (unk ), y− unk 〉, ∀ y ∈ K. (17)

Due to the boundedness of the sequence {unk} so does {F (unk )}. By using the facts limn→∞ ‖unk −
vnk‖ = 0, and limk→∞ ζnk = ζ > 0, limit as k→ ∞ in (17), we get

lim inf
k→∞

〈F (unk ), y− unk 〉 ≥ 0, ∀ y ∈ K. (18)

Moreover, we have

〈F (vnk ), y− vnk 〉 = 〈F (vnk )−F (unk ), y− unk 〉+ 〈F (unk ), y− unk 〉+ 〈F (vnk ), unk − vnk 〉.
(19)

Since limn→∞ ‖unk − vnk‖ = 0, and F is L-Lipschitz continuous on E , we get

lim
n→∞

‖F (unk )−F (vnk )‖ = 0. (20)

From (19) and (20), we obtain

lim inf
k→∞

〈F (vnk ), y− vnk 〉 ≥ 0, ∀ y ∈ K. (21)
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Next, we show that u∗ ∈ SVIP. We choose a sequence {εk} of positive numbers decreasing and
tending to 0. For each k, we denote by mk the smallest positive integer such that

lim inf
k→∞

〈F (uni ), y− uni 〉+ εk ≥ 0, ∀ i ≥ mk. (22)

Due to {εk} being decreasing, the sequence {mk} is increasing.
Case 1: If there is a subsequence unmkj

of unmk
such that F (unmkj

) = 0 (∀j). Letting j→ ∞, we obtain

〈F (u∗), y− u∗〉 = lim
j→∞
〈F (unmkj

), y− u∗〉 = 0. (23)

Hence u∗ ∈ K, therefore we have u∗ ∈ SVIP.
Case 2: If there exists N0 such that for all nmk ≥ N0, F (unmk

) 6= 0. Suppose that

Θnmk
=
F (unmk

)

‖F (unmk
)‖2 , ∀ nmk ≥ N0. (24)

Due to the above definition, we obtain

〈F (unmk
),F (Θnmk

)〉 = 1, ∀ nmk ≥ N0. (25)

From (18) and (25), for all nmk ≥ N0, we have

〈F (unmk
), y + εkΘnmk

− unmk
〉 ≥ 0. (26)

Due to pseudomonotonicity of F for nmk ≥ N0, we obtain

〈F (y + εkΘnmk
), y + εkΘnmk

− unmk
〉 ≥ 0. (27)

For all nmk ≥ N0, we have

〈F (y), y− unmk
〉 ≥ 〈F (y)−F (y + εkΘnmk

), y + εkΘnmk
− unmk

〉 − εk〈F (y), Θnmk
〉. (28)

Since {unk} converges weakly to u∗ ∈ K and F is sequentially weakly continuous on K, we have
{F (unk )} converges weakly to F (u∗). We can suppose that F (u∗) 6= 0. Since the norm mapping is
sequentially weakly lower semicontinuous, we have

‖F (u∗)‖ ≤ lim inf
k→∞

‖F (unk )‖. (29)

Since {unmk
} ⊂ {unk} and limk→∞ εk = 0, we have

0 ≤ lim
k→∞
‖εkΘnmk

‖ = lim
k→∞

εk
‖F (unmk

)‖ ≤
0

‖F (u∗)‖ = 0. (30)

Now, letting k→ ∞ in (28), we obtain

〈F (y), y− u∗ ≥ 0, ∀ y ∈ K. (31)

Applying the well-known Lemma 5, we can deduce that u∗ ∈ SVIP.

Theorem 1. Assume that F : K → E satisfies the conditions (B1)–(B4). Moreover, assume that u∗

belongs to the solution set SVIP. Then, the sequences {un}, {vn} and {wn} generated by Algorithm 1
converge strongly to u∗.
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Proof. By using Lemma 7, we have

‖wn − u∗‖2 ≤ ‖un − u∗‖2 −
(

1− µζn

ζn+1

)
‖un − vn‖2 −

(
1− µζn

ζn+1

)
‖wn − vn‖2. (32)

Due to ζn → ζ, there exists a fixed number ε ∈ (0, 1− µ) such that

lim
n→∞

(
1− µζn

ζn+1

)
= 1− µ > ε > 0.

