Modeling and Optimization of a Micro-Channel Gas Cooler for a Transcritical CO2 Mobile Air-Conditioning System
Abstract
:1. Introduction
2. Model Development
2.1. Microchannel Heat Exchanger Geometry
2.2. Operating Conditions
2.3. Modeling Approach
2.4. Numerical Methodology
- The airflow is uniformly distributed over the entire surface of the HX.
- A uniform refrigerant flow is assumed in each tube.
2.5. Heat Transfer and Pressure Drop Correlations
2.6. Model Validation
3. Gas Cooler Optimization
3.1. Optimization Model
3.1.1. Parameters
3.1.2. Sets
3.1.3. Decision Variable
3.1.4. Constraints
3.1.5. Objective Function
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Af | fin surface area (m2) |
Ati | tube inside surface area (m2) |
Amean | mean surface area of the tubes (m2) |
Ato | Tube outside surface area (m2) |
Aa | airside heat transfer area (m2) |
C | heat capacity (kJ/K) |
cp | specific heat capacity (kJ·kg−1·K−1) |
Dport | port diameter (mm) |
f | friction factor |
Fd | flow depth (mm) |
Fp | fin pitch (mm) |
G | mass flux (kg·m−2·s−1) |
h | heat transfer coefficient (W·m−2·K−1) |
H | fin height (mm) |
j | Colburn j factor |
k | thermal conductivity (W·m−1·K−1) |
Ll | louver length (mm) |
Lp | louver pitch (mm) |
Lt | tube length (mm) |
Lα | louver angle (°) |
m˙ | mass flow rate (kg/s) |
NTU | number of transfer units |
Np | number of ports |
Nt | number of tubes |
Ns | number of passes |
Nu | Nusselt number |
P | pressure (kPa) |
Pr | Prandtl number |
Q | gas cooler capacity (kW) |
Re | Reynolds number (=G·Dh/µ) |
ReLp | airside Reynolds number, based on louver pitch (=) |
tw | wall thickness (mm) |
T | temperature (°C) |
Tp | tube pitch (mm) |
UA | overall heat transfer conductance (W·K−1) |
Vc | air velocity through minimum free-flow area (m/s) |
ΔP | pressure drop (kPa) |
Greek letters | |
α | void fraction or thermal diffusivity (k/) (m2/s) |
ɛ | effectiveness |
fin thickness (mm) | |
fin efficiency | |
surface effectiveness | |
dynamic viscosity (kg/m/s) | |
kinematic viscosity (=µ/ρ) (m2/s) | |
density (kg/m3) | |
Subscripts | |
a | air |
f | fin |
i | ith segment or number or inlet |
j | jth term or number |
k | kth term or number |
r | refrigerant |
t | tube |
Abbreviations | |
HX | heat exchanger |
MCHX | microchannel heat exchanger |
MCGC | microchannel gas cooler |
References
- Kandlikar, S.G.; Garimella, S.; Li, D.; Colin, S.; King, M. Heat Transfer and Fluid Flow in Minichannels and Microchannels; Butterworth-Heinemann: