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Abstract: There have been many reports of damage to wind turbine blades caused by lightning
strikes in Japan. In some of these cases, the blades struck by lightning continue to rotate, causing
more serious secondary damage. To prevent such accidents, it is a requirement that a lightning
detection system is installed on the wind turbine in areas where winter lightning occurs in Japan.
This immediately stops the wind turbine if the system detects a lightning strike. Normally, these wind
turbines are restarted after confirming soundness of the blade through visual inspection. However,
it is often difficult to confirm the soundness of the blade visually for reasons such as bad weather.
This process prolongs the time taken to restart, and it is one of the causes that reduces the availability
of the wind turbines. In this research, we constructed a damage detection model for wind turbine
blades using machine learning based on SCADA system data and, thereby, considered whether the
technology automatically confirms the soundness of wind turbine blades.

Keywords: anomaly detection; gaussian mixture model; lightning detection system; lightning protec-
tion; SCADA; wind turbine

1. Introduction

The efforts to realize a low-carbon society are being promoted against the background
of global environmental issues, which are of increasing interest around the world. As one
of the attempts to reduce carbon production, countries are expanding the use of renewable
energy such as wind power generation, solar power generation, and geothermal power
generation. Among them, wind power generation including offshore is attracting attention
as a cost-effective power generation method, and it is under extensive development around
the world.

However, many wind turbines in Japan have received serious damage caused by
lightning strikes, and it is regarded as a problem. The wind turbines in Japan are under
conditions that are vulnerable to lightning strikes, because a quarter of the wind turbines
are built on the Sea of Japan coast where large lightning strikes are likely to occur and
wind turbines are getting bigger. The wind turbine blades receiving lightning strikes
are often catastrophically damaged with cracks. Accidents have been reported in which
the rotating blade received such damage and the damage gradually expanded due to
centrifugal force, leading to more serious secondary damage [1-3]. Research on lightning
protection measures to prevent such lightning damage is being actively conducted [4-9].

The Japanese ministry of economy, trade and industry partially revised its interpreta-
tion of technical standards for wind power generation equipment to prevent such accidents.
It was decided in the revision to install an emergency stop device so that the wind turbine
can be stopped immediately if the lightning strike hits the wind turbine in the winter
lightning area of the Sea of Japan coast [10]. By this revision, the wind turbines must be
emergency stopped if the lightning detection system (LDS) installed on the wind turbine
detects a lightning strike, and it can no longer be restarted until it is confirmed to be sound.
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Normally, the soundness of the wind turbine is confirmed by visual inspection by workers,
but it often takes a long time to restart because quick visual inspection becomes difficult
due to bad weather. Such a prolonged downtime is a factor that reduces availability of
wind turbine. One wind farm could not be restarted immediately after a lightning strike
on a wind turbine due to weather or other reasons, and the availability dropped by 2.23%
over the year [11]. If the soundness of the wind turbine is impaired by a lightning strike, it
is necessary to grasp the situation and restart after repair. However, if the soundness of
the wind turbine is maintained despite the lightning strike hitting the wind turbine, it is
necessary to restart as quickly as possible and improve the availability.

We propose that a lightning damage detection model for wind turbine can be con-
structed using supervisory control and data acquisition system data (SCADA data) as a
feature of the machine learning model. It is expected that the operation will be restated
quickly after a lightning strike is detected because it does not require visual inspection by
workers if the soundness of the blade can be confirmed based on SCADA data, and that
the availability will be improved accordingly. Furthermore, the anomaly detection models
using SCADA data have the advantage of not requiring additional equipment while the
existing blade damage detection method [12,13] requires additional equipment such as
vibration sensors. The SCADA system is installed on all wind turbines and the system can
collect data of the wind turbine remotely. Therefore, the soundness of the blade can be
confirmed remotely in real time with the existing equipment if the SCADA system is used
for anomaly detection.

A study on an anomaly detection method for wind turbines based on SCADA data
is being constructed [14-16]. Among them, it was clarified that it can detected anomalies
of the wind turbine by a machine learning model that has features such as power curve
and rotational speed of wind turbine. However, this method aims to predict failure due
to deterioration over time from months to weeks in advance, and it is not applicable to
sudden damage such as lightning damage. Therefore, our research group proposed the
method that can immediately detect blade anomalies caused by a sudden event such as
a lightning strike [17]. Accordingly, it is necessary to continue to consider the optimal
anomaly detection model and effective features based on this result.

In this paper, we describe a lightning damage detection model for wind turbine blades
using a Gaussian mixture model (GMM). Additionally, we report the method that can detect
blade anomalies due to lightning strikes automatically and results of examination about the
method to improve detection accuracy. This paper consists of the following four sections.
Section 2 describes the feature extraction method, learning method, and assessment method
of the lightning damage detection model for wind turbine blade. In Section 3, we will
examine the anomaly detection accuracy and reliability of this model using SCADA data of
a wind turbine whose blades have been damaged by a lightning strike. In Section 4, we
compare the anomaly detection accuracy of multiple models and examine the accuracy
improvement. Finally, we conclude the paper in Section 5. In addition, Table 1 lists symbols,
acronyms and abbreviations used in this paper.

Table 1. List of symbols, acronyms and abbreviations.

LDS Lightning Detection System
SCADA Supervisory control and data acquisition
GMM Gaussian mixture model
BIC Bayesian information criterion
ROC Receiver operating characteristic

AUC Area under the curve
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Table 1. Cont.
LDS Lightning Detection System
SMA Simple moving average
WMA Weighted moving average
EMA Exponential moving average
SWMA Sine weighted moving average
My Size of window
o Weight factor of exponential moving average
n Number of the data
x Data
N (x|py, Zg) Gaussian distribution k
p(x|®) Gaussian mixture model
T Weighting coefficient of the Gaussian distribution k
Hi Mean vector of the Gaussian distribution k
PR General covariance matrix of the Gaussian distribution k
Q) Set of three parameters 7, py, X
K Total number of Gaussian distributions
L(©) Log-likelihood probability on ®
Y Posterior probability
score Anomaly score
TP True positive
FP False positive
TN True negative
FN False negative

2. Construction of Lightning Damage Detection Model for Wind Turbine Blades
2.1. Process of Training and Assessment for the Model

In this study, the lightning damage detection model for wind turbine blades was
trained and assessed using SCADA data of the wind turbines. This wind turbine was
reported blade damage accident caused by a lightning strike. Figure 1 shows the process of
training and assessment for the model.

In the training process of the model, GMM is trained using the data on normal
operation of the wind turbine. It is possible to calculate the degree of deviation from
normal value as anomaly score by modeling the data on normal operation. Additionally,
the threshold of the anomaly score is determined using anomaly score on normal operation
calculated by the trained GMM.

In the assessment process, the anomaly detection accuracy of the trained GMM is
assessed using the data at the accident. First, the anomaly score at the accident is calculated
using the trained GMM, and hence, normal or abnormal are discriminated by the threshold.
The data at the accident are labeled in advance as normal immediately before the lightning
strike and abnormal immediately after the lightning strike. Accordingly, this is used as the
true label and compared with the anomaly detection result to assess the accuracy.

2.2. Extraction of Feature
2.2.1. SCADA System

SCADA systems are used to remotely monitor the current status of wind turbines such
as wind speed, wind direction, rotational speed, power, and component temperatures. The
system installed on most modern wind turbines can collect data every second, but many
business operators store only data averaged to 1 min or 10 min because the amount of the
data would be too large otherwise.
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Figure 1. Process of training and assessment.

2.2.2. SCADA Data of Wind Turbine at the Accident Due to Lightning Strike

It was clarified in previous research [17] that, if a wind turbine blade is damaged
by a lightning strike, the outliers will occur frequently and continuously in wind speed
rotational speed characteristic, wind speed power characteristic, and wind speed pitch
degree characteristis of SCADA data. Based on this result, anomaly detection is performed
using the wind speed rotational speed characteristic, which show the most outliers.

Figure 2 shows wind speed-rotational speed characteristic of 1 min averaged SCADA
data collected from the wind turbine. This wind turbine blade have been damaged by a
lightning strike. Table 2 shows the data acquisition period of Figure 2. In the graphs, the
blue dots represent the data immediately before the lightning strike, the red dots represent
the data immediately after the lightning strike, and the green dots represent the data on
normal operation. Additionally, data that deviate from the overall tendency (outliers) are
surrounded by a black frame.

© On normal operation
© Just before the lightning strike]

4.0 @ °Justafter the lightning strike 3
?

rotational speed
(oo}

©p @ @O0

0 2 4 6 8 10 12 14 16 18 20
wind speed [m/s]

Figure 2. Wind speed rotational speed characteristic.



Machines 2022, 10, 9 5o0f 21
Table 2. Data acquisition period of SCADA data.
Data Period
Type of SCADA Data at the Accident on Normal Operation
1 min average data 170 min The data after repair for about 33 days

As shown in Figure 2, most data immediately after the lightning strike are outliers.
However, outliers also occur in data on normal operation, and hence, the data immediately
after the lightning strike and the data on normal operation are not linearly separable.
Therefore, anomaly detection using threshold is difficult, and it is considered that the
method based on machine learning model is effective.

It is necessary to clarify the difference between the outliers that occur immediately
after a lightning strike and the outliers that occur during normal operation by confirming
the time characteristics of the rotational speed. Figure 3 shows time characteristics of
rotational speed on normal operation. Figure 4 shows time characteristics of rotational
speed before and after the lightning strike.
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Figure 3. Time characteristic of rotational speed in normal operation: (a) rotational speed on normal
operation; (b) rotational speed on normal operation (partial expansion).
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Figure 4. Time characteristic of rotational speed at the accident.

In comparing Figures 3 and 4, the outliers that occur on normal operation are not
consecutive three times or more. By contrast, the outliers that occur immediately after
the lightning strike are continuous for several minutes. Therefore, it is considered that
the abnormal data immediately after the lightning strike can be detected by reflecting the
frequency of outliers in the feature of the anomaly detection model.

2.2.3. Extraction Method for Features Using Moving Average

According to study result in Section 2.2.2, it is necessary to consider the time charac-
teristics, rather than simply using wind speed and rotational speed as features. Therefore,
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we select multiple moving averages of wind speed and rotational speed as features. It
is considered that temporal characteristics can be included in the features by using the
moving average because the moving average is calculated using the data for a few minutes.

In this study, we used a simple moving average, a weighted moving average, an
exponential moving average, and a sine weighted moving average. Each moving average
is shown in Equations (1) to (4). In these Equations, x; means the i-th data. Here, Mjj4 =5,
a=0.1.

1 n
SMA,, = X; @
MA j=p—Mys+1
2 n
WMA, = ———F——— ix; (2)
T Mua(My,+1) i=n—Mpya+1 l
EMA,= EMA, 1+ a(x; — EMA,_1) 3)
SWMAn _ i=n—Mpa+1 Xi Sln(MMA+l TE) (4)

n : i
Limn— My 150 ( MMAH*“)

The wind speed and rotational speed were converted into features using the
Equations (1) to (4). Consequently, features are 2 x 5 dimensions. As shown in
Equations (1), (2) and (4), feature includes information of the data for Mys4 minutes. Addi-
tionally, as shown in Equation (3), feature includes information of all past data.

2.2.4. Pre-Processing for Features

In this study, the feature is 0-1 normalized so that the maximum value is 1 and the
minimum value is 0, as shown in Equation (5).
Xp — minx
Xy = ——— ©)
maxx — minx
The data when rotational speed is 0 rpm is removed from training data and assessment
data, because wind speed will be the only effective feature in this anomaly detection model
when the blade is stopped. In this case, the anomaly detection for wind speed is performed,
but the anomaly detection for wind turbines is not performed properly. For this reason, it
is not appropriate that to use the data when the blade is stopped for this model.

2.3. Anomaly Detection Model Using GMM
2.3.1. Theoretical Explanation of GMM

In this study, the lightning damage detection model for wind turbine blades is con-
structed using GMM. GMM can estimate the probabilistic model based on data density of
normal data and discriminates areas with low data density as abnormal [18]. As is clear
from the study results in Section 2.2.2, the data density is low in the area where outliers
occur. Hence, it is considered that anomaly detection by GMM is effective. Furthermore,
GMM can be trained using only normal data, and hence, does not require abnormal data for
training. Therefore, GMM is appropriate method for detecting lightning damage because
the data when the blade is damaged by lightning strike are scarce.

The basic equations of GMM are shown in Equations (6) to (9).