Then, there exists a finite number N1 ∈ N such that(
1− µζn

ζn+1

)
> ε > 0, ∀ n ≥ N1. (33)

Hence, we obtain

‖wn − u∗‖2 ≤ ‖un − u∗‖2, ∀ n ≥ N1. (34)

From the definition of the sequence {un+1} and the fact that f is a contraction with constant
ρ ∈ [0, 1) and n ≥ N1, we obtain∥∥un+1 − u∗

∥∥ =
∥∥γn f (un) + (1− γn)wn − u∗

∥∥
=
∥∥γn[ f (un)− u∗] + (1− γn)[wn − u∗]

∥∥
=
∥∥γn[ f (un) + f (u∗)− f (u∗)− u∗] + (1− γn)[wn − u∗]

∥∥ (35)

≤ γn
∥∥ f (un)− f (u∗)

∥∥+ γn
∥∥ f (u∗)− u∗

∥∥+ (1− γn)
∥∥wn − u∗

∥∥
≤ γnρ

∥∥un − u∗
∥∥+ γn

∥∥ f (u∗)− u∗
∥∥+ (1− γn)

∥∥wn − u∗
∥∥.

From expressions (34) and (36) and γn ⊂ (0, 1), we obtain∥∥un+1 − u∗
∥∥ ≤ γnρ

∥∥un − u∗
∥∥+ γn

∥∥ f (u∗)− u∗
∥∥+ (1− γn)

∥∥un − u∗
∥∥

= [1− γn + ργn]
∥∥un − u∗

∥∥+ γn(1− ρ)

∥∥ f (u∗)− u∗
∥∥

(1− ρ)

≤ max

{∥∥un − u∗
∥∥,

∥∥ f (u∗)− u∗
∥∥

(1− ρ)

}
(36)

≤ max

{∥∥uN1 − u∗
∥∥,

∥∥ f (u∗)− u∗
∥∥

(1− ρ)

}
.

Hence, we conclude that the sequence {un} is bounded. Next, the reflexivity of E and the
boundedness of the sequence {un} guarantee that there exists a subsequence {unk} such that {unk}⇀
u∗ ∈ E as k → ∞. Now, we prove the strong convergence of the sequence iterative sequence {un}
generated by Algorithm 1. Due to the continuity and pseudomonotonicity of the operator F imply
that the solution set SVIP is a closed and convex set (for more details see [42,43]). Since the mapping f
is a contraction, PSVIP ◦ f is a contraction. The Banach contraction theorem guarantee the existence of
a fixed point of u∗ ∈ SVIP such that

u∗ = PSVIP( f (u∗)).

By using Lemma 1 (ii), we have

〈 f (u∗)− u∗, y− u∗〉 ≤ 0, ∀ y ∈ SVIP. (37)
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From given un+1 = γn f (un) + (1− γn)wn, and using Lemma 2 (i) and Lemma 7, we have∥∥un+1 − u∗
∥∥2

=
∥∥γn f (un) + (1− γn)wn − u∗

∥∥2

=
∥∥γn[ f (un)− u∗] + (1− γn)[wn − u∗]

∥∥2

= γn‖ f (un)− u∗‖2 + (1− γn)‖wn − u∗‖2 − γn(1− γn)‖ f (un)− wn‖2 (38)

≤ γn‖ f (un)− u∗‖2 + (1− γn)
[
‖un − u∗‖2 −

(
1− µζn

ζn+1

)
‖un − vn‖2

−
(

1− µζn

ζn+1

)
‖wn − vn‖2

]
− γn(1− γn)‖ f (un)− wn‖2

≤ γn‖ f (un)− u∗‖2 + ‖un − u∗‖2 − (1− γn)
(

1− µζn

ζn+1

)[
‖wn − vn‖2 + ‖un − vn‖2

]
.

The rest of the proof shall be divided into the following two parts:
Case 1: Assume that there exists a fixed number N2 ∈ N (N2 ≥ N1) such that

‖un+1 − u∗‖ ≤ ‖un − u∗‖, ∀ n ≥ N2. (39)

Thus, limn→∞ ‖un − u∗‖ exists and let limn→∞ ‖un − u∗‖ = l. From expression (38), we have

(1− γn)
(

1− µζn

ζn+1

)[
‖wn − vn‖2 + ‖un − vn‖2

]
≤ γn‖ f (un)− u∗‖2 + ‖un − u∗‖2 − ‖un+1 − u∗‖2. (40)

Due to the existence of limn→∞ ‖un − u∗‖ = l, and γn → 0, we deduce that

lim
n→∞

‖un − vn‖ = lim
n→∞

‖wn − vn‖ = 0. (41)

From expression (41), we have

lim
n→∞

‖un − wn‖ ≤ lim
n→∞

‖un − vn‖+ lim
n→∞

‖vn − wn‖ = 0. (42)

It follows that

‖ un+1 − un ‖ = ‖ γn f (un) + (1− γn)wn − un ‖
= ‖ γn [ f (un)− un] + (1− γn) [wn − un] ‖
≤ γn‖ f (un)− un ‖+ (1− γn) ‖ wn − un ‖ −→ 0.

(43)

Thus, the sequences {un}, {vn} and {wn} are bounded. Thus, we can take a subsequence {unk}
of {un} such that {unk} weakly converges to some û ∈ E . Moreover, due to ‖un − vn‖ → 0 and using
Lemma 8, we have û ∈ SVIP. By following expression (37), we consider that

lim sup
n→∞

〈 f (u∗)− u∗, un − u∗〉

= lim sup
k→∞

〈 f (u∗)− u∗, unk − u∗〉 = 〈 f (u∗)− u∗, û− u∗〉 ≤ 0. (44)

We have limn→∞
∥∥un+1 − un

∥∥ = 0. It follows (44) that

lim sup
n→∞

〈 f (u∗)− u∗, un+1 − u∗〉

≤ lim sup
k→∞

〈 f (u∗)− u∗, un+1 − un〉+ lim sup
k→∞

〈 f (u∗)− u∗, un − u∗〉 ≤ 0. (45)
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From Lemma 2 (ii) and Lemma 7 for all n ≥ N2, we get

∥∥un+1 − u∗
∥∥2

=
∥∥γn f (un) + (1− γn)wn − u∗

∥∥2

=
∥∥γn[ f (un)− u∗] + (1− γn)[wn − u∗]

∥∥2

≤ (1− γn)
2∥∥wn − u∗

∥∥2
+ 2γn〈 f (un)− u∗, (1− γn)[wn − u∗] + γn[ f (un)− u∗]〉

= (1− γn)
2∥∥wn − u∗

∥∥2
+ 2γn〈 f (un)− f (u∗) + f (u∗)− u∗, un+1 − u∗〉

= (1− γn)
2∥∥wn − u∗

∥∥2
+ 2γn〈 f (un)− f (u∗), un+1 − u∗〉+ 2γn〈 f (u∗)− u∗, un+1 − u∗〉

≤ (1− γn)
2∥∥wn − u∗

∥∥2
+ 2γnρ

∥∥un − u∗
∥∥∥∥un+1 − u∗

∥∥+ 2γn〈 f (u∗)− u∗, un+1 − u∗〉

≤ (1 + γ2
n − 2γn)

∥∥un − u∗
∥∥2

+ 2γnρ
∥∥un − u∗

∥∥2
+ 2γn〈 f (u∗)− u∗, un+1 − u∗〉

= (1− 2γn)
∥∥un − u∗

∥∥2
+ γ2

n
∥∥un − u∗

∥∥2
+ 2γnρ

∥∥un − u∗
∥∥2

+ 2γn〈 f (u∗)− u∗, un+1 − u∗〉

=
[
1− 2γn(1− ρ)

]∥∥un − u∗
∥∥2

+ 2γn(1− ρ)

[
γn
∥∥un − u∗

∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, un+1 − u∗〉

1− ρ

]
. (46)

It follows from expressions (45) and (46), we obtain

lim sup
n→∞

[
γn
∥∥un − u∗

∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, un+1 − u∗〉

1− ρ

]
≤ 0. (47)

Choose n ≥ N3 ∈ N (N3 ≥ N2) large enough such that 2γn(1 − ρ) < 1. Now,
using expressions (46) and (47) and applying Lemma 3, we conclude that

∥∥un − u∗
∥∥→ 0, as n→ ∞.

Case 2: Suppose that there exists a subsequence {ni} of {n} such that

‖uni − u∗‖ ≤ ‖uni+1 − u∗‖, ∀i ∈ N .

Thus, by Lemma 4, there exits a sequence {mk} ⊂ N and {mk} → ∞, such that

‖umk − u∗‖ ≤ ‖umk+1 − u∗‖ and ‖uk − u∗‖ ≤ ‖umk+1 − u∗‖, ∀ k ∈ N . (48)

Similar to Case 1, using (38), we have

(1− γmk )
(

1−
µζmk

ζmk+1

)[
‖wmk − vmk‖

2 + ‖umk − vmk‖
2]

≤ γmk‖ f (umk )− u∗‖2 + ‖umk − u∗‖2 − ‖umk+1 − u∗‖2. (49)

Due to γmk → 0 and
(

1− µζmk
ζmk+1

)
→ 1− µ, we can deduce the following:

lim
n→∞

‖umk − vmk‖ = lim
k→∞
‖wmk − vmk‖ = 0. (50)

From expression (50), we have

lim
k→∞
‖umk − wmk‖ ≤ lim

k→∞
‖umk − vmk‖+ lim

k→∞
‖vmk − wmk‖ = 0. (51)
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Hence, we obtain∥∥umk+1 − umk

∥∥ =
∥∥γmk f (umk ) + (1− γmk )wmk − umk

∥∥
=
∥∥γmk [ f (umk )− umk ] + (1− γmk )[wmk − umk ]

∥∥
≤ γmk

∥∥ f (umk )− umk

∥∥+ (1− γmk )
∥∥wmk − umk

∥∥ −→ 0. (52)

We have to use the same justification as in the Case 1, such that

lim sup
k→∞

〈 f (u∗)− u∗, umk+1 − u∗〉 ≤ 0. (53)

Using (46) and (48), we have∥∥umk+1 − u∗
∥∥2 ≤

[
1− 2γmk (1− ρ)

]∥∥umk − u∗
∥∥2

+ 2γmk (1− ρ)

[
γmk

∥∥umk − u∗
∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, umk+1 − u∗〉

1− ρ

]
≤
[
1− 2γmk (1− ρ)

]∥∥umk+1 − u∗
∥∥2

+2γmk (1− ρ)

[
γmk

∥∥umk − u∗
∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, umk+1 − u∗〉

1− ρ

]
. (54)

It follows that

∥∥umk+1 − u∗
∥∥2 ≤

γmk

∥∥umk − u∗
∥∥2

2(1− ρ)
+
〈 f (u∗)− u∗, umk+1 − u∗〉

1− ρ
.

(55)

Since γmk → 0 and
∥∥umk − u∗

∥∥ is a bounded sequence. Thus, expressions (53) and (55) implies that

‖umk+1 − u∗‖2 → 0, as k→ ∞. (56)

From the inequality (48), we have

lim
n→∞

‖uk − u∗‖2 ≤ lim
n→∞

‖umk+1 − u∗‖2 ≤ 0. (57)

Consequently, un → u∗. This completes the proof of the theorem.

4. Numerical Experiments

Numerical investigations present in this section to demonstrate the efficiency of the introduced
Algorithm 1 in four test problems, all of which are pseudomonotone. The MATLAB program has
been performed on a PC (with Intel(R) Core(TM)i3-4010U CPU @ 1.70 GHz, RAM 4.00 GB) in
MATLAB version 9.5 (R2018b). We use the built-in MATLAB Quadratic programming to solve
the minimization problems.

Example 1. Consider the non-linear complementarity problem of Kojima-–Shindo where the feasible set K
which is defined by

K = {u ∈ R4 : 1 ≤ ui ≤ 5, i = 1, 2, 3, 4}.
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The mapping F : R4 → R4 is defined by

F (u) =


u1 + u2 + u3 + u4 − 4u2u3u4

u1 + u2 + u3 + u4 − 4u1u3u4

u1 + u2 + u3 + u4 − 4u1u2u4

u1 + u2 + u3 + u4 − 4u1u2u3

 .

It is easy to see that F is not monotone on the set K. By using the Monte Carlo approach [44], it can be
shown that F is pseudomonotone on K, This problem has a unique solution u∗ = (5, 5, 5, 5)T . Generate many
pairs of points u and v uniformly in K satisfying F (u)T(v− u) ≥ 0 and then check if F (v)T(v− u) ≥ 0.
In this experiment, we take different initial points and Dn = ‖un− vn‖. Moreover, control parameters ζ0 = 0.33,
µ = 0.25, γn = 1

100(n+2) and f (u) = u
2 for Algorithm 1. Numerical investigation regarding the first example

was shown in Table 1.

Table 1. Numerical behaviour of Algorithm 1 using different starting points for Example 1.

TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. Time Time Time Time

[−2, 2, 8, 10]T 13 51 501 5001 0.079821 0.247776 3.251465 43.637834
[−1, 1, 5, 6]T 12 51 501 5001 0.083870 0.236924 2.684370 39.651178
[−5, 2,−1, 2]T 9 51 501 5001 0.065422 0.235173 3.034747 43.630625
[1, 2, 3, 4]T 6 1004 1004 5001 0.040866 8.051234 6.686632 42.431705

Example 2. Consider the quadratic fractional programming problem in the following form [44]: min f (u) =
uTQu + aTu + a0

bTu + b0
,

subject to u ∈ K = {u ∈ R4 : bTu + b0 > 0},

where

Q =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =


1
−2
−2
1

 , b =


2
1
1
0

 , a0 = −2, and b0 = 4.

It is easy to verify that Q is symmetric and positive definite onR4 and consequently f is pseudo-convex on
K. Therefore, ∇ f is pseudomonotone. Using the quotient rule, we obtain

∇ f (u) =
(bTu + b0)(2Qu + a)− b(uTQ + aTu + a0)

(bTu + b0)2 . (58)

In this point of view, we can set F = ∇ f in Theorem 1. We minimize f over K = {u ∈ R4 : 1 ≤ ui ≤
10, i = 1, 2, 3, 4}. This problem has a unique solution u∗ = (1, 1, 1, 1)T ∈ K. In this experiment, we take
different initial points and Dn = ‖un− vn‖. Moreover, control parameters ζ0 = 0.33, µ = 0.25, γn = 1

100(n+2)
and f (u) = u

2 for Algorithm 1. Numerical investigation regarding the second example is shown in Table 2.

Table 2. Numerical behaviour of Algorithm 1 using different starting points for Example 2.

TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. Time Time Time Time

[10, 10, 10, 10]T 43 46 99 989 0.289149 0.249285 0.475520 8.480530
[10, 20, 30, 40]T 41 46 99 989 0.211707 0.187559 0.445240 6.898924
[20,−20, 20,−20]T 29 32 99 989 0.138575 0.169190 0.394654 7.168460
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Example 3. The third example was taken from [45] where F : R2 → R2 is defined by

F (u) =
(

0.5u1u2 − 2u2 − 107

−4u1 − 0.1u2
2 − 107

)
,

onK = {u ∈ R2 : (u1− 2)2 +(u2− 2)2 ≤ 1}. It can easily see thatF is Lipschitz continuous with L = 5 and
F is not monotone on K but pseudomonotone. The above problem has a unique solution u∗ = (2.707, 2.707)T .
In this experiment, we take different initial points and Dn = ‖un− vn‖. Moreover, control parameters ζ0 = 0.33,
µ = 0.25, γn = 1

100(n+2) and f (u) = u
3 for Algorithm 1. Numerical investigations regarding the third example

is shown in Table 3.

Table 3. Numerical behaviour of Algorithm 1 using different starting points for Example 3.

TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. Time Time time Time

[0, 0]T 8 27 265 2566 0.606917 1.907212 14.120655 107.506926
[10, 10]T 7 27 265 2591 0.286659 1.057623 10.764532 116.258335
[−5,−5]T 8 26 258 2596 0.388227 1.190191 11.424257 107.584978

Example 4. The fourth example was taken from [45] where F : R2 → R2 is defined by

F (u) =
(
(u2

1 + (u2 − 1)2)(1 + u2)

−u3
1 − u1(u2 − 1)2

)
,

where K = {u ∈ R2 : −10 ≤ ui ≤ 10, i = 1, 2}. It can easily see that F is Lipschitz continuous with
L = 5 and F is not monotone on K but pseudomonotone. In this experiment, we take different initial points
and Dn = ‖un − vn‖. Moreover, control parameters ζ0 = 0.33, µ = 0.25, γn = 1

100(n+2) and f (u) = u
4 for

Algorithm 1. Numerical investigations regarding the fourth example is shown in Table 4.

Table 4. Numerical behaviour of Algorithm 1 using different starting points for Example 4.

TOL 10−2 10−3 10−4 10−5 10−2 10−3 10−4 10−5

u0 Iter. Iter. Iter. Iter. Time Time Time Time

[0, 0]T 16 220 2231 29253 0.21543 2.35401 29.86562 224.95083
[10, 10]T 27 190 2072 25762 0.25322 2.64742 26.84528 198.26446
[−5,−5]T 43 411 3801 47891 0.78262 4.77116 42.41738 427.904781

5. Conclusions

We have developed an extragradient-like method to solve pseudomonotone variational
inequalities in real Hilbert space. The method had an explicit formula for an appropriate and effective
stepsize evaluation on each step. For each iteration, the stepsize formula is modified based on the
previous iterations. The numerical investigation was presented to explain the numerical effectiveness
of our algorithm relative to other methods. These numerical studies suggest that viscosity schemes in
this sense generally improve the effectiveness of the iterative sequence.
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