Ankle Injury Rehabilitation Robot (AIRR): Review of Strengths and Opportunities Based on a SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria for the Review
- (1)
- Sources were accessible to the authors.
- (2)
- The articles were written in the English Language.
- (3)
- The existing AIRRs must be used to rehabilitate an ankle injury (this includes ankle sprains or ankle strains).
- (4)
- AIRRs must be developed with physical prototypes and not concept designs and analytical prototypes.
- (5)
- Any sources that were encompassing both the rehabilitation for an ankle disability and the rehabilitation for an ankle injury.
- (6)
- Sources after 1990 were included in this review.
2.2. Exclusion Criteria for Review
- (1)
- Sources were not written in the English Language.
- (2)
- The existing AIRRs specify the purpose of the rehabilitation are for an ankle disability only and not the rehabilitation for an ankle injury.
- (3)
- Studies with a lack of information regarding the existing AIRRs.
- (4)
- Studies that were still under the proposal stage.
- (5)
- Sources before 1990 were excluded from this review.
2.3. Use of the SWOT Analysis in the Review
2.4. Selection Review Process
3. Review Considerations
3.1. Strengths
3.1.1. Capability
3.1.2. Portability
3.2. Opportunities
3.2.1. Innovation
3.2.2. Scope of Usage
4. Discussion
4.1. Strengths
4.2. Opportunities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riegger, C.L. Anatomy of the Ankle and Foot. Phys. Ther. 1988, 68, 1802–1814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Davies, T.C.; Xie, S. Effectiveness of Robot-Assisted Therapy on Ankle Rehabilitation—A Systematic Review. J. Neuroeng. Rehabil. 2013, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Saglia, J.A. Development of a High Performance Ankle Rehabilitation Robot—ARBOT. Ph.D. Thesis, King’s College, London, UK, 2010. [Google Scholar]
- Fong, D.T.-P.; Hong, Y.; Chan, L.-K.; Yung, P.S.-H.; Chan, K.-M. A Systematic Review on Ankle Injury and Ankle Sprain in Sports. Sports Med. 2007, 37, 73–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, D.T.; Chan, Y.-Y.; Mok, K.-M.; Yung, P.S.; Chan, K.-M. Understanding Acute Ankle Ligamentous Sprain Injury in Sports. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2009, 1, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, S.E.; Marsh, J.L.; Hutton, J.L.; Nakash, R.; Cooke, M.W. Mechanical Supports for Acute, Severe Ankle Sprain: A Pragmatic, Multicentre, Randomised Controlled Trial. Lancet 2009, 373, 575–581. [Google Scholar] [CrossRef]
- Chinn, L.; Hertel, J. Rehabilitation of Ankle and Foot Injuries in Athletes. Clin. Sports Med. 2010, 29, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Anandacoomarasamy, A.; Barnsley, L. Long Term Outcomes of Inversion Ankle Injuries. Br. J. Sports Med. 2005, 39, e14, discussion e14. [Google Scholar] [CrossRef] [Green Version]
- Jamwal, P.K. Design and Analysis and Control Wearable Ankle Rehabilitation Robot. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2011. [Google Scholar]
- Tsoi, Y.H. Modelling and Adaptive Interaction Control of a Parallel Robot for Ankle Rehabilitation. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2011. [Google Scholar]
- Saglia, J.A.; Tsagarakis, N.G.; Dai, J.S.; Caldwell, D.G. A High Performance 2-Dof over-Actuated Parallel Mechanism for Ankle Rehabilitation. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2180–2186. [Google Scholar] [CrossRef]
- Ding, Y.; Sivak, M.; Weinberg, B.; Mavroidis, C.; Holden, M.K. NUVABAT: Northeastern University Virtual Ankle and Balance Trainer. In Proceedings of the 2010 IEEE Haptics Symposium, HAPTICS 2010, Waltham, MA, USA, 25–26 March 2010; pp. 509–514. [Google Scholar] [CrossRef]
- Díaz, I.; Gil, J.J.; Sánchez, E. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. J. Robot. 2011, 2011, 759764. [Google Scholar] [CrossRef] [Green Version]
- Syrseloudis, C.E.; Emiris, I.Z.; Maganaris, C.N.; Lilas, T.E. Design Framework for a Simple Robotic Ankle Evaluation and Rehabilitation Device. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 4310–4313. [Google Scholar] [CrossRef]
- Dong, M.; Zhou, Y.; Li, J.; Rong, X.; Fan, W.; Zhou, X.; Kong, Y. State of the Art in Parallel Ankle Rehabilitation Robot: A Systematic Review. J. NeuroEngineering Rehabil. 2021, 18, 52. [Google Scholar] [CrossRef]
- Jiang, J.; Lee, K.M.; Ji, J. Review of Anatomy-Based Ankle–Foot Robotics for Mind, Motor and Motion Recovery Following Stroke: Design Considerations and Needs. Int. J. Intell. Robot. Appl. 2018, 2, 267–282. [Google Scholar] [CrossRef]
- Shi, B.; Chen, X.; Yue, Z.; Yin, S.; Weng, Q.; Zhang, X.; Wang, J.; Wen, W. Wearable Ankle Robots in Post-Stroke Rehabilitation of Gait: A Systematic Review. Front. Neurorobot. 2019, 13, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Q.; Zhang, M.; Wang, C.; Li, H. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects. J. Healthc. Eng. 2018, 2018, 1534247. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Perez, M.G.; Garcia-Murillo, M.A.; Cervantes-Sánchez, J.J. Robot-Assisted Ankle Rehabilitation: A Review. Disabil. Rehabil. Assist. Technol. 2020, 15, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Khalid, Y.M.; Gouwanda, D.; Parasuraman, S. A Review on the Mechanical Design Elements of Ankle Rehabilitation Robot. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2015, 229, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Min, Z.; Huang, Z.; Ma, X.; Chen, Y.; Yu, X. Research Status on Ankle Rehabilitation Robot. Recent Patents Mech. Eng. 2019, 12, 104–124. [Google Scholar] [CrossRef]
- Gürel, E. Swot Analysis: A Theoretical Review. J. Int. Soc. Res. 2017, 10. [Google Scholar] [CrossRef]
- Benzaghta, M.A.; Elwalda, A.; Mousa, M.; Erkan, I.; Rahman, M. SWOT Analysis Applications: An Integrative Literature Review. J. Glob. Bus. Insights 2021, 6, 55–73. [Google Scholar] [CrossRef]
- Topor, D.R.; Dickey, C.; Stonestreet, L.; Wendt, J.; Woolley, A.; Budson, A. Interprofessional Health Care Education at Academic Medical Centers: Using a SWOT Analysis to Develop and Implement Programming. MedEdPORTAL J. Teach. Learn. Resour. 2018, 14, 10766. [Google Scholar] [CrossRef]
- Roy, A.; Krebs, H.I.; Barton, J.E.; Macko, R.F.; Forrester, L.W. Anklebot-Assisted Locomotor Training after Stroke: A Novel Deficit-Adjusted Control Approach. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2175–2182. [Google Scholar] [CrossRef]
- Deutsch, J.E.; Latonio, J.; Burdea, G.C.; Boian, R. Post-Stroke Rehabilitation with the Rutgers Ankle System: A Case Study. Presence 2001, 10, 416–430. [Google Scholar] [CrossRef]
- Boian, R.; Lee, C.; Deutsch, J.; Burdea, G.; Lewis, J. Virtual Reality-Based System for Ankle Rehabilitation Post Stroke. Proceedings of 1st International Workshop on Virtual Reality Rehabilitation (Mental Health, Neurological, Physical, Vocational), Lausanne, Switzerland, 7–8 November 2002; pp. 77–86. [Google Scholar]
- Sale, P.; Franceschini, M.; Waldner, A.; Hesse, S. Use of the Robot Assisted Gait Therapy in Rehabilitation of Patients with Stroke and Spinal Cord Injury. Eur. J. Phys. Rehabil. Med. 2012, 48, 111–121. [Google Scholar]
- Roy, A.; Krebs, H.I.; Williams, D.J.; Bever, C.T.; Forrester, L.W.; Macko, R.M.; Hogan, N. Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation. IEEE Trans. Robot. 2009, 25, 569–582. [Google Scholar] [CrossRef]
