Effect of Nozzle Outlet Shape on Cavitation Behavior of Submerged High-Pressure Jet
Abstract
:1. Introduction
2. Experimental Methods
2.1. High-Pressure Cavitation Jet Experimental System
2.2. Experimental Methods of High-Speed Photography
2.3. POD of Cavitation Cloud Images
3. Numerical Calculation Method
3.1. Governing Equation
3.1.1. Multiphase Flow Model
3.1.2. Cavitation Model
3.1.3. Turbulence Model
3.2. Meshing
4. Results and Discussion
4.1. Analysis of POD Results
4.2. Cavitation Cloud Characteristics
4.3. Numerical Calculation of Vorticity Field
5. Conclusions
- (1)
- The proper orthogonal decomposition method (POD) can effectively reflect the dynamic characteristics of the cavitation jet. The reconstruction coefficients of mode-1 obtained by the POD can better reflect the periodic time-frequency characteristics of cavitation development.
- (2)
- The shape of the nozzle outlet has a great influence on the dynamic characteristics of cavitation. When the nozzle outlet has a divergent segment, the periodic oscillation characteristics are more obvious, the frequency domain distribution is more concentrated, and the cavitation near the nozzle outlet is more intense.
- (3)
- The jet generated by the nozzle with a divergent whistle has a larger vorticity in the shear layer near the outlet. Further, a stronger small-scale vortex and more severe cavitation occurs from the nozzle with a divergent whistle.
- (4)
- The region with a higher distribution of baroclinic terms corresponds to the region with a higher volume fraction of cavitation. The expansion term of vorticity corresponds to the shedding of cavitation, while the main generation of vorticity in the cavitation jet is reflected in the extension term of vorticity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soyama, H. Cavitating Jet: A Review. Appl. Sci. 2020, 10, 7280. [Google Scholar] [CrossRef]
- Soyama, H. Cavitation Peening: A Review. Metals 2020, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Hu, Q.X.; Yang, Y.; Wang, C. Performance Differences of Electrical Submersible Pump under Variable Speed Schemes. Int. J. Simul. Model. 2021, 20, 76–86. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, M.; Wang, C.; Gao, Z. Optimal Design of Diversion Piers of Lateral Intake Pumping Station Based on Orthogonal Test. Shock. Vib. 2021, 2021, 6616456. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform. 2021, 50, 101406. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Wang, R.; Tang, S.; Su, H.; Cao, K. Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization. Appl. Acoust. 2021, 183, 108336. [Google Scholar] [CrossRef]
- Shi, L.; Zhu, J.; Tang, F.; Wang, C. Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model. Energies 2020, 13, 779. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Long, B.; Wang, C.; Han, C.; Li, L. Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance. Energies 2020, 13, 1628. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Zhang, Y.; Xiang, W.; He, Z.; Shi, W. Numerical study of coupled flow in blocking pulsed jet impinging on a rotating wall. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 508. [Google Scholar] [CrossRef]
- Wang, H.; Qian, Z.; Zhang, D.; Wang, T.; Wang, C. Numerical Study of the Normal Impinging Water Jet at Different Impinging Height, Based on Wray–Agarwal Turbulence Model. Energies 2020, 13, 1744. [Google Scholar] [CrossRef] [Green Version]
