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Abstract: We use interpolation to obtain a common fixed point result for a new type of
Ćirić–Reich–Rus-type contraction mappings in metric space. We also introduce a new concept
of g-interpolative Ćirić–Reich–Rus-type contractions in b-metric spaces, and we prove some fixed
point results for such mappings. Our results extend and improve some results on the fixed point
theory in the literature. We also give some examples to illustrate the given results.
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1. Introduction and Preliminaries

Banach’s contraction principle [1] has been applied in several branches of mathematics. As a
result, researching and generalizing this outcome has proven to be a research area in nonlinear
analysis (see [2–6]). It is a well-known fact that a map that satisfies the Banach contraction principle
is necessarily continuous. Therefore, it was natural to wonder if in a complete metric space,
a discontinuous map satisfying somewhat similar contractual conditions may have a fixed point.
Kannan [7] answered yes to this question by introducing a new type of contraction. The concept of the
interpolation Kannan-type contraction appeared with Karapinar [8] in 2018; this concept appealed
to many researchers [8–14], making them invest in various types of contractions: interpolative
Ćirić–Reich–Rus-type contraction [9–11,13], interpolative Hardy–Rogers [15]; and they used it on
various spaces: metric space, b-metric space, and the Branciari distance.

In this paper, we will generalize some of the related findings to the interpolation
Ćirić–Reich–Rus-type contraction in Theorems 1 and 2. In addition, we use a new concept of
interpolative weakly contractive mapping to generalize some findings about the interpolation
Kannan-type contraction in Theorem 3.

Now, we recall the concept of b-metric spaces as follows:

Definition 1 ([16,17]). Let X be a nonempty set and s ≥ 1 be a given real number. A function d : X× X →
R+ is a b-metric if for all x, y, z ∈ X , the following conditions are satisfied:

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Note that the class of b-metric spaces is larger than that of metric spaces.
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The notions of b-convergent and b-Cauchy sequences, as well as of b-complete b-metric spaces are
defined exactly the same way as in the case of usual metric spaces (see, e.g., [18]).

Definition 2 ([19,20]). Let {xn} be a sequence in a b-metric space (X, d). g, h:X → X, are self-mappings, and
x ∈ X. x is said to be the coincidence point of pair {g, h} if gx = hx.

Definition 3 ([10,11]). Let Ψ be denoted as the set of all non-decreasing functions ψ: [0, ∞) → [0, ∞),
such that ∑∞

k=0 ψk(t) < ∞ for each t > 0. Then:

(i) ψ(0) = 0,
(ii) ψ(t) < t for each t > 0.

Remark 1 ([18]). In a b-metric space (X, d), the following assertions hold:

1. A b-convergent sequence has a unique limit.
2. Each b-convergent sequence is a b-Cauchy sequence.
3. In general, a b-metric is not continuous.

The fact in the last remark requires the following lemma concerning the b-convergent sequences
to prove our results:

Lemma 1 ([19]). Let (X, d) be a b-metric space with s ≥ 1, and suppose that {xn} and {yn} are b-convergent
to x, y, respectively, then we have:

1
s2 d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X, we have:

1
s

d(x, z) ≤ lim inf
n→∞

d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).

2. Results

We denote by Φ the set of functions φ : [0, ∞) → [0, ∞) such that φ(t) < t for every t > 0. Our
main result is the following theorem:

Theorem 1. Let (X, d) be a complete metric space, and T is a self-mapping on X such that:

d(Tx, Ty) ≤ φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ) (1)

is satisfied for all x, y ∈ X \ Fix(T); where Fix(T) = {a ∈ X|Ta = a}, α, β, γ ∈ (0, 1) such that
α + β + γ > 1, and φ ∈ Φ.

If there exists x ∈ X such that d(x, Tx) < 1, then T has a fixed point in X.

Proof. We define a sequence {xn} by x0 = x and xn+1 = Txn for all integers n, and we assume that
xn 6= Txn, for all n.

We have:
d(xn, xn+1) ≤ φ([d(xn−1, xn)]

α[d(xn−1, xn)]
β[d(xn, xn+1)]

γ). (2)

Using the fact φ(t) < t for each t > 0, from (2), we obtain:

d(xn, xn+1) < [d(xn−1, xn)]
α[d(xn−1, xn)]

β[d(xn, xn+1)]
γ.
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which implies:
[d(xn, xn+1)]

1−γ < [d(xn−1, xn)]
α+β. (3)

We have d(x0, x1) < 1, so that there exists a real λ ∈ (0, 1) such that d(x0, x1) ≤ λ and
λ = d(x0,x1)+1

2 .

By (3), we obtain:

d(x1, x2) < [d(x0, x1)]
α+β
1−γ ≤ λ

α+β
1−γ .

By (3), we find:
d(xn+1, xn) ≤ d(xn, xn−1)

1+ε

for all n, with ε = α+β
1−γ − 1 > 0.

Now, we prove by induction that for all n,

d(xn+1, xn) ≤ λ(1+ε)n

where 0 < λ < 1. For n = 1, this is the inequality at the bottom of page 3. The induction step is:

d(xn+2, xn+1) ≤ d(xn+1, xn)
1+ε ≤

(
λ(1+ε)n

)1+ε
= λ(1+ε)n+1

Since (1 + ε)n ≥ 1 + nε by Bernoulli’s inequality and since λ < 1, this implies:

d(xn+1, xn) ≤ λ1+nε = λρn

for all n, where ρ = λε < 1. This implies:

d(xn+k, xn) ≤ λ(ρn+k−1 + ρn+k−2 + · · ·+ ρn) = λρn

(
1− ρk

1− ρ

)
= Cρn,

where C = λ
(

1−ρk

1−ρ

)
for some integer k, from which it follows that {xn} forms a Cauchy sequence in

(X, d), and then, it converges to some z ∈ X. Assume that z 6= Tz.
By letting x = xn and y = z in (1), we obtain:

d(xn+1, Tz) ≤ φ([d(xn, z)]α[d(xn, xn+1)]
β[d(z, Tz)]γ)

< [d(xn, z)]α[d(xn, xn+1)]
β[d(z, Tz)]γ

for all n, which leads to d(z, Tz) = 0, which is a contradiction. Then, Tz = z.

Example 1. Let X = [0, 2] be endowed with metric d : X× X → [0, ∞), defined by:

d(x, y) =


0, if x = y;
2
3 , if x, y ∈ [0, 1] and x 6= y;
2, otherwise.

Consider that the self-mapping T : X → X is defined by:

Tx =

{
1
2 , if x ∈ [0, 1];
x
2 , if x ∈ (1, 2];
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and the function φ(t) = 0, 4t2 for all t ∈ [0, ∞).

For α = 0, 8, β = 0, 2, and γ = 0, 25.

We discus the following cases:

Case 1. If x, y ∈ [0, 1] or x = y for all x, y ∈ [0, 2]; it is obvious.

Case 2. If x, y ∈ (1, 2] and x 6= y.

We have:
d(Tx, Ty) =

2
3

and:

φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ) = φ(2α+β+γ) =
23,5

5
≥ 2

3
.

Then:
d(Tx, Ty) ≤ φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ)

for all x, y ∈ (1, 2].

Case 3. If x ∈ [0, 1] and y ∈ (1, 2] with x 6= 1
2 .

We have:
d(Tx, Ty) =

2
3

and:

φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ) = φ

(
2α+γ

(
2
3

)β
)

=
23,5

5.30,2 ≥
2
3

.

Then:
d(Tx, Ty) ≤ φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ)

for all x ∈ [0, 1]\{ 1
2} and y ∈ (1, 2].