K
p(x[©) = ) mN (x|pk, Zi) (6)
k=1

exp(— 3 — o) (v — )
(2n|Zk])®
0<m <1 (8)

N (x[pge, Ze) = @)
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K
Y m=1 )
k=1

As shown in Equations (6) and (7), GMM is represented by sum of weighted Gaussian
distributions. GMM can estimate the probabilistic model that d-dimensional data x follows,
where 71 is the weighting coefficient of the Gaussian distribution k, besides, py and Ly are
the mean vector and the general covariance matrix of the Gaussian distribution k. © is
represented as the set of these three parameters 7, g, Xi for each Gaussian distribution. K
means the total number of Gaussian distributions, and it is a hyperparameter of the GMM.
p(x|©®) estimated by GMM can be treated as probability density function, because sum
of weighting coefficient 7t is limited to 1 as shown in equations (8) and (9). Therefore, it
becomes 1 when the p(x|©) is integrated over the entire interval of x.

GMM parameter @ can be optimized by maximizing log-likelihood probability defined
by Equation (10), where N is total number of the data.

N
L(@®)=In][p(x:|©) (10)

i=0

The expectation-maximization algorithm (EM algorithm) [19] is used to maximize
the log-likelihood probability of Equation (10). For the calculation of the EM algorithm,
posterior probability y calculated by Equation (11) and renewal formula shown in Equations
(12) to (14) are used. First, we randomly decide the initial values of m, g, and Zy, and
thus, calculate the posterior probability y by Equation (11). Second, we update 7, pg, and
L using Equations (12) to (14). Note that the yj in Equation (14) is updated one. This
posterior probability calculation and parameter update are repeated until the parameters
converge, so that the log-likelihood probability can be maximized.

WAMCAITRYY)

TR N (g i)

o 2111\]:1 Yk

e — 7]\] (12)
N

e = Zn?\} Yk Xn (13)

Zn:l Y?Zk

T

Th = EnNzl Yk (xi;\]— ﬂk)(xn - ;uk) (14)

Zn:l Ynk

2.3.2. Anomaly Detection by GMM

It is necessary to define anomaly score based on probability density for performing
anomaly detection using GMM. The predicted distribution p(x | ©) of the normal data will
be obtained if only normal data are modeled by GMM. Using this predicted distribution, the
probability density p(x™ | ©) of arbitrary data ™ can be calculated. p(x™ | ©) will low if
x™ is abnormal data since abnormal data is unlikely to occur. The anomaly score is defined
by Equation (15) below utilizing this property. Equation (15) is the negative logarithm
of the probability density, and thus the anomaly score will increase if the probability of
occurrence is low such as abnormal data.

score = —In p(x(") 0) (15)

It is possible to discriminate between normal data and abnormal data if a threshold is
set for the anomaly score calculated by Equation (15).
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2.3.3. Selection of Hyperparameter K of GMM

The number of mixture components K must be determined in advance to train GMM.
In this study, we compared the following two selection methods and examined the im-
sprovement of anomaly detection accuracy.

Normally, the Bayesian information criterion (BIC) [19] shown in Equation (16) is
used to select K. where k, is number of features. As shown in Equation (16), BIC becomes
smaller as the probability distribution fits the data. In this study, we used a method that
automatically selects the K with the lowest BIC between 2 and 256.

BIC = —2Inp(x|®) + k, In(N) (16)

On the other hand, when using GMM as an anomaly detection method, it is also
effective as a method of selecting the most accurate K by comparing anomaly detection
accuracy on multiple K. BIC is an evaluation standard proposed to select the appropriate
model for the cluster analysis method. Therefore it is effective for data divided into multiple
classes [18]. However, GMM is used as a method for estimating the predicted distribution
of data in this study, thus the BIC of the best model for anomaly detection is not always
low. Accordingly, there is a high possibility that the anomaly detection accuracy can be
improved by selecting a model based on the anomaly detection accuracy itself, rather
than based on BIC. In this study, we set K to 64, 128 and 256 to compare these anomaly
detection accuracies.

2.3.4. Assessment for Anomaly Detection Accuracy

In this study, anomaly detection accuracy of the model is assessed using confusion
matrix and the receiver operating characteristic curve (ROC curve). Below is a brief
description of the confusion matrix and ROC curve.

The confusion matrix shown in Table 3 summarizes true positive, false positive,
true negative, and false negative [20]. Normally, anomaly detection accuracy cannot
be sufficiently assessed by simply calculating the correct answer rate because the ratio
of abnormal assessment data for the anomaly detection model is extremely small. It is
possible to consider the bias of the data by using confusion matrix because normal data
and abnormal data can be represented separately.

Table 3. Confusion matrix.

Predicted
Abnormal Normal

Z

5 True positive (TP) False negative (FN)
o 2
=] =3
(¢]

z

5 False positive (FP) True negative (TN)

oY)

The ROC curve shows the locus of the false positive rate-true positive rate characteristic
when the threshold is changed [20]. True positive rate and false positive rate can be
calculated by the following Equations (17) and (18). The area surrounded by a straight
line with false positive rate = 1, a straight line with true positive rate = 0, and the ROC
curve is called Area Under the Curve (AUC). As is clear from the definition of the ROC
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curve, the AUC expands as the anomaly detection accuracy increases. Thereby, the AUC is
assessment standard for performance of the model. Note that the range of AUC is 0 to 1.

TP
T iti = e 17
rue positive rate TP+ EN (17)
FP
Fal iti te=—s—= 1
alse positive rate P+ TN (18)

3. Result of Anomaly Detection and Performance Assessment
3.1. The Model in Which the Number of Mixture Components K Was Determined Based on BIC

This model automatically selected the K with the lowest BIC between 2 and 256 and
performed anomaly detection. Besides, the 99th percentile value of the anomaly score
calculated from the data during normal operation was used as the threshold. It should be
noted the selected K was 29.

Figure 5 shows the assessment result of this model. In Figure 5a,b, the blue dots
represent the data immediately before the lightning strike, and the red dots represent the
data immediately after the lightning strike. In the Figure 5c,d, the blue dots represent the
data that the model predicted to be normal, and the red dots represent the data that the
model predicted to be abnormal. Additionally, X is plotted against the data that were poorly
predicted. Figure 5e shows the time characteristics of the anomaly score and its threshold.

o

16 7 L e e e T T
E ® Normal data o °
14 f \ 14 ¥ e e . N
= E ® Abnormal data = e 2 «® o
E_12 ﬁ.- E_n b }-‘W}f\;‘f s
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(a) (b)
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0 . , . \ 0 . . .
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(© (d)

anomaly score
LoL
(=T

time [min]

(e)

Figure 5. True label and assessment result of the model in which the number of mixture components
K was determined based on BIC (K = 29, threshold is 99th percentile’s value): (a) wind speed-
rotational speed characteristic with true label; (b) time characteristics of rotational speed with true
label; (c) wind speed rotational speed characteristic with predicted label; (d) time characteristics of
rotational speed with predicted label; (e) time characteristics of anomaly score.
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This result is assessed by the confusion matrix and the ROC curve. Table 4 shows the
confusion matrix, and Figure 6 shows the ROC curve.

Table 4. Confusion matrix of the model in which the number of mixture components K was deter-
mined based on BIC (K = 29, the threshold is the 99th percentile’s value).

Predicted
Abnormal Normal
5
3 17 6
]
5 2
=] =R
)
Z
g 0 135
=
=R

2
e
gos f ]
7
&
S04 ]
E
02 |
AUC =0.989
0 1 11 1 1 11 1 1 1 L1 1 1 11 1 1 1 11 1 1 1
0 0.2 0.4 0.6 0.8 1

false positive rate

Figure 6. ROC curve of the model in which the number of mixture components K was determined
based on BIC (K = 29, the threshold is the 99th percentile’s value).

Next, Figure 7 shows the training data of this model. In Figure 7a,b, the red dots
represent the data that exceed the threshold. Figure 7c shows the time characteristics of the
anomaly score and its threshold.
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Figure 7. Training data of the model in which the number of mixture components K was determined
based on BIC (K =29, the threshold is the 99th percentile’s value): (a) wind speed rotational speed
characteristic; (b) time characteristics of rotational speed; (c) time characteristics of anomaly score.

L
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‘an([)mily r‘\Jscqre

As is clear from Figure 5, anomaly score increases immediately after the lightning
strike and exceeds the threshold. Consequently, the data immediately after the lightning
strike is properly detected as abnormal. As shown in ROC curve of Figure 6, AUC is more
than 0.9, indicating that anomaly detection was performed appropriately. Additionally,
Table 4 indicates that six false negatives occurred. These six data are for 6 minutes after a
lightning strike, and, hence, it is considered that there is a time delay before the abnormal
data is detected. As shown in Figure 7, an increase in the anomaly score is seen even data
on normal operation, thereby false positives are likely to occur.

3.2. The Model in Which the Number of Mixture Components K Was 64

This model performed anomaly detection with K set to 64. The 100th percentile
value of the anomaly score calculated from the data during normal operation was used as
the threshold.

Figure 8 shows the assessment result of this model. Note that, the layout and the types
of plots of the Figure 8 are the same as in Figure 5.
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Figure 8. True label and assessment result of the model in which the number of mixture components

K was 64 (threshold is the 100th percentile’s value): (a) wind speed rotational speed characteristic

with true label; (b) time characteristics of rotational speed with true label; (c) wind speed rotational

speed characteristic with predicted label; (d) time characteristics of rotational speed with predicted

label; (e) time characteristics of anomaly score.

This result is assessed by the confusion matrix and the ROC curve. Table 5 shows the
confusion matrix, and Figure 9 shows the ROC curve.

Table 5. Confusion matrix of the model in which the number of mixture components K was 64 (the
threshold is the 100th percentile’s value).
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Figure 9. ROC curve of the model in which the number of mixture components K was 64 (the
threshold is the 100th percentile’s value).

Next, Figure 10 shows the training data of this model. Note that, the layout and the
types of plots of the Figure 10 are the same as in Figure 7.
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Figure 10. Training data of the model in which the number of mixture components K was 64
(the threshold is 100th percentile’s value): (a) wind speed rotational speed characteristic; (b) time
characteristics of rotational speed; (c) time characteristics of anomaly score.

As is clear from Figure 8, anomaly score increases immediately after the lightning
strike and exceeds the threshold. Consequently, the data immediately after the lightning
strike are properly detected as abnormal. However, the anomaly score after the lightning
strike decreased temporarily and fell below the threshold so that the false negative occurred.
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As shown in ROC curve of Figure 9, AUC is more than 0.99, indicating that anomaly detec-
tion was performed appropriately. Additionally, Table 5 indicates that 10 false negatives
occurred. These 10 data are due to the time delay of anomaly detection and the decrease
in the anomaly score after a lightning strike. As shown in training data of Figure 10, the
anomaly score during normal operation is stable and there is no sharp rise like immediately
after a lightning strike, and hence, it is considered that the false positives are unlikely
to occur.

3.3. The Model in Which the Number of Mixture Components K Was 128

This model performed anomaly detection with K set to 128. The 100th percentile’s
value for the anomaly score calculated from the data during normal operation was used as
the threshold.

Figure 11 shows the assessment result of this model. Note that, the layout and the
types of plots of the Figure 11 are the same as in the assessment result of the other models.
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Figure 11. True label and assessment result of the model in which the number of mixture components
Kwas 128 (the threshold is the 100th percentile’s value): (a) wind speed rotational speed characteristic
with true label; (b) time characteristics of rotational speed with true label; (c) wind speed-rotational
speed characteristic with predicted label; (d) time characteristics of rotational speed with predicted
label; (e) time characteristics of anomaly score.
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This result is assessed by the confusion matrix and the ROC curve. Table 6 shows the
confusion matrix, and Figure 12 shows the ROC curve.

Table 6. Confusion matrix of the model in which the number of mixture components K was 128
(threshold is 100th percentile’s value).

Predicted
Abnormal Normal
5
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=
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Figure 12. ROC curve of the model in which the number of mixture components K was 128 (threshold
is 100th percentile’s value).

Next, Figure 13 shows the training data of this model. Note that the layout and the
types of plots of the Figure 13 are the same as in the training data of the other models.

As is clear from Figure 11, anomaly score increases immediately after the lightning
strike and exceeds the threshold. Consequently, the data immediately after the lightning
strike are properly detected as abnormal. Additionally, as shown in ROC curve of Figure 12,
AUC is more than 0.99, indicating that anomaly detection was performed appropriately.
Table 6 indicates that only four false negatives occurred. These four data are due to the
time delay of anomaly detection. As shown in training data of Figure 13, the anomaly
score during normal operation is stable and there is no sharp rise like immediately after a
lightning strike, and hence, it is considered that the false positives are unlikely to occur.
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Figure 13. Training data of the model in which the number of mixture components K was 128
(threshold is 100th percentile’s value): (a) wind speed rotational speed characteristic; (b) time
characteristics of rotational speed; (c) time characteristics of anomaly score.

3.4. The Model in Which the Number of Mixture Components K Was 256

This model performed anomaly detection with K set to 256. The 100th percentile’s
value for the anomaly score calculated from the data during normal operation was used as
the threshold.

Figure 14 shows the assessment result of this model. Note that, the layout and the
types of plots of the Figure 14 are the same as in the assessment result of the other models.

This result is assessed by the confusion matrix and the ROC curve. Table 7 shows the
confusion matrix, and Figure 15 shows the ROC curve.

Next, Figure 16 shows the training data of this model. Note that, the layout and the
types of plots of the Figure 16 are the same as in the training data of the other models.
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Figure 14. True label and assessment result of the model in which the number of mixture components
K was 256 (threshold is 100th percentile’s value): (a) wind speed rotational speed characteristic with
true label; (b) time characteristics of rotational speed with true label; (c) wind speed rotational speed
characteristic with predicted label; (d) time characteristics of rotational speed with predicted label;
(e) time characteristics of anomaly score.
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Table 7. Confusion matrix of the model in which the number of mixture components K was 256
(threshold is 100th percentile’s value).
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Figure 15. ROC curve of the model in which the number of mixture components K was 256 (threshold
is 100th percentile’s value).

As is clear from Figure 14, anomaly score increases immediately after the lightning
strike and exceeds the threshold. Consequently, the data immediately after the lightning
strike are properly detected as abnormal. However, the anomaly score exceeded the thresh-
old before the lightning so that a false positive occurred. As shown by the ROC curve of
Figure 15, AUC is more than 0.99, indicating that anomaly detection was performed ap-
propriately. Additionally, Table 7 indicates that two false negatives and two false positives
occurred. Furthermore, as shown in training data of Figure 16, the anomaly score during
normal operation is stable and there is no sharp rise like immediately after a lightning
strike. The false positives occur in the assessment data but the anomaly score of the training
data is stable. Therefore, the model overfits the training data and most likely is not robust
for unknown data.
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Figure 16. Training data of the model in which the number of mixture components K was 256
(threshold is 100th percentile’s value): (a) wind speed rotational speed characteristic; (b) time
characteristics of rotational speed; (c) time characteristics of anomaly score.

4. Discussion

In this section, we compare anomaly detection accuracy of each model based on the
results of Section 3 and examine improvement of accuracy. Since the threshold differs for
each model, the comparison is performed based on the AUC of the ROC curve, which is an
assessment method that does not depend on the threshold.

Table 8 summarizes AUC of each model.

Table 8. AUC of each model.

Model AUC
K based on BIC (K =29) 0.989
K=64 0.994
K=128 0.999
K =256 0.996

As is clear as Table 8, AUC of the model with K = 128 is the highest, and it can be seen
that it is the optimum model. Nevertheless, the model with K based on BIC selected 29 as
K. Therefore, it became clear that the BIC does not decrease even with the optimum model
for anomaly detection.

As shown in the AUC of the model with K = 256, it is considered that the anomaly
detection accuracy does not improve by simply increasing K. The GMM will approximate
predicted model in more detail if K is large, whereas the anomaly score of unknown
data will increase because the model depends on training data. It is considered that this
overfitting lowered the AUC of the model with K = 256.

From the above consideration, it can be seen that the method of automatically selecting
K based on BIC used in normal GMMs is not effective for anomaly detection methods.
If GMM is used as the anomaly detection method, the anomaly detection accuracy can
be improved by setting K appropriately by comparing the accuracy and selecting the
optimal model.
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It became clear that a model with sufficient anomaly detection accuracy can be con-
structed using at least one month’s worth of training data. In this study, normal data for
about 33 days were used as the training data, and, as shown in Table 8, high anomaly
detection accuracy was confirmed in all models.

5. Conclusions

In this study, we constructed a lightning damage detection model for wind turbine
blades using GMM based on SCADA data, and examined the method to improve the
anomaly detection accuracy of the model. Wind speed and rotational speed were selected
as features based on a previous study. Moreover, 0-1 standardization and moving average
were performed as preprocessing. There are two methods for selecting hyperparameter
K of GMM: one is automatic selection based on BIC and the other is manual selection of
appropriate values. Anomaly detection with these two methods was performed and the
accuracy was compared. As a result, it becomes clear that the model manually selected at
K =128 had the highest AUC and was the most suitable model. Hence, it was clarified that
the performance of the model can be improved by using the method of manually selecting
multiple K and selecting the model with the highest anomaly detection accuracy.
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