- Roy, A.; Krebs, H.I.; Patterson, S.L.; Judkins, T.N.; Khanna, I.; Forrester, L.W.; Macko, R.M.; Hogan, N. Measurement of Human Ankle Stiffness Using the Anklebot. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, Noordwijk, The Netherlands, 12–15 June 2007; pp. 356–363. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, T.; Wang, L.; Yang, C.Y.; Guo, X.; Harvey, R.L.; Zhang, L.Q. Develop a Wearable Ankle Robot for In-Bed Acute Stroke Rehabilitation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA, 30 August–3 September 2011; pp. 7483–7486. [Google Scholar] [CrossRef]
- Bharadwaj, K.; Sugar, T.G. Kinematics of a Robotic Gait Trainer for Stroke Rehabilitation. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; Volume 2006, pp. 3492–3497. [Google Scholar] [CrossRef]
- Krebs, H.I.; Rossi, S.; Kim, S.J.; Artemiadis, P.K.; Williams, D.; Castelli, E.; Cappa, P. Pediatric Anklebot. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar] [CrossRef]
- Zhihao, Z.; Yuan, Z.; Ninghua, W.; Fan, G.; Kunlin, W.; Qining, W. On the Design of a Robot-Assisted Rehabilitation System for Ankle Joint with Contracture and/or Spasticity Based on Proprioceptive Neuromuscular Facilitation. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 736–741. [Google Scholar]
- Perez Ibarra, J.C.; dos Santos, W.M.; Krebs, H.I.; Siqueira, A.A.G. Adaptive Impedance Control for Robot-Aided Rehabilitation of Ankle Movements. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; pp. 664–669. [Google Scholar]
- Malosio, M.; Negri, S.P.; Pedrocchi, N.; Vicentini, F.; Caimmi, M.; Molinari Tosatti, L. A Spherical Parallel Three Degrees-of-Freedom Robot for Ankle-Foot Neuro-Rehabilitation. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3356–3359. [Google Scholar]
- Michmizos, K.; Rossi, S.; Castelli, E.; Cappa, P.; Krebs, H. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 1056–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi-Ning, W.; Yupeng, R.; Hwang, M.; Gaebler-Spira, D.J.; Li-Qun, Z. Efficacy of Robotic Rehabilitation of Ankle Impairments in Children with Cerebral Palsy. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4481–4484. [Google Scholar]
- Malosio, M.; Caimmi, M.; Ometto, M.; Tosatti, L.M. Ergonomics and Kinematic Compatibility of PKankle, a Fully-Parallel Spherical Robot for Ankle-Foot Rehabilitation. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; pp. 497–503. [Google Scholar]
- Ward, J.; Sugar, T.; Standeven, J.; Engsberg, J.R. Stroke Survivor Gait Adaptation and Performance after Training on a Powered Ankle Foot Orthosis. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 211–216. [Google Scholar]
- Zhang, Q.; Chen, M.; Xu, L. Kinematics and Dynamics Modeling for Lower Limbs Rehabilitation Robot. In Proceedings of the International Conference on Social Robotics, Chengdu, China, 29–30 October 2012; Volume 7621. [Google Scholar] [CrossRef]
- Wheeler, J.W.; Krebs, H.I.; Hogan, N. An Ankle Robot for a Modular Gait Rehabilitation System. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 2, pp. 1680–1684. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.K.; Ju, M.S.; Chen, S.M.; Pan, B.W. A Specialized Robot for Ankle Rehabilitation and Evaluation. J. Med. Biol. Eng. 2008, 28, 79–86. [Google Scholar]
- Zeng, F.; Guoli, Z.; Yun Ho, T.; Xie, S. A Computational Biomechanical Model of the Human Ankle for Development of an Ankle Rehabilitation Robot. In Proceedings of the 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 10–12 September 2014; pp. 1–6. [Google Scholar]
- Park, Y.-L.; Chen, B.; Pérez-Arancibia, N.O.; Young, D.; Stirling, L.; Wood, R.J.; Goldfield, E.C.; Nagpal, R. Design and Control of a Bio-Inspired Soft Wearable Robotic Device for Ankle–Foot Rehabilitation. Bioinspir. Biomim. 2014, 9, 016007. [Google Scholar] [CrossRef] [Green Version]
- Salmeron, L.J.; Juca, G.V.; Mahadeo, S.M.; Ma, J.; Yu, S.; Su, H. An Untethered Electro-Pneumatic Exosuit for Gait Assistance of People with Foot Drop. Front. Biomed. Devices 2020. [Google Scholar] [CrossRef]
- Fang, C.Y.; Hsu, M.J.; Chen, C.C.; Cheng, H.Y.K.; Chou, C.C.; Chang, Y.J. Robot-Assisted Passive Exercise for Ankle Hypertonia in Individuals with Chronic Spinal Cord Injury. J. Med. Biol. Eng. 2015, 35, 464–472. [Google Scholar] [CrossRef]
- Yeung, L.F.; Lau, C.C.Y.; Lai, C.W.K.; Soo, Y.O.Y.; Chan, M.L.; Tong, R.K.Y. Effects of Wearable Ankle Robotics for Stair and Over-Ground Training on Sub-Acute Stroke: A Randomized Controlled Trial. J. Neuroeng. Rehabil. 2021, 18, 19. [Google Scholar] [CrossRef]
- Wu, J.; Gao, J.; Song, R.; Li, R.; Li, Y.; Jiang, L. The Design and Control of a 3DOF Lower Limb Rehabilitation Robot. Mechatronics 2016, 33, 13–22. [Google Scholar] [CrossRef]
- Pan, B.-W.; Lin, C.-C.K.; Ju, M.-S. Development of a Robot for Ankle Rehabilitation of Stroke Patients. J. Biomech. 2007, 40, S648. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, Y.; Wang, N.; Gao, F.; Wei, K.; Wang, Q. A Proprioceptive Neuromuscular Facilitation Integrated Robotic Ankle-Foot System for Post Stroke Rehabilitation. Robot. Auton. Syst. 2015, 73, 111–122. [Google Scholar] [CrossRef]
- Cho, J.E.; Lee, W.H.; Shin, J.H.; Kim, H. Effects of Bi-Axial Ankle Strengthening on Muscle Co-Contraction during Gait in Chronic Stroke Patients: A Randomized Controlled Pilot Study. Gait Posture 2021, 87, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Arceo, J.C.; Armenta, C.; Lauber, J.; Bernal, M. An Extension of Computed-Torque Control for Parallel Robots in Ankle Reeducation. IFAC-PapersOnLine 2019, 52, 1–6. [Google Scholar] [CrossRef]
- Yeung, L.F.; Ockenfeld, C.; Pang, M.K.; Wai, H.W.; Soo, O.Y.; Li, S.W.; Tong, K.Y. Design of an Exoskeleton Ankle Robot for Robot-Assisted Gait Training of Stroke Patients. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017. [Google Scholar] [CrossRef]
- Martinez-Hernandez, U.; Rubio-Solis, A.; Cedeno-Campos, V.; Dehghani-Sanij, A.A. Towards an Intelligent Wearable Ankle Robot for Assistance to Foot Drop. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2019; Volume 2019. [Google Scholar] [CrossRef]
- Li, W.; Huang, J.; Wang, C.; Duan, L.; Liu, Q.; Yang, S.; Shang, W.; Shen, Y.; Lin, Z.; Lu, Z.; et al. Design of 6-DOF Parallel Ankle Rehabilitation Robot. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018. [Google Scholar] [CrossRef]
- Zuo, J.; Meng, W.; Liu, Q.; Ai, Q.; Xie, S.Q.; Zhou, Z. Coupling Disturbance Compensated MIMO Control of Parallel Ankle Rehabilitation Robot Actuated by Pneumatic Muscles. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar] [CrossRef]
- Perez-Ibarra, J.C.; Siqueira, A.A.G.; Krebs, H.I. Assist-As-Needed Ankle Rehabilitation Based on Adaptive Impedance Control. In Proceedings of the 2015 IEEE international conference on rehabilitation robotics (ICORR), Singapore, 11–14 August 2015; Volume 2015. [Google Scholar] [CrossRef]
- Onodera, T.; Ding, M.; Takemura, H.; Mizoguchi, H. Design and Development of Stewart Platform-Type Assist Device for Ankle-Foot Rehabilitation. In Proceedings of the 2012 1st International Conference on Innovative Engineering Systems, ICIES 2012, Alexandria, Egypt, 7–9 December 2012. [Google Scholar] [CrossRef]
- Ai, Q.; Zhang, C.; Wu, W.; Zhang, C.; Meng, W. Design and Implementation of Haptic Sensing Interface for Ankle Rehabilitation Robotic Platform. In Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 27–29 March 2018. [Google Scholar] [CrossRef]
- Martelli, F.; Palermo, E.; Rossi, S. A Novel Protocol to Evaluate Ankle Movements during Reaching Tasks Using PediAnklebot. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017. [Google Scholar] [CrossRef]
- Cioi, D.; Kale, A.; Burdea, G.; Engsberg, J.; Janes, W.; Ross, S. Ankle Control and Strength Training for Children with Cerebral Palsy Using the Rutgers Ankle CP. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar] [CrossRef]
- Meng, W.; Liu, Q.; Zhang, M.; Ai, Q.; Xie, S.Q. Compliance Adaptation of an Intrinsically Soft Ankle Rehabilitation Robot Driven by Pneumatic Muscles. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017. [Google Scholar] [CrossRef]
- Dong, M.; Li, J.; Rong, X.; Fan, W.; Kong, Y.; Zhou, Y. Compliant Physical Interaction to Enhance Rehabilitation Training of a Parallel Ankle Robotic System. In Proceedings of the 2020 Chinese Automation Congress, CAC 2020, Shanghai, China, 6–8 November 2020. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Q. Concept and Prototype Design of A Robotic Ankle-Foot Rehabilitation System with Passive Mechanism for Coupling Motion. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Shang, W.; Wang, C.; Lin, Z.; Sun, T.; Ye, J.; Chen, G.; Wei, J.; Wu, Z. Design and Characterization of the MKA-IV Robot for Ankle Rehabilitation. In Proceedings of the 2018 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Kandima, Maldives, 1–5 August 2018. [Google Scholar] [CrossRef]
- Hau, C.T.; Gouwanda, D.; Gopalai, A.A.; Yee, L.C.; Hanapiah, F.A.B. Design and Development of Platform Ankle Rehabilitation Robot with Shape Memory Alloy Based Actuator. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Jeju, Korea, 11–15 July 2017. [Google Scholar] [CrossRef]
- Mehrabi, V.; Atashzar, S.F.; Talebi, H.A.; Patel, R.V. Design and Implementation of a Two-DOF Robotic System with an Adjustable Force Limiting Mechanism for Ankle Rehabilitation. In Proceedings of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; Volume 2019. [Google Scholar] [CrossRef]
- Meng, W.; Zhu, C.; Zuo, J.; Ai, Q.; Liu, Q.; Xie, S.Q. Design and Modelling of a Compliant Ankle Rehabilitation Robot Redundantly Driven by Pneumatic Muscles. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; Volume 2019. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Jung, J.H.; Lee, K.J.; Choi, C.H.; Kim, G.S. Design of an Ankle Rehabilitation Robot Based on Force Sensor. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Singapore, 26–29 June 2016; Volume 2016. [Google Scholar] [CrossRef]
- Rachakorakit, M.; Prasertsakul, T.; Charoensuk, W. Designing the Controlling System for LeHab Passive Exercise Robot. In Proceedings of the 2015 8th Biomedical Engineering International Conference (BMEiCON), Pattaya, Thailand, 25–27 November 2016. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, Y.N.; Yang, C.Y.; Xu, T.; Harvey, R.L.; Zhang, L.Q. Developing a Wearable Ankle Rehabilitation Robotic Device for In-Bed Acute Stroke Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Kim, D.H.; Son, Y.; Seo, K.H.; Park, S.H.; Yoo, D.; Fung, A. Development and Assessment of a Novel Ankle Rehabilitation System for Stroke Survivors. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Jeju, Korea, 11–15 July 2017. [Google Scholar] [CrossRef]
- Yonezawa, T.; Nomura, K.; Onodera, T.; Ding, M.; Mizoguchi, H.; Takemura, H. Development and Performance Evaluation of Parallel Link Type Human Ankle Rehabilitation Assistive Device. In Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, 5–10 December 2014. [Google Scholar] [CrossRef]
- Sun, T.; Wang, C.; Duan, L.; Liu, Q.; Li, M.; Lu, Z.; Li, W.; Liu, Q.; Shen, Y.; Wang, Y.; et al. Development of a New Ankle Rehabilitation Robot MKA-IV. In Proceedings of the 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017, Honolulu, HI, USA, 31 July–4 August 2017. [Google Scholar] [CrossRef]
- Lu, Z.; Li, W.; Li, M.; Wu, Z.; Duan, L.; Li, Z.; Ou, X.; Wang, C.; Wang, L.; Qin, J.; et al. Development of a Three Freedoms Ankle Rehabilitation Robot for Ankle Training. In Proceedings of the TENCON 2015—2015 IEEE Region 10 Conference, Macao, China, 1–4 November 2015; Volume 2016. [Google Scholar] [CrossRef]
- Nalam, V.; Lee, H. Development of a Two-Axis Robotic Platform for the Characterization of Two-Dimensional Ankle Mechanics. IEEE/ASME Trans. Mechatron. 2019, 24, 459–470. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, C.; Duan, L.; Liu, Q.; Sun, T.; Shen, Y.; Shi, Q.; Li, M.; Wang, Y.; Long, J.; et al. Development of an Ankle Robot MKA-III for Rehabilitation Training. In Proceedings of the 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–9 June 2016; pp. 523–527. [Google Scholar] [CrossRef]
- Wei, J.; Chen, H.; Chen, P.; Lu, Z.; Wei, C.; Hou, A.; Sun, T.; Liu, Q.; Li, W.; Lu, Z.; et al. Development of Parallel Mechanism with Six Degrees of Freedom for Ankle Rehabilitation. In Proceedings of the ICARM 2016—2016 International Conference on Advanced Robotics and Mechatronics, Macau, China, 18–20 August 2016. [Google Scholar] [CrossRef]
- Xing, K.; Wang, Y.; Chen, D.; Wang, M.; Lu, S. Flexible Ankle-Assisted Robot Technology Based on Rope Drive. In Proceedings of the 2020 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2020, Asahikawa, Japan, 28–29 September 2020. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Wei, J.; Xia, J.; Wang, T.; Liu, Q.; Duan, L.; Wang, Y.; Long, J. Kinematics and Dynamics Analysis of a Novel Ankle Rehabilitation Robot. In Proceedings of the 9th IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, CYBER 2019, Suzhou, China, 29 July–2 August 2019. [Google Scholar] [CrossRef]
- Sun, T.; Lu, Z.; Wang, C.; Duan, L.; Shen, Y.; Shi, Q.; Wei, J.; Wang, Y.; Li, W.; Qin, J.; et al. Mechanism Design and Control Strategies of an Ankle Robot for Rehabilitation Training. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015, Zhuhai, China, 6–9 December 2015. [Google Scholar] [CrossRef]
- Onodera, T.; Ding, M.; Takemura, H.; Mizoguchi, H. Posture Control Using New Ankle-Foot Assist Device with Stewart Platform Type Parallel Link Mechanisms. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012—Conference Digest, Guangzhou, China, 11–14 December 2012. [Google Scholar] [CrossRef]
- Luo, C.; Wei, J.; Liu, Q.; Wang, C.; Zhang, X.; Duan, L.; Zhang, G.; Zhang, X.; Wang, T.; Mao, Z. Development of a New Lower Limb Rehabilitation Robot for Bedside Training. J. Phys. Conf. Ser. 2021, 2026, 012060. [Google Scholar] [CrossRef]
- Onodera, T.; Ding, M.; Takemura, H.; Mizoguchi, H. Performance Evaluation of Novel Ankle-Foot Assist Device for Ankle-Foot Rehabilitation. IFMBE Proc. 2014, 43, 492–495. [Google Scholar] [CrossRef]
- Lim, F.M.; Foong, R.; Goh, K.S.; Mok, Q.L.; Tan, B.H.J.; Toh, S.L.; Yu, H. Supine Gait Training Device for Stroke Rehabilitation—Design of a Compliant Ankle Orthosis. IFMBE Proc. 2014, 43, 512–515. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, W.; Wu, H.; Xia, Y.; Hu, B.; Zeng, D. Performance Analysis and Trajectory Planning of Multi-Locomotion Mode Ankle Rehabilitation Robot. Rob. Auton. Syst. 2022, 157, 104246. [Google Scholar] [CrossRef]
- Ao, D.; Song, R.; Gao, J. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1125–1134. [Google Scholar] [CrossRef]
- Yoo, D.; Son, Y.; Kim, D.H.; Seo, K.H.; Lee, B.C. Technology-Assisted Ankle Rehabilitation Improves Balance and Gait Performance in Stroke Survivors: A Randomized Controlled Study with 1-Month Follow-Up. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2315–2323. [Google Scholar] [CrossRef]
- Lee, H.; Hogan, N. Energetic Passivity of the Human Ankle Joint. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1416–1425. [Google Scholar] [CrossRef] [PubMed]
- Minh Duc, D.; Thuy Tram, L.T.; Dang Phuoc, P.; Xuan Tuy, T. Study on Ankle Rehabilitation Device Using Linear Motor. In Proceedings of the 2019 International Conference on System Science and Engineering, ICSSE 2019, Dong Hoi, Vietnam, 20–21 July 2019. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, M.Z.; Kehs, G.J.; Braun, R.G.; Cole, J.W.; Zhang, L.Q. Intensive In-Bed Sensorimotor Rehabilitation of Early Subacute Stroke Survivors with Severe Hemiplegia Using a Wearable Robot. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2252–2259. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Kwon, J.; Pathak, P.; Ahn, J.; Shull, P.B.; Park, Y.L. Design of A Multi-Functional Soft Ankle Exoskeleton for Foot-Drop Prevention, Propulsion Assistance, and Inversion/Eversion Stabilization. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, New York, NY, USA, 29 November–1 December 2020; Volume 2020. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, D.H.; Seo, K.H.; Lee, B.C. The Effects of Technology-Assisted Ankle Rehabilitation on Balance Control in Stroke Survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Vivian, M.; Reggiani, M.; Moreno, J.C.; Pons, J.L.; Farina, D.; Sartori, M. A Dynamically Consistent Model of a Motorized Ankle-Foot Orthosis. In Proceedings of the International IEEE/EMBS Conference on Neural Engineering, NER, San Diego, CA, USA, 6–8 November 2013. [Google Scholar] [CrossRef]
- Zhang, Y.; Kleinmann, R.J.; Nolan, K.J.; Zanotto, D. Design and Evaluation of an Active/Semiactive Ankle-Foot Orthosis for Gait Training. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Enschede, The Netherlands, 26–29 August 2018; Volume 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Kleinmann, R.J.; Nolan, K.J.; Zanotto, D. Preliminary Validation of a Cable-Driven Powered Ankle–Foot Orthosis With Dual Actuation Mode. IEEE Trans. Med. Robot. Bionics 2019, 1, 30–37. [Google Scholar] [CrossRef]
- Low, F.Z.; Lim, J.H.; Kapur, J.; Yeow, R.C.H. Effect of a Soft Robotic Sock Device on Lower Extremity Rehabilitation Following Stroke: A Preliminary Clinical Study with Focus on Deep Vein Thrombosis Prevention. IEEE J. Transl. Eng. Health Med. 2019, 7, 4100106. [Google Scholar] [CrossRef]
- Low, F.Z.; Yeow, R.C.H.; Yap, H.K.; Lim, J.H. Study on the Use of Soft Ankle-Foot Exoskeleton for Alternative Mechanical Prophylaxis of Deep Vein Thrombosis. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Singapore, 11–14 August 2015; Volume 2015. [Google Scholar] [CrossRef]
- Perez-Ibarra, J.C.; Alarcon, A.L.J.; Jaimes, J.C.; Ortega, F.M.E.; Terra, M.H.; Siqueira, A.A.G. Design and Analysis of H∞ Force Control of a Series Elastic Actuator for Impedance Control of an Ankle Rehabilitation Robotic Platform. In Proceedings of the American Control Conference, Seattle, WA, USA, 24–26 May 2017. [Google Scholar] [CrossRef]
- Lopes, J.; Pinheiro, C.; Figueiredo, J.; Reis, L.P.; Santos, C.P. Assist-as-Needed Impedance Control Strategy for a Wearable Ankle Robotic Orthosis. In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2020, Ponta Delgada, Portugal, 15–17 April 2020. [Google Scholar] [CrossRef]
- Takahashi, K.; Mutsuzaki, H.; Yoshikawa, K.; Yamamoto, S.; Koseki, K.; Takeuchi, R.; Mataki, Y.; Iwasaki, N. Robot-Assisted Ankle Rehabilitation Using the Hybrid Assistive Limb for Children after Equinus Surgery: A Report of Two Cases. Pediatr. Rep. 2022, 14, 338–351. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Q.; Meng, W.; Ai, Q.; Xie, S.Q. Event-Triggered Adaptive Hybrid Torque-Position Control (ET-AHTPC) for Robot-Assisted Ankle Rehabilitation. IEEE Trans. Ind. Electron. 2022, 1–10. [Google Scholar] [CrossRef]
- Hau, C.T.; Gouwanda, D.; Gopalai, A.A.; Low, C.Y.; Hanapiah, F.A. Gamification and Control of Nitinol Based Ankle Rehabilitation Robot. Biomimetics 2021, 6, 53. [Google Scholar] [CrossRef]
- Pisla, D.; Nadas, I.; Tucan, P.; Albert, S.; Carbone, G.; Antal, T.; Banica, A.; Gherman, B. Development of a Control System and Functional Validation of a Parallel Robot for Lower Limb Rehabilitation. Actuators 2021, 10, 277. [Google Scholar] [CrossRef]
- Pinheiro, C.; Figueiredo, J.; Magalhães, N.; Santos, C.P. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants. Sensors 2020, 20, 5876. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, J.; Xie, S.Q.; Zhu, G.; Zeng, X.; Huang, X.; Xu, Q. A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot. J. Intell. Robot. Syst. Theory Appl. 2018, 91, 207–215. [Google Scholar] [CrossRef]
- Pérez-Ibarra, J.C.; Siqueira, A.A.G. Comparison of Kinematic and EMG Parameters between Unassisted, Fixed- and Adaptive-Stiffness Robotic-Assisted Ankle Movements in Post-Stroke Subjects. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017. [Google Scholar] [CrossRef]
- Gil-Castillo, J.; Barria, P.; Aguilar Cárdenas, R.; Baleta Abarza, K.; Andrade Gallardo, A.; Biskupovic Mancilla, A.; Azorín, J.M.; Moreno, J.C. A Robot-Assisted Therapy to Increase Muscle Strength in Hemiplegic Gait Rehabilitation. Front. Neurorobot. 2022, 16. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhuang, Y.; Zhou, J.; Gao, J.; Song, R. Design and Test of Admittance Control with Inner Adaptive Robust Position Control for a Lower Limb Rehabilitation Robot. Int. J. Control. Autom. Syst. 2020, 18, 134–142. [Google Scholar] [CrossRef]
- Zuo, S.; Li, J.; Dong, M.; Zhou, X.; Fan, W.; Kong, Y. Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation. Front. Neurorobot. 2020, 14, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martelli, F.; Palermo, E.; Del Prete, Z.; Rossi, S. Using an Ankle Robotic Device for Motor Performance and Motor Learning Evaluation. Heliyon 2020, 6, e03262. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Wu, Q.; Li, X.; Xu, Q.; Zhang, Y.; Fan, S.; Zhang, L.-Q.; Pan, Y. Effects of Robot-Aided Rehabilitation on the Ankle Joint Properties and Balance Function in Stroke Survivors: A Randomized Controlled Trial. Front. Neurol. 2021, 12, 719305. [Google Scholar] [CrossRef]
- Kwon, J.; Park, J.H.; Ku, S.; Jeong, Y.H.; Paik, N.J.; Park, Y.L. A Soft Wearable Robotic Ankle-Foot-Orthosis for Post-Stroke Patients. IEEE Robot. Autom. Lett. 2019, 4, 2547–2552. [Google Scholar] [CrossRef]
- Ohba, T.; Kadone, H.; Hassan, M.; Suzuki, K. Robotic Ankle-Foot Orthosis with a Variable Viscosity Link Using MR Fluid. IEEE/ASME Trans. Mechatron. 2019, 24, 495–504. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Long, J.J.; Sun, T.; Duan, L.; Zhang, X.; Zhang, B.; Shen, Y.; Shang, W.; Lin, Z.; et al. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke. J. Healthc. Eng. 2018, 2018, 3867243. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Martinez-Hernandez, U.; Childs, C.; Dehghani-Sanij, A.A.; Buis, A. A Practical Gait Feedback Method Based on Wearable Inertial Sensors for a Drop Foot Assistance Device. IEEE Sens. J. 2019, 19, 12235–12243. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Kim, J.; Hyung, S.; Lee, J.; Seo, K.; Park, Y.J.; Cho, J.; Choi, B.K.; Shim, Y.; Choi, H. A Compact Ankle Exoskeleton with a Multiaxis Parallel Linkage Mechanism. IEEE/ASME Trans. Mechatronics 2021, 26, 191–202. [Google Scholar] [CrossRef]
- Shiao, C.; Tang, P.-F.; Wei, Y.-C.; Tseng, W.-Y.I.; Lin, T.-T. Brain White Matter Correlates of Learning Ankle Tracking Using a Wearable Device: Importance of the Superior Longitudinal Fasciculus II. J. Neuroeng. Rehabil. 2022, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhu, G.; Yue, L.; Zhang, M.; Xie, S. A Feasibility Study of SSVEP-Based Passive Training on an Ankle Rehabilitation Robot. J. Healthc. Eng. 2017, 2017, 6819056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, P.; Yao, L.; Lin, Z.; Yan, H.; Dai, J.S. Analysis and Synthesis of Ankle Motion and Rehabilitation Robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 2533–2538. [Google Scholar]
- Wang, Y.; Mei, Z.; Xu, J.; Zhao, G. Kinematic Design of a Parallel Ankle Rehabilitation Robot for Sprained Ankle Physiotherapy. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; pp. 1643–1649. [Google Scholar]
- Jamwal, P.K.; Hussain, S.; Xie, S.Q. Three-Stage Design Analysis and Multicriteria Optimization of a Parallel Ankle Rehabilitation Robot Using Genetic Algorithm. Autom. Sci. Eng. IEEE Trans. 2014, 12, 1433–1446. [Google Scholar] [CrossRef]
- Tsoi, Y.H.; Xie, S.Q. Impedance Control of Ankle Rehabilitation Robot. In Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, Bangkok, Thailand, 22–25 February 2009; pp. 840–845. [Google Scholar] [CrossRef]
- Wang, C.; Fang, Y.; Guo, S.; Chen, Y. Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation. J. Mech. Robot. 2013, 5, 41003. [Google Scholar] [CrossRef]
- Syrseloudis, C.E.; Emiris, I.Z. A Parallel Robot for Ankle Rehabilitation-Evaluation and Its Design Specifications. In Proceedings of the 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008, Athens, Greece, 8–10 October 2008. [Google Scholar] [CrossRef] [Green Version]
- Syrseloudis, C.E.; Emiris, I.Z.; Lilas, T.; Maglara, A. Design of a Simple and Modular 2-DOF Ankle Physiotherapy Device Relying on a Hybrid Serial-Parallel Robotic Architecture. Appl. Bionics Biomech. 2011, 8, 101–114. [Google Scholar] [CrossRef]
- Tsoi, Y.H.; Xie, S. Design and Control of a Parallel Robot for Ankle Rehabilitation. In Proceedings of the 15th International Conference on Mechatronics and Machine Vision in Practice, Auckland, New Zealand, 2–4 December 2008; pp. 561–566. [Google Scholar]
- Liu, D.; Wang, L.; Tan, K.; Tsoi, Y.-H.; Xie, S.; Graham, A. Design, Modeling and Control of an Ankle Rehabilitation Robot. In Design and Control of Intelligent Robotic Systems; Springer: Berlin/Heidelberg, Germany, 2009; Volume 177, pp. 377–399. [Google Scholar]
- Liu, G.; Gao, J.; Yue, H.; Zhang, X.; Lu, G. Design and Kinematics Simulation of Parallel Robots for Ankle Rehabilitation. In Proceedings of the 2006 International Conference on Mechatronics and Automation, Luoyang, China, 25–28 June 2006; pp. 1109–1113. [Google Scholar]
- Saglia, J.A.; Tsagarakis, N.G.; Dai, J.S.; Caldwell, D.G. Inverse-Kinematics-Based Control of a Redundantly Actuated Platform for Rehabilitation. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2008, 223, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Ceccarelli, M. Analysis of a Wearable Robotic System for Ankle Rehabilitation. Machines 2020, 8, 48. [Google Scholar] [CrossRef]
- Venkata Sai Prathyush, I.; Ceccarelli, M.; Russo, M. Control Design for CABLEankle, a Cable Driven Manipulator for Ankle Motion Assistance. Actuators 2022, 11, 63. [Google Scholar] [CrossRef]
- Wang, C.; Fang, Y.; Guo, S. Multi-Objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm. Chin. J. Mech. Eng. 2015, 28, 702–715. [Google Scholar] [CrossRef]
- Zeng, D.; Wu, H.; Zhao, X.; Lu, W.; Luo, X. A New Type of Ankle-Foot Rehabilitation Robot Based on Muscle Motor Characteristics. IEEE Access 2020, 8, 215915–215927. [Google Scholar] [CrossRef]
- Sui, P.; Yao, L.; Lin, Z. Mechanism Design of a Novel Two Degree-of-Freedom Ankle Rehabilitation Robot. In Proceedings of the i-CREATe 2010—International Convention on Rehabilitation Engineering and Assistive Technology, Shanghai, China, 21–24 July 2010. [Google Scholar]
- Wang, H.; Lin, M.; Yan, Y.; Liu, G.; Su, B.; Zhao, C.; Wang, F. Dynamics Analysis and Simulation of a New 6-DOF Lower Limb Rehabilitation Robot. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490, 062035. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Liu, T.; Qi, K.; Niu, J.; Guo, S. Module Combination Based Configuration Synthesis and Kinematic Analysis of Generalized Spherical Parallel Mechanism for Ankle Rehabilitation. Mech. Mach. Theory 2021, 166, 104436. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, J.; Zhu, G.; Miao, Q.; Zeng, X.; Xie, S.Q. Reconfigurable Workspace and Torque Capacity of a Compliant Ankle Rehabilitation Robot (CARR). Rob. Auton. Syst. 2017, 98, 213–221. [Google Scholar] [CrossRef]
- Chang, T.C.; Zhang, X.D. Kinematics and Reliable Analysis of Decoupled Parallel Mechanism for Ankle Rehabilitation. Microelectron. Reliab. 2019, 99, 203–212. [Google Scholar] [CrossRef]
- Rahman, S.M.M.; Ikeura, R. A Novel Variable Impedance Compact Compliant Ankle Robot for Overground Gait Rehabilitation and Assistance. Procedia Eng. 2012, 41, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Wang, L.; Lin, L.; Liu, M. Structure Design of Ankle Rehabilitation Robot. In Proceedings of the 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing, WCMEIM 2020, Shanghai, China, 4–6 December 2020. [Google Scholar] [CrossRef]
- Kim, J.; Bae, J. Design of a Cable-Driven Ankle Rehabilitation System (C-DARS). In Proceedings of the 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2014, Kuala Lumpur, Malaysia, 12–15 November 2014. [Google Scholar] [CrossRef]
- Yu, R.; Fang, Y.; Guo, S. Design and Kinematic Analysis of a Novel Cable-Driven Parallel Robot for Ankle Rehabilitation. In Mechanisms and Machine Science; Springer: Cham, Switzerland, 2014; Volume 22. [Google Scholar] [CrossRef]
- Liao, Z.; Yao, L.; Lu, Z.; Zhang, J. Screw Theory Based Mathematical Modeling and Kinematic Analysis of a Novel Ankle Rehabilitation Robot with a Constrained 3-PSP Mechanism Topology. Int. J. Intell. Robot. Appl. 2018, 2, 351–360. [Google Scholar] [CrossRef]
- Li, H.; Xia, C.; Li, F.; Yin, J.; Wang, X.; Cheng, J.; Yang, B.; Dong, P.; Chen, E. Motion Simulation of Bionic Auxiliary Device for Ankle Rehabilitation Based on Small Driving Moment Function. IOP Conf. Ser. Earth Environ. Sci. 2021, 1802, 042086. [Google Scholar] [CrossRef]
- Jalgaonkar, N.; Kim, A.; Awtar, S. Design of an Ankle Rehab Robot with a Compliant Parallel Kinematic Mechanism. J. Mech. Robot. 2021, 13, 035003. [Google Scholar] [CrossRef]
- Cho, S.; Lee, H.; Kim, H. Development and Evaluation of Ankle Muscle Trainer with Malleolar and Subtalar Movement Actuators and Underfoot Reaction Force Sensors during Active Ankle Dorsi-Plantarflexion. In Proceedings of the International Conference on Control, Automation and Systems, Gyeongju, Korea, 16–19 October 2016; pp. 971–975. [Google Scholar] [CrossRef]
- Lateș, D.; Vlașin, L.I.; Ianoși-Andreeva-Dimitrova, A. Design of a Hybrid Two-Degree-of-Freedom Lower Limb Exerciser. Proceedings 2020, 63, 27. [Google Scholar] [CrossRef]
- Saglia, J.A.; Tsagarakis, N.G.; Dai, J.S.; Caldwell, D.G. Control Strategies for Ankle Rehabilitation Using a High Performance Ankle Exerciser. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 2221–2227. [Google Scholar] [CrossRef]
- Jamwal, P.K.; Xie, S.Q.; Hussain, S.; Parsons, J.G. An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries. IEEE/ASME Trans. Mechatron. 2014, 19, 64–75. [Google Scholar] [CrossRef]
- Jamwal, P.K.; Xie, S.; Aw, K.C. Design Analysis of a Pneumatic Muscle Driven Wearable Parallel Robot for Ankle Joint Rehabilitation. In Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2010, Qingdao, China, 15–17 July 2010; pp. 403–408. [Google Scholar] [CrossRef]
- Jamwal, P.K.; Hussain, S.; Ghayesh, M.H.; Rogozina, S.V. Impedance Control of an Intrinsically Compliant Parallel Ankle Rehabilitation Robot. IEEE Trans. Ind. Electron. 2016, 63, 3638–3647. [Google Scholar] [CrossRef]
- Girone, M.; Burdea, G.; Bouzit, M.; Popescu, V.; Deutsch, J.E. Orthopedic Rehabilitation Using the “rutgers Ankle” Interface. In Studies in Health Technology and Informatics; IOS Press, 2000; Volume 70, pp. 89–95. Available online: https://ebooks.iospress.nl/publication/17522 (accessed on 25 September 2022).
- Girone, M.J.; Burdea, G.C.; Bouzit, M. The “Rutgers Ankle” Orthopedic Rehabilitation Interface. Proc. ASME Haptics Symp. 1999, 67, 305–312. [Google Scholar]
- Yoon, J.; Ryu, J. A Novel Reconfigurable Ankle/Foot Rehabilitation Robot. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; Volume 2005, pp. 2290–2295. [Google Scholar] [CrossRef]
- Yoon, J.; Ryu, J.; Lim, K.-B. Reconfigurable Ankle Rehabilitation Robot for Various Exercises. J. Robot. Syst. 2006, 22, S15–S33. [Google Scholar] [CrossRef]
- Sun, J.G.; Gao, J.Y.; Zhang, J.H.; Tan, R.H. Teaching and Playback Control System for Parallel Robot for Ankle Joint Rehabilitation. In Proceedings of the IEEM 2007: 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 2–5 December 2007; pp. 871–875. [Google Scholar] [CrossRef]
- Liu, G.; Gao, J.; Yue, H.; Zhang, X.; Lu, G. Design and Kinematics Analysis of Parallel Robots for Ankle Rehabilitation. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October 2006; pp. 253–258. [Google Scholar] [CrossRef]
- Flores, P.; Viadero, F.; Zeng, S.; Yao, L.; Guo, X.; Wang, H.; Sui, P. Kinematics Analysis and Verification on the Novel Reconfigurable Ankle Rehabilitation Robot Based on Parallel Mechanism. In New Trends in Mechanism and Machine Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 24, pp. 195–202. [Google Scholar]
- Zheng, J.; Li, Z.; Lyu, Y.; Zhou, J.; Song, R. Design and Simulation of a Rotating Magnetorheological Fluid Damper for the Ankle Rehabilitation Robot. In Proceedings of the ICARM 2020—2020 5th IEEE International Conference on Advanced Robotics and Mechatronics, Shenzhen, China, 18–21 December 2020. [Google Scholar] [CrossRef]
- Erdogan, A.; Satici, A.C.; Patoglu, V. Design of a Reconfigurable Force Feedback Ankle Exoskeleton for Physical Therapy. In Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, London, UK, 22–24 June 2009; pp. 400–408. [Google Scholar]
- Satici, A.C.; Erdogan, A.; Patoglu, V. Design of a Reconfigurable Ankle Rehabilitation Robot and Its Use for the Estimation of the Ankle Impedance. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009, Kyoto, Japan, 23–26 June 2009; pp. 257–264. [Google Scholar] [CrossRef]
- Lan, W.; Haitao, Z.; Zhiming, C. Modeling and Control of Ankle Rehabilitation Robot with Nonlinear Factors. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 113–117. [Google Scholar]
- Farjadian, A.B.; Nabian, M.; Mavroidis, C.; Holden, M.K. Implementation of a Task-Dependent Anisotropic Impedance Controller into a 2-DOF Platform-Based Ankle Rehabilitation Robot. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5590–5595. [Google Scholar]
- Yen, S.C.; Chui, K.K.; Wang, Y.C.; Corkery, M.B.; Nabian, M.; Farjadian, A.B. An Examination of Muscle Force Control in Individuals with a Functionally Unstable Ankle. Hum. Mov. Sci. 2019, 64, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zeng, X.; Zhang, M.; Xie, S.; Meng, W.; Huang, X.; Xu, Q. Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot: A Case Study. In Proceedings of the 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland, New Zealand, 29–31 August 2016. [Google Scholar] [CrossRef]
- Zhang, M.; Mcdaid, A.; Veale, A.J.; Peng, Y.; Xie, S.Q. Adaptive Trajectory Tracking Control of a Parallel Ankle Rehabilitation Robot With Joint-Space Force Distribution. IEEE Access 2019, 7, 85812–85820. [Google Scholar] [CrossRef]
- Meng, W.; Xie, S.Q.; Liu, Q.; Lu, C.Z.; Ai, Q. Robust Iterative Feedback Tuning Control of a Compliant Rehabilitation Robot for Repetitive Ankle Training. IEEE/ASME Trans. Mechatronics 2017, 22, 173–184. [Google Scholar] [CrossRef]
- Mingming, Z.; Guoli, Z.; Nandakumar, A.; Shihua, G.; Shane, X. A Virtual-Reality Tracking Game for Use in Robot-Assisted Ankle Rehabilitation. In Proceedings of the 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 10–12 September 2014; pp. 1–4. [Google Scholar]
- Zhang, M.; Meng, W.; Davies, T.C.; Zhang, Y.; Xie, S.Q. A Robot-Driven Computational Model for Estimating Passive Ankle Torque with Subject-Specific Adaptation. IEEE Trans. Biomed. Eng. 2016, 63, 814–821. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, W.; Lu, C.Z.; Liu, Q.; Ai, Q.; Xie, S.Q. Bio-Inspired Design and Iterative Feedback Tuning Control of a Wearable Ankle Rehabilitation Robot. J. Comput. Inf. Sci. Eng. 2016, 16, 41003–41009. [Google Scholar] [CrossRef]
- Li, J.; Zuo, S.; Zhang, L.; Dong, M.; Zhang, Z.; Tao, C.; Ji, R. Mechanical Design and Performance Analysis of a Novel Parallel Robot for Ankle Rehabilitation. J. Mech. Robot. 2020, 12, 051007. [Google Scholar] [CrossRef]
- Li, J.; Fan, W.; Dong, M.; Rong, X. Research on Control Strategies for Ankle Rehabilitation Using Parallel Mechanism. Cogn. Comput. Syst. 2020, 2, 105–111. [Google Scholar] [CrossRef]
- Li, J.; Fan, W.; Dong, M.; Rong, X. Implementation of Passive Compliance Training on a Parallel Ankle Rehabilitation Robot to Enhance Safety. Ind. Rob. 2020, 47, 747–755. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Dong, M.; Fang, B.; Cui, Y.; Zuo, S.; Zhang, K. Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR). J. Healthc. Eng. 2019, 2019, 4164790. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Fan, W.; Li, J.; Zhou, X.; Rong, X.; Kong, Y.; Zhou, Y. A New Ankle Robotic System Enabling Whole-Stage Compliance Rehabilitation Training. IEEE/ASME Trans. Mechatron. 2021, 26, 1490–1500. [Google Scholar] [CrossRef]
- Dong, M.; Kong, Y.; Li, J.; Fan, W. Kinematic Calibration of a Parallel 2-UPS/RRR Ankle Rehabilitation Robot. J. Healthc. Eng. 2020, 2020, 3053629. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Ai, Q. Mechanism Design and Analysis of a Multi-DOF Flexible Ankle Rehabilitation Robot. J. Phys. Conf. Ser. 2021, 1884, 012038. [Google Scholar] [CrossRef]
- Liu, Q.; Zuo, J.; Zhu, C.; Meng, W.; Ai, Q.; Xie, S.Q. Design and Hierarchical Force-Position Control of Redundant Pneumatic Muscles-Cable-Driven Ankle Rehabilitation Robot. IEEE Robot. Autom. Lett. 2022, 7, 502–509. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Z.; Feng, Y.; Wang, R.; Wang, N.; Wang, Q. Improving the Safety of Ankle-Foot Rehabilitation System with Hybrid Control. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Busan, Korea, 7–11 July 2015; Volume 2015. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Z.; Wang, N.; Wang, Q. Range-of-Motion Measurement with Therapist-Joined Method for Robot-Assisted Ankle Stretching. Rob. Auton. Syst. 2017, 94, 34–42. [Google Scholar] [CrossRef]
- Ayas, M.S.; Altas, I.H. A Redundantly Actuated Ankle Rehabilitation Robot and Its Control Strategies. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, Athens, Greece, 6–9 December 2016. [Google Scholar] [CrossRef]
- Ayas, M.S.; Altas, I.H. Fuzzy Logic Based Adaptive Admittance Control of a Redundantly Actuated Ankle Rehabilitation Robot. Control Eng. Pract. 2017, 59, 44–54. [Google Scholar] [CrossRef]
- Erdogan, A.; Celebi, B.; Satici, A.C.; Patoglu, V. Assist On-Ankle: A Reconfigurable Ankle Exoskeleton with Series-Elastic Actuation. Auton. Robot. 2017, 41, 743–758. [Google Scholar] [CrossRef]
- Abu-Dakk, F.J.; Valera, A.; Escalera, J.A.; Vallés, M.; Mata, V.; Abderrahim, M. Trajectory Adaptation and Learning for Ankle Rehabilitation Using a 3-PRS Parallel Robot. In Lecture Notes in Computer Science; Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer, 2015; Volume 9245, Available online: https://link.springer.com/book/10.1007/978-3-319-22873-0 (accessed on 25 September 2022).