Case 4. If x ∈ (1, 2] and y ∈ [0, 1] with y 6= 1
2 .

We have:
d(Tx, Ty) =

2
3

and:

φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ) = φ

(
2α+β

(
2
3

)γ)
=

23,5

5.30,25 ≥
2
3

.

Then:
d(Tx, Ty) ≤ φ([d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ)

for all x ∈ (1, 2] and y ∈ [0, 1]\{ 1
2}.

Therefore, all the conditions of Theorem 1 are satisfied, and T has a fixed point, x = 1
2 .

Example 2. Let X = {a, q, r, s} be endowed with the metric defined by the following table of values:
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d(x, y) a q r s
a 0 1

3
10
3

5
3

q 1
3 0 3 2

r 10
3 3 0 5

s 5
3 2 5 0

Consider the self-mapping T on X as:

T:

(
a q r s
a a q s

)
.

For ψ(t) = 2t−1
2t+1 for all t ∈ [0, ∞); α = 0, 6; β = 0, 9; and γ = 0, 7.

We have:
d(Tu, Tv) ≤ ψ([d(u, v)]α[d(u, Tu)]β[d(v, Tv)]γ)

for all u, v ∈ X \ {a, s}.

Then, T has two fixed points, which are a and s.

If we take ψ(t) = kt in Theorem (1) with k ∈ (0, 1), then we have the following corollary:

Corollary 1. Let (X, d) be a complete metric space, and T is a self-mapping on X such that:

d(Tx, Ty) ≤ k[d(x, y)]α[d(x, Tx)]β[d(y, Ty)]γ

is satisfied for all x, y ∈ X \ Fix(T); where Fix(T) = {a ∈ X|Ta = a}, and α, β, γ, k ∈ (0, 1) such that
α + β + γ > 1.

If there exists x ∈ X such that d(x, Tx) < 1, then T has a fixed point in X.

Example 3. It is enough to take in Example 1: φ(t) = 57
58 t for all t ∈ [0,+∞).

Example 4. Let X = {a, q, r, s} be endowed with the metric defined by the following table of values:

d(x, y) a q r s
a 0 0, 1 3, 1 4
q 0, 1 0 3 3, 9
r 3, 1 3 0 0, 9
s 4 3, 9 0, 9 0

Consider the self-mapping T on X as:

T :

(
a q r s
a a q s

)
.

For k = 3
10 ; α = 0, 7; β = 0, 1; and γ = 0, 8.

We have:
d(Tu, Tv) ≤ k[d(u, v)]α[d(u, Tu)]β[d(v, Tv)]γ

for all u, v ∈ X \ {a, s}.

Then, T has two fixed points, which are a and s.
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Definition 4. Let (X, d, s) be a b-metric space and T, g : X → X be self-mappings on X. We say that T is a
g-interpolative Ćirić–Reich–Rus-type contraction, if there exists a continuous ψ ∈ Ψ and α, β ∈ (0, 1) such
that:

d(Tx, Ty) ≤ ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β) (4)

is satisfied for all x, y ∈ X such that Tx 6= gx, Ty 6= gy, and gx 6= gy.

Theorem 2. Let (X, d, s) be a b-complete b-metric space, and T is a g-interpolative Ćirić–Reich–Rus-type
contraction. Suppose that TX ⊆ gX such that gX is closed. Then, T and g have a coincidence point in X.

Proof. Let x ∈ X; since TX ⊆ gX, we can define inductively a sequence {xn} such that:

x0 = x, and gxn+1 = Txn, for all integer n.

If there exists n ∈ {0, 1, 2, . . .} such that gxn = Txn, then xn is a coincidence point of g and T.
Assume that gxn 6= Txn, for all n. By (4), we obtain:

d(Txn+1, Txn) ≤ ψ([d(gxn+1, gxn]
α[d(gxn+1, Txn+1]

β[d(gxn, Txn]
1−α−β)

= ψ([d(Txn, Txn−1]
α[d(Txn, Txn+1]

β[d(Txn−1, Txn]
1−α−β)

= ψ([d(Txn, Txn−1]
1−β[d(Txn, Txn+1]

β).

Using the fact ψ(t) < t for each t > 0,

d(Txn+1, Txn) ≤ ψ([d(Txn, Txn−1)]
1−β[d(Txn, Txn+1)]

β)

< [d(Txn, Txn−1)]
1−β[d(Txn, Txn+1)]

β. (5)

which implies:
[d(Txn+1, Txn)]

1−β < [d(Txn, Txn−1)]
1−β.

Thus,
d(Txn+1, Txn) < d(Txn, Txn−1) for all n ≥ 1. (6)

That is, the positive sequence {d(Txn+1, Txn)} is monotone decreasing, and consequently, there
exists c ≥ 0 such that limn→∞ d(Txn+1, Txn) = c. From (6), we obtain:

[d(Txn, Txn−1)]
1−β[d(Txn, Txn+1)]

β ≤ [d(Txn, Txn−1)]
1−β[d(Txn, Txn−1)]

β

= d(Txn, Txn−1).

Therefore, with (5) together with the nondecreasing character of ψ, we get:

d(Txn+1, Txn) ≤ ψ([d(Txn, Txn−1)]
1−β[d(Txn, Txn+1)]

β)

≤ ψ(d(Txn, Txn−1)).

By repeating this argument, we get:

d(Txn+1, Txn) ≤ ψ(d(Txn, Txn−1)) ≤ ψ2(d(Txn−1, Txn−2)) ≤ · · · ≤ ψn(d(Tx1, Tx0)). (7)

Taking n → ∞ in (7) and using the fact limn→∞ ψn(t) = 0 for each t > 0, we deduce that c = 0,
that is,

lim
n→∞

d(Txn+1, Txn) = 0. (8)
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Then, {Txn} is a b-Cauchy sequence. Suppose on the contrary that there exists an ε > 0 and
subsequences {Txmk} and {Txnk} of {Txn} such that nk is the smallest integer for which:

nk > mk > k, d(Txnk , Txmk ) ≥ ε, and d(Txnk−1, Txmk ) < ε.

Then, we have:

d(gxnk , gxmk ) = d(Txnk−1, Txmk−1) ≤ sd(Txnk−1, Txmk ) + sd(Txmk , Txmk−1)

≤ sε + sd(Txmk , Txmk−1).

Using (8) in the inequality above, we obtain:

lim sup
k→∞

d(Txnk−1, Txmk−1) = lim sup
k→∞

d(gxnk , gxmk ) ≤ sε. (9)

Putting x = xnk and y = xmk in (4), we have:

ε ≤ d(Txnk , Txmk ) ≤ ψ([d(gxnk , gxmk )]
α[d(gxnk , Txnk )]

β[d(gxmk , Txmk )]
1−α−β)

= ψ([d(Txnk−1, Txmk−1)]
α[d(Txnk−1, Txnk )]

β[d(Txmk−1, Txmk )]
1−α−β). (10)

Taking the upper limit as k→ ∞ in (10) and using (8) and (9) and the property of ψ, we get:

ε ≤ lim sup
k→∞

d(Txnk , Txmk ) ≤ ψ(0) = 0,

which implies that ε = 0, a contradiction with ε > 0. We deduce that {Txn} is a b-Cauchy sequence,
and consequently, {gxn} is also a b-Cauchy sequence. Let z ∈ X such that,

lim
n→∞

d(Txn, z) = lim
n→∞

d(gxn+1, z) = 0.

Since z ∈ gX, there exists u ∈ X such that z = gu. We claim that u is a coincidence point of g and
T. For this, if we assume that gu 6= Tu, we obtain:

d(Txn, Tu) ≤ ψ([d(gxn, gu)]α[d(gxn, Txn)]
β[d(gu, Tu)]1−α−β)

< [d(gxn, gu)]α[d(gxn, Txn)]
β[d(gu, Tu)]1−α−β.

At the limit as n→ ∞ and using Lemma 1, we get:

1
s

d(z, Tu) ≤ lim inf
n→∞

d(Txn, Tu) ≤ lim sup
n→∞

[d(gxn, gu)]α[d(gxn, Txn)]
β[d(gu, Tu)]1−α−β

≤ [sd(z, gu)]α[s2d(z, z)]β[d(gu, Tu)]1−α−β = 0,

which is a contradiction, which implies that:

Tu = z = gu.

Then, u is a coincidence point in X of T and g.

Example 5. Let X = [0,+∞) and d : X× X → [0, ∞) be defined by:

d(x, y) =

{
(x + y)2, if x 6= y;
0, if x = y.
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Then, (X, d) is a complete b-metric space.

Define two self-mappings T and g on X by g(x) = x2; for all x ∈ X and:

Tx =

{
1, if x ∈ [0, 2];
1
x , if x ∈ (2,+∞).

T is a g-interpolative Ćirić–Reich–Rus-type contraction for α = 0, 7, β = 0, 4, and:

ψ(t) =

{
3

20 t2, if t ∈ [0, 89
20 ];

3t+1−1
3t+1 , if t ∈ ( 89

20 ,+∞).

For this, we discuss the following cases:

Case 1. If x, y ∈ [0, 2] or x = y for all x ∈ [0,+∞). It is obvious.

Case 2. If x, y ∈ (2,+∞) and x 6= y.

We have:
d(Tx, Ty) = (

1
x
+

1
y
)2 ≤ 1.

Using the property of ψ, we get:

ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β) = ψ((x2 + y2)2α(x2 +
1
x
)2β(y2 +

1
y
)2(1−α−β))

≥ ψ(82α.(
9
2
)2(1−α)) ≥ 1.

Therefore,
d(Tx, Ty) ≤ ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β).

Case 3. If x ∈ [0, 2]\{1} and y ∈ (2,+∞).

We have:
d(Tx, Ty) = (1 +

1
y
)2 ≤ (

3
2
)2 =

9
4

,

and:

ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β) = ψ((x2 + y2)2α(x2 + 1)2β(y2 +
1
y
)2(1−α−β))

≥ ψ(42α.12β.(
9
2
)2(1−α−β)) ≥ 9

4
.

Therefore,
d(Tx, Ty) ≤ ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β).

Case 4. If x ∈ (2,+∞) and y ∈ [0, 2]\{1}.

We have:
d(Tx, Ty) = (1 +

1
x
)2 ≤ 9

4
,

and:

ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β) = ψ((x2 + y2)2α(x2 +
1
x
)2β(y2 + 1)2(1−α−β))

≥ ψ(42α.(
9
2
)2β.12(1−α−β)) ≥ 9

4
.
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Therefore,
d(Tx, Ty) ≤ ψ([d(gx, gy)]α[d(gx, Tx)]β[d(gy, Ty)]1−α−β).

Then, it is clear that g, T satisfies (4) for all u, v ∈ X \ {1}. Moreover, one is a coincidence point of g and T.

Example 6. Let the set X = {a, b, q, r} and a function d : X× X → [0, ∞) be defined as follows:

d(x, y) a b q r
a 0 1 16 49

4

b 1 0 9 25
4

q 16 9 0 1
4

r 49
4

25
4

1
4 0

By a simple calculation, one can verify that the function d is a b-metric, for s = 2. We define the
self-mappings g, T on X, as:

g :

(
a b q r
a r q q

)
, T :

(
a b q r
q r r q

)
.

For α = 0, 3; β = 0, 8; and ψ(t) = t
1+t for all t ∈ [0, ∞).

It is clear that g, T satisfies (4) for all u, v ∈ X \ {b, r}. Moreover, b and r are two coincidence points of g and T.

Definition 5. Let (X, d) is a metric space. A self-mapping T: X → X is said to be an interpolative weakly
contractive mapping if there exists a constant α ∈ (0, 1) such that:

ζ(d(Tx, Ty)) ≤ ζ([d(x, Tx)]α[d(y, Ty)]1−α)− ϕ([d(x, Tx)]α[d(y, Ty)]1−α), (11)

for all x, y ∈ X \ Fix(T), where
Fix(T) = {a ∈ X|Ta = a},
ζ: [0, ∞)→ [0, ∞) is a continuous monotone nondecreasing function with ζ(t) = 0 if and only if t = 0,
ϕ: [0, ∞)→ [0, ∞) is a lower semi-continuous function with ϕ(t) = 0 if and only if t = 0.

Theorem 3. Let (X, d) be a complete metric space. If T : X → X is a interpolative weakly contractive mapping,
then T has a fixed point.

Proof. For any x0 ∈ X, we define a sequence {xn} by x = x0 and xn+1 = Txn, n = 0, 1, 2, . . .
If there exists n0 ∈ N such that xn0+1 = xn0 , then xn0 is clearly a fixed point in X. Otherwise, xn+1 6= xn

for each n ≥ 0.

Substituting x = xn and y = xn−1 in (11), we obtain that:

ζ(d(xn+1, xn)) ≤ ζ([d(xn, xn+1)]
α[d(xn−1, xn)]

1−α)− ϕ([d(xn, xn+1)]
α[d(xn−1, xn)]

1−α)

≤ ζ([d(xn, xn+1)]
α[d(xn−1, xn)]

1−α). (12)

Using property of function ζ, we get:

d(xn+1, xn) ≤ [d(xn, xn+1)]
α[d(xn−1, xn)]

1−α.

We derive:
[d(xn+1, xn)]

1−α ≤ [d(xn−1, xn)]
1−α.

Therefore:
d(xn+1, xn) ≤ d(xn−1, xn), for all n ≥ 1.
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It follows that the positive sequence {d(xn+1, xn)} is decreasing. Eventually, there exists c ≥ 0
such that limn d(xn+1, xn) = c.

Taking n→ ∞ in the inequality (12), we obtain:

ζ(c) ≤ ζ(c)− ϕ(c).

We deduce that c = 0. Hence:
lim

n
d(xn+1, xn) = 0. (13)

Therefore, {xn} is a Cauchy sequence. Suppose it is not. Then, there exists a real number ε > 0,
for any k ∈ N, ∃mk ≥ nk ≥ k such that:

d(xmk , xnk ) ≥ ε. (14)

Putting x = xnk−1 and y = xmk−1 in (11) and using (14), we get:

ζ(ε) ≤ ζ(d(xmk , xnk )) ≤ ζ([d(xmk−1, xmk )]
α[d(xnk−1, xnk )]

1−α)− ϕ([d(xmk−1, xmk )]
α[d(xnk−1, xnk )]

1−α).

Letting k→ ∞ and using (13), we conclude:

ζ(ε) ≤ ζ(0)− ϕ(0) = 0,

which is contradiction with ε > 0; thus, {xn} is a Cauchy sequence; since (X, d) is complete,
we obtain z ∈ X such that limn d(xn, z) = 0, and assuming that Tz 6= z, we have:

ζ(d(xn+1, Tz)) ≤ ζ([d(xn, xn+1)]
α[d(z, Tz)]1−α)− ϕ([d(xn, xn+1)]

α[d(z, Tz)]1−α) for all n.

Letting n→ ∞, we get:

ζ(d(z, Tz)) ≤ ζ([d(z, z)]α[d(z, Tz)]1−α)− ϕ([d(z, z)]α[d(z, Tz)]1−α) = ζ(0)− ϕ(0) = 0,

which is a contradiction; thus, Tz = z.

Example 7. Let the set X = [0, 3] and a function δ : X× X → [0, ∞) be defined as follows:

δ(x, y) =


0, if x = y;
3, if x, y ∈ [0, 1) and x 6= y;
2, otherwise.

Then, (X, δ) is a complete metric space.

Let T: X → X be defined as:

Tx =

{
0, if x ∈ [0, 1);
1, if x ∈ [1, 3].

For ζ(t) = t2, ϕ(t) = 1
2 t for all t ∈ [0,+∞) and α = 0, 6.

We discuss the following cases.

Case 1. If x = y or x, y ∈ (0, 1), or x, y ∈ (1, 3] with x 6= y. It is obvious.

Case 2. If x ∈ (0, 1) and y ∈ (1, 3].

We have:
ζ(δ(Tx, Ty)) = ζ(δ(0, 1)) = ζ(2) = 4,
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and:
[δ(x, Tx)]α[δ(y, Ty)]1−α = [δ(x, 0)]α[δ(y, 1)]1−α = 2.(

3
2
)α.

Therefore:

ζ([δ(x, Tx)]α[δ(y, Ty)]1−α)− ϕ([δ(x, Tx)]α[δ(y, Ty)]1−α) = (
3
2
)α[4.(

3
2
)α − 1] ≥ 4 = ζ(2) = ζ(δ(Tx, Ty)).

Case 3. If x ∈ (1, 3] and y ∈ (0, 1).

We have:
ζ(δ(Tx, Ty)) = ζ(δ(1, 0)) = ζ(2) = 4,

and:
[δ(x, Tx)]α[δ(y, Ty)]1−α = [δ(x, 1)]α[δ(y, 0)]1−α = 3.(

2
3
)α.

Therefore,

ζ([δ(x, Tx)]α[δ(y, Ty)]1−α)− ϕ([δ(x, Tx)]α[δ(y, Ty)]1−α) = (
2
3
)α[9.(

2
3
)α − 3

2
] ≥ 4 = ζ(2) = ζ(δ(Tx, Ty)).

Thus,

ζ(d(Tu, Tv)) ≤ ζ([d(u, Tu)]α[d(v, Tv)]1−α)− ϕ([d(u, Tu)]α[d(v, Tv)]1−α),

for all u, v ∈ X \ {0, 1}.

Then, T has two fixed points, which are zero and one.

Example 8. Let X = {a, b, r, s} be endowed with the metric defined by the following table of values:

d(x, y) a b r s
a 0 1 4 1
b 1 0 5 2
r 4 5 0 3
s 1 2 3 0

Consider the self-mapping T on X as:

T :

(
a b r s
a s a s

)
.

For ζ(t) = et−1 and ϕ(t) = 2t − 1 for all t ∈ [0, ∞); α =0, 3.

We have:

ζ(d(Tu, Tv)) ≤ ζ([d(u, Tu)]α[d(v, Tv)]1−α)− ϕ([d(u, Tu)]α[d(v, Tv)]1−α),

for all u, v ∈ X \ {a, s}.

Then, T has two fixed points, which are a and s.

If ζ(t) = t in Theorem (3), then we have the following corollary:
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Corollary 2. Let (X, d) be a complete metric space and T : X → X a self-mapping on X. If there exists a
constant α ∈ (0, 1) such that:

d(Tx, Ty) ≤ [d(x, Tx)]α[d(y, Ty)]1−α − ϕ([d(x, Tx)]α[d(y, Ty)]1−α),

for all x, y ∈ X and x 6= Tx, y 6= Ty.
ϕ : [0, ∞)→ [0, ∞) is a lower semi-continuous function with ϕ(t) = 0 if and only if t = 0.

Then, T has a fixed point.

Remark 2. In Corollary 2, if we take ϕ(t) = (1− λ)t for a constant λ ∈ (0, 1), then the result of Theorem [8]
is obtained.
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