- Ljiri, M.; Shimonishi, D.; Nakagawa, D.; Yoshimura, T. New water jet cavitation technology to increase number and size of cavitation bubbles and its effect on pure Al surface. Int. J. Lightwght Mater. Manuf. 2018, 1, 12–20. [Google Scholar]
- Yang, Y.; Li, W.; Shi, W.; Wang, C.; Zhang, W. Experimental Study on Submerged High-Pressure Jet and Parameter Optimization for Cavitation Peening. Mechanika 2020, 26, 346–353. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Shi, W.; Zhou, L.; Zhang, W. Experimental Study on the Unsteady Characteristics and the Impact Performance of a High-Pressure Submerged Cavitation Jet. Shock. Vib. 2020, 2020, 1701843. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Shi, W.; Zhang, W.; AEl-Emam, M. Numerical Investigation of a High-Pressure Submerged Jet Using a Cavitation Model Considering Effects of Shear Stress. Processes 2019, 7, 541. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, R.; Kikuchi, T.; Yamagata, T.; Fujisawa, N. Shadowgraph Imaging of Cavitating Jet. J. Flow Control. Meas. Vis. 2015, 3, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, R.; Yanagisawa, K.; Yamagata, T.; Fujisawa, N. Simultaneous shadowgraph imaging and acceleration pulse measurement of cavitating jet. Wear 2016, 358, 72–79. [Google Scholar] [CrossRef]
- Peng, C.; Tian, S.; Li, G. Joint experiments of cavitation jet: High-speed visualization and erosion test. Ocean Eng. 2018, 149, 1–13. [Google Scholar] [CrossRef]
- Shridhar, G.J.; Katz, O.K. Near-field flow structure and cavitation inception in jets. In Proceedings of the First Symposium on Turbulence and Shear Flow Phenomena, San Francisco, CA, USA, 18–23 July 1999. [Google Scholar]
- Nakano, K.; Hayakawa, M.; Fujikawa, S. Observations of Cavitation Bubbles in a Starting Submerged Water Jet. Trans. Jpn. Soc. Mech. Eng. Ser. B 2003, 69, 360–367. [Google Scholar] [CrossRef] [Green Version]
- McGinn, P.; Pearce, D.; Hardalupas, Y.; Taylor, A.; Vogiatzaki, K. Cavitation Bubble Cloud Break-Off Mechanisms at Micro-Channels. Fluids 2021, 6, 215. [Google Scholar] [CrossRef]
- Ma, R.; Slaboch, P.E.; Morris, S.C. Fluid mechanics of the flow-excited Helmholtz resonator. J. Fluid Mech. 2009, 623, 1–26. [Google Scholar] [CrossRef]
- Hussain, A.; Hasan, M. The ’whistler-nozzle’ phenomenon. J. Fluid Mech. 1983, 134, 431–458. [Google Scholar] [CrossRef] [Green Version]
- Varieras, D.; Brancher, P.; Giovannini, A. Self-sustained oscillations of a confined impinging jet. Flow Turbul. Combust. 2006, 78, 1–15. [Google Scholar] [CrossRef]
- Favrel, A.; Junior JG, P.; Landry, C.; Müller, A.; Yamaishi, K.; Avellan, F. Dynamic modal analysis during reduced scale model tests of hydraulic turbines for hydro-acoustic characterization of cavitation flows. Mech. Syst. Signal Process. 2018, 117, 81–96. [Google Scholar] [CrossRef]
- Fujisawa, N.; Fujita, Y.; Yanagisawa, K.; Fujisawa, K.; Yamagata, T. Simultaneous observation of cavitation collapse and shock wave formation in cavitating jet. Exp. Therm. Fluid Sci. 2018, 94, 159–167. [Google Scholar] [CrossRef]
- Peng, K.; Tian, S.; Li, G.; Huang, Z.; Yang, R.; Guo, Z. Bubble dynamics characteristics and influencing factors on the cavitation collapse intensity for self-resonating cavitating jets. Pet. Explor. Dev. 2018, 45, 155–162. [Google Scholar] [CrossRef]
- Sato, K.; Taguchi, Y.; Hayashi, S. High Speed Observation of Periodic Cavity Behavior in a Convergent-Divergent Nozzle for Cavitating Water Jet. J. Flow Control. Meas. Vis. 2013, 1, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Wakui, A.; Oguma, Y.; Shimizu, S.; Ji, H. Periodic Behavior of Cavitation Cloud Shedding in Submerged Water Jets Issuing from a Sheathed Pipe Nozzle. J. Flow Control. Meas. Vis. 2018, 6, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.; Yang, C.; Oguma, Y.; Shimizu, S. Numerical analysis of cavitation cloud shedding in a submerged water jet. J. Hydrodyn. 2016, 28, 986–993. [Google Scholar] [CrossRef]
- Peng, G.; Okada, K.; Yang, C.; Oguma, Y.; Shimizu, S. Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet. Int. J. Fluid Mach. Syst. 2016, 9, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Li, G.S.; Shen, Z.H.; Zhou, C.S.; Zhang, D.B.; Liao, H.L. Advances in Investigation and Application of Self-resonating Cavitating Water Jet. Eng. Sci. 2005, 7, 27–32. [Google Scholar]
- Jiang, Y.; Abu-Hamdeh, N.H.; Bantan, R.A.; Li, Z. Influence of upstream angled ramp on fuel mixing of hydrogen jet at supersonic cross flow. Aerosp. Sci. Technol. 2021, 119, 107099. [Google Scholar] [CrossRef]
- Jiang, Y.; Poozesh, A.; Marashi, S.M.; Moradi, R.; Gerdroodbary, M.B.; Shafee, A.; Li, Z.; Babazadeh, H. Effect of cavity back height on mixing efficiency of hydrogen multi-jets at supersonic combustion chamber. Int. J. Hydrogen Energy 2020, 45, 27828–27836. [Google Scholar] [CrossRef]
- Jiang, Y.; Gerdroodbary, M.B.; Sheikholeslami, M.; Babazadeh, H.; Shafee, A.; Moradi, R.; Li, Z. Effect of free stream angle on mixing performance of hydrogen multi-jets in supersonic combustion chamber. Int. J. Hydrogen Energy 2020, 45, 25426–25437. [Google Scholar] [CrossRef]
- Kosambi, D.D. Statistics in Function Space. J. Indian Math. Soc. 2016, 115–123. [Google Scholar] [CrossRef]
- Brennen, C.E. Fundamentals of Multiphase Flow; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Mikko, M.; Veikko, T.; Sirpa, K. On the Mixture Model for Multiphase Flow; VTT Publications: Espoo, Finland, 1996; p. 288. [Google Scholar]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A Two-Phase Flow Model for Predicting Cavitation Dynamics. In Proceedings of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, 30 May–3 June 2004. [Google Scholar]
- Deck, S. Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 2012, 26, 523–550. [Google Scholar] [CrossRef]
L1 (mm) | L2 (mm) | d (mm) | L3 (mm) | θ (°) |
---|---|---|---|---|
5 | 4 | 1 | 4 | 60 |
Pressure (MPa) | 2 | 6 | 10 | 14 | 18 | 20 |
---|---|---|---|---|---|---|
Frequency without whistle (Hz) | 4000 | 2250 | 1500 | 1250 | 1100 | 1000 |
Frequency with divergent whistle (Hz) | 2600 | 1800 | 1400 | 1300 | 1200 | 1100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yang, Y.; Wang, C.; Shi, W.; Li, W.; Pan, B. Effect of Nozzle Outlet Shape on Cavitation Behavior of Submerged High-Pressure Jet. Machines 2022, 10, 4. https://doi.org/10.3390/machines10010004
Wang G, Yang Y, Wang C, Shi W, Li W, Pan B. Effect of Nozzle Outlet Shape on Cavitation Behavior of Submerged High-Pressure Jet. Machines. 2022; 10(1):4. https://doi.org/10.3390/machines10010004
Chicago/Turabian StyleWang, Gaowei, Yongfei Yang, Chuan Wang, Weidong Shi, Wei Li, and Bo Pan. 2022. "Effect of Nozzle Outlet Shape on Cavitation Behavior of Submerged High-Pressure Jet" Machines 10, no. 1: 4. https://doi.org/10.3390/machines10010004
APA StyleWang, G., Yang, Y., Wang, C., Shi, W., Li, W., & Pan, B. (2022). Effect of Nozzle Outlet Shape on Cavitation Behavior of Submerged High-Pressure Jet. Machines, 10(1), 4. https://doi.org/10.3390/machines10010004