- Zhang, C.; Hu, J.; Ai, Q.; Meng, W.; Liu, Q. Impedance Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. In Lecture Notes in Computer Science; Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer, 2017; Volume 10462, Available online: https://link.springer.com/chapter/10.1007/978-3-319-65289-4_29 (accessed on 25 September 2022).
- Ai, Q.; Zhu, C.; Zuo, J.; Meng, W.; Liu, Q.; Xie, S.Q.; Yang, M. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Sensors 2018, 18, 66. [Google Scholar] [CrossRef] [PubMed]
- Ai, Q.; Wang, L.; Chen, K.; Chen, A.; Hu, J.; Fang, Y.; Liu, Q.; Zhou, Z. Cooperative Control of an Ankle Rehabilitation Robot Based on Human Intention. In Proceedings of the 2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics, ICDL-EpiRob 2018, Tokyo, Japan, 17–20 September 2018. [Google Scholar] [CrossRef]
- Alipour, A.; Mahjoob, M.J. A Rehabilitation Robot for Continuous Passive Motion of Foot Inversion-Eversion. In Proceedings of the 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, Tehran, Iran, 26–28 October 2016. [Google Scholar] [CrossRef]
- Sugihara, S.; Toda, H.; Yamaguchi, T. Movable Ankle Joint Stretching Device by Stabilization of Ankle Position Using Tension Rod Structure. IOP Conf. Ser. Mater. Sci. Eng. 2019, 472, 012020. [Google Scholar] [CrossRef]
- Doroftei, I.; Racu, C.M.; Honceriu, C.; Irimia, D. A One-Degree-of Freedom Ankle Rehabilitation Platform. IOP Conf. Ser. Mater. Sci. Eng. 2019, 591, 012076. [Google Scholar] [CrossRef] [Green Version]
- Racu Cazacu, C.M.; Doroftei, I. New Concepts of Ankle Rehabilitation Devices—Part I: Theoretical Aspects. In Mechanisms and Machine Science; Springer, 2018; Volume 57, Available online: https://link.springer.com/chapter/10.1007/978-3-319-79111-1_22 (accessed on 25 September 2022).
- Racu, C.M.; Doroftei, I. Preliminary Results and Evaluation of an Ankle Rehabilitation Device. IOP Conf. Ser. Mater. Sci. Eng. 2020, 997, 012088. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Okamoto, S.; Yamada, N.; Inoue, K.; Akiyama, Y.; Yamada, Y. Pneumatically-Driven Stretching Machine for Ankle Dorsiflexion: Safety Concepts and Effectiveness Test Involving Healthy Young Subjects. ROBOMECH J. 2020, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Szigeti, A.; Takeda, Y.; Matsuura, D. Portable Design and Range of Motion Control for an Ankle Rehabilitation Mechanism Capable of Adjusting to Changes in Joint Axis. Int. J. Mech. Robot. Syst. 2016, 3, 222–236. [Google Scholar] [CrossRef]
- Murphy, P.; Adolf, G.; Daly, S.; Bolton, M.; Maurice, O.; Bonia, T.; Mavroidis, C.; Yen, S.C. Test of a Customized Compliant Ankle Rehabilitation Device in Unpowered Mode. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, Chicago, IL, USA, 26–30 August 2014. [Google Scholar] [CrossRef]
- Adolf, G.; Bolton, M.; Bonia, T.; Daly, S.; Maurice, O.; Murphy, P.; Mavroidis, C.; Yen, S.C. Development of a Robotic Device to Improve Chronic Ankle Instability through Controlled Perturbation. In Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC, Boston, MA, USA, 25–27 April 2014; Volume 2014. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, A.; Zhang, Q.; Zhang, B.; Wu, X.; Qin, T. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot. Micromachines 2022, 13, 950. [Google Scholar] [CrossRef]
- Liu, Y.; Zang, X.; Zhang, N.; Wu, M. Design and Evaluation of a Wearable Powered Foot Orthosis with Metatarsophalangeal Joint. Appl. Bionics Biomech. 2018, 2018, 9289505. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Kim, M.; Kim, Y.J.; Hong, N.; Ryu, S.; Kim, H.J.; Kim, S. Soft Robot Review. Int. J. Control. Autom. Syst. 2017, 15, 3–15. [Google Scholar] [CrossRef]
No. | Ankle Injury Rehabilitation Robot AIRR | Author (Latest Year) [References] | DOF (with Type of Motion) | Actuation | Mechanism | Covered Ankle Motion | Sensors | Platform/Wearable | Training Mode |
---|---|---|---|---|---|---|---|---|---|
(1) | Ankle Rehabilitation Robot (ARBOT) | Saglia et.al. (2011) [11,150]. | 2 DOFs (2 Rotational) | Electrical | Parallel Mechanism Linear Actuation Capstan System of Pulleys | Plantarflexion Dorsiflexion Inversion Eversion | Six Axis Force/Torque Sensor Position Sensor Optical Encoder | Platform |
|
(2) | Wearable Soft Parallel Robot | Jamwal et.al. (2020) [151,152,153] | 3 DOFs (3 Rotational) | Pneumatic | Cable Driven Mechanism Air Muscles Parallel Mechanism | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion | Pressure Sensor Force Sensor Linear Potentiometer | Wearable |
|
(3) | Rutgers Ankle | Girone et.al. (1999) [154,155] | 6 DOFs (6 Rotational) | Pneumatic | Parallel Mechanism | Plantarflexion Dorsiflexion Inversion Eversion | Force Sensor Linear Potentiometers Pressure Sensor | Platform |
|
(4) | Reconfigurable Ankle Rehabilitation Robot | Yoon et.al. (2005) [156,157] | 4 DOFs (1 Prismatic + 3 Rotational) | Pneumatic | Reconfigurable Parallel Mechanism | Plantarflexion Dorsiflexion Inversion Eversion | N/A | Platform |
|
(5) | Three RSS/S Ankle Rehabilitation Parallel Robot | Liu et.al. (2006) [158,159,160] | 3 DOFs 3RSS/S (1 Rotational-1 Spherical-1 Spherical) | Electrical | Parallel Mechanism | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion | Force Sensor Rotary Encoder | Platform |
|
(6) | Rotating Magnetorheological Damper for Ankle Rehabilitation Robot (R-MRF-D) | Zheng J. et.al. (2020) [161] | 1 DOF (1 Rotational) | Electrical | Magnetorheological Fluid (MRF) Spring Mechanism | Dorsiflexion Plantarflexion | Torque Sensor Speed Sensor | Platform |
|
(7) | SUKorpion | Satici et.al. (2009) [162,163] | 2 DOFs 3UPS-RR Combination of UPS (1 Universal-1 Prismatic-Spherical) + RR (1 Rotational- 1 Rotational) | Electrical | Parallel Mechanism | Plantarflexion Dorsiflexion Inversion Eversion | Rotary Encoder Motion Tracker | Wearable |
|
(8) | Three DOF Ankle Rehabilitation Robot | L.Wang et.al. (2014) [164] | 3 DOFs (1 Rotational- 1 Rotational- 1 Rotational) | Electrical | Turbine Worm | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion. | Rotary Encoder Accelerometer | Platform |
|
(9) | Vi-RABT (Virtually Interfaced Robotic Ankle and Balance Trainer | Farjadian et al. (2019) [165] | 2 DOFs (1 Rotational- 1 Rotational) | Electrical | Pulley Poly Chain Timing Belt | Plantarflexion Dorsiflexion Inversion Eversion | Angle Sensor Force Sensor Optical Encoder | Platform |
|
(10) | Compliant Ankle Rehabilitation Robot (CARR) | Zhang et al. (2018) [166,167,168,169,170,171] | 3 DOFs (1 Rotational- 1 Rotational- 1 Rotational) | Pneumatic | Fluidic Muscle Parallel Mechanism | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion | Six Axis Load Cell Magnetic Rotary Encoders Force Sensors | Wearable |
|
(11) | Wearable Ankle Rehabilitation Robot | Zhou et al. (2016) [172] | 3 DOFs (1 Rotational- 1 Rotational- 1 Rotational) | Electrical | Linear Actuation Parallel Mechanism | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion | Inclinometer Sensor Limit Switch | Wearable |
|
(12) | Novel Parallel Robot for Ankle Rehabilitation | Li et al. (2020) [173,174,175,176,177,178] | 3 DOFs 2 UPS/RRR Combination of UPS (1 Universal-1 Prismatic-Spherical) + RRR (1 Rotational- 1 Rotational- 1 Rotational) | Electrical | Parallel Mechanism | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion | Force Sensor Torque Sensor Tension/ Pressure Sensor Angle Sensor Rotary Encoder | Platform |
|
(13) | Redundant Pneumatic Muscles-Cable-Driven Ankle Rehabilitation Robot | Lu et al. (2022) [179,180] | 3 DOFs (1 Rotational- 1 Rotational- 1 Rotational) | Pneumatic | Pneumatic Muscles Proportional Calve Regulator Parallel Mechanism Cable Driven Mechanism | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion | Six Axis Force/Torque Sensor Magnetic Angle Sensor (X-Axis, Y-Axis, and Z-Axis) Force Sensor Displacement Sensor | Platform |
|
(14) | Robot Assisted Ankle Stretching | Chen et al. (2017) [181,182] | 1 DOF (1 Rotational) | Electrical | Belt Drive | Dorsiflexion Plantarflexion | Uni-Axial Torque Sensor Rotary Encoder Inclinometer Current Sensor | Wearable |
|
(15) | Redundantly Actuated Ankle Rehabilitation Robot | Ayas and Atlas (2016) [183,184] | 2 DOFs (1 Rotational- 1 Rotational) | Electrical | Linear Actuation Parallel Mechanism | Plantarflexion Dorsiflexion Inversion Eversion | Force Sensor | Platform |
|
(16) | AssistON-ankle | Erdogan et al. (2016) [185] | 6 DOFs Combination of 3 UPS (1 Universal-1 Prismatic-Spherical) + 3RPS (1 Rotational-1 Prismatic-1 Spherical) | Electrical | Lockable Passive Universal Joint Modules Parallel Mechanism | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion Supination Pronation | Force Sensor | Wearable |
|
(17) | Three-PRS Parallel Robot | Abu Dakk et al. (2015) [186] | 3 DOFs (1 Prismatic-1 Rotational-1 Spherical) | Electrical | Parallel Mechanism | Plantarflexion Dorsiflexion Inversion Eversion | Force Sensor | Platform |
|
(18) | Pneumatic Muscles-Driven Ankle Rehabilitation Robot | Zhang et al. (2017) [187,188,189] | 2 DOFs (1 Rotational- 1 Rotational) | Pneumatic | Pneumatic Muscles Cable and Pulley Driven Mechanism Parallel Mechanism | Plantarflexion Dorsiflexion Inversion Eversion | Force Sensor Displacement Sensor | Platform |
|
(19) | Rehabilitation Robot for Continuous Passive Motion of Foot Inversion-Eversion | Alipour and Mahjoob (2016) [190] | 4 DOFs (3 activeDOFs) (1 Rotational- 1 Rotational- 1 Rotational) | Electrical | Gear and Pinion Transmission System | Dorsiflexion Plantarflexion Adduction Abduction Inversion Eversion | Rotary Encoder Current Sensor | Wearable |
|
(20) | Movable Ankle Joint Stretching Device | Sugihara et al (2019) [191] | 1 DOF (1 Rotational) | Electrical | Pantograph Jack Tension Rod Structure Linear Actuation | Plantarflexion Dorsiflexion | Force Sensor Acceleration Sensor | Wearable |
|
(21) | A One Degree-of Freedom Ankle Rehabilitation Platform | Doreftei et al. (2019) [192] | 1 DOF (1 Spherical) | Electrical | Parallel Mechanism | Plantarflexion Dorsiflexion Inversion Eversion | N/A | Platform |
|
(22) | Ankle Rehabilitation Device with Two Degrees of Freedom and Compliant Joint | C-M Racu et.al. (2020) [193,194] | 2 DOFs (1 Rotational - 1 Rotational) | Electrical | Four Bar Mechanism | Plantarflexion Dorsiflexion Inversion Eversion | Rotary Potentiometers | Platform |
|
(23) | Pneumatically Driven Stretching Machine for Ankle Dorsiflexion | Shiraishi et al. (2020) [195] | 1 DOF (1 Rotational) | Pneumatic | Bellows Extension and Contraction | Dorsiflexion | Mechanical Limiter Sensors in Pneumatic Regulator Dynamometer and Joint Angle Meter (measurement—not part of robotic system) | Wearable |
|
(24) | Ankle Rehabilitation Mechanism Capable of Adjusting to Changes in Joint Axis | Szigeti et al. (2015) [196] | 1 DOF (1 Rotational) | Electrical | Oldham’s Coupling Mechanism Four-Bar Linkage. | Dorsiflexion Plantarflexion | N/A | Wearable |
|
(25) | Customized Compliant Ankle Rehabilitation Device | Adolf et al. (2014) [197,198] | 2 DOFs (1 Rotational) | Pneumatic | Pneumatic Muscles | Plantarflexion Dorsiflexion Inversion Eversion | Rotary Encoder Pressure/Force Sensor | Wearable |
|
(26) | Three -RRS Parallel Ankle Rehabilitation Robot | Zou et al. (2022) [199] | 3 DOFs (1 Rotational- 1 Rotational- 1 Spherical) | Electrical | Branch Chains Crank Shaft Multiwedge Revolute Pair Spherical Joint | Dorsiflexion Plantarflexion Adduction Abduction Varus Valgus | Rotary Encoder (Installed in motor) Angle Sensors | Platform |
|
(27) | Wearable Powered Foot Orthosis with Metatarsophalangeal Joint | Liu Y. et al. (2018) [200] | 1 DOF (1 Rotational) | Electrical | Cylindrical Gear Bavel Gears Heteromorphic Gears Pivot shaft Parallel Mechanism | Dorsiflexion Plantarflexion | Heel Sensor (Contact Switch) Toe Sensor (Contact Switch) | Wearable |
|
AIRR Features | Strengths * | Opportunities * |
---|---|---|
DOF (with type of robot joints) | Capability
N/A | Innovation
N/A |
Actuation | Capability
N/A | Innovation
N/A |
Mechanism | Capability
| Innovation
N/A |
Covered Ankle Motion | Capability
N/A | - Innovation N/A Scope of Usage
|
Sensors | Capability
N/A | Innovation
N/A |
Platform/Wearable | Capability
N/A | Innovation
N/A |
Training Mode | Capability
N/A | - Innovation N/A Scope of Usage
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, M.N.; Basah, S.N.; Basaruddin, K.S.; Takemura, H.; Yeap, E.J.; Lim, C.C. Ankle Injury Rehabilitation Robot (AIRR): Review of Strengths and Opportunities Based on a SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis. Machines 2022, 10, 1031. https://doi.org/10.3390/machines10111031
Shah MN, Basah SN, Basaruddin KS, Takemura H, Yeap EJ, Lim CC. Ankle Injury Rehabilitation Robot (AIRR): Review of Strengths and Opportunities Based on a SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis. Machines. 2022; 10(11):1031. https://doi.org/10.3390/machines10111031
Chicago/Turabian StyleShah, Muhammad N., Shafriza N. Basah, Khairul S. Basaruddin, Hiroshi Takemura, Ewe J. Yeap, and Chee C. Lim. 2022. "Ankle Injury Rehabilitation Robot (AIRR): Review of Strengths and Opportunities Based on a SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis" Machines 10, no. 11: 1031. https://doi.org/10.3390/machines10111031
APA StyleShah, M. N., Basah, S. N., Basaruddin, K. S., Takemura, H., Yeap, E. J., & Lim, C. C. (2022). Ankle Injury Rehabilitation Robot (AIRR): Review of Strengths and Opportunities Based on a SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis. Machines, 10(11), 1031. https://doi.org/10.3390/machines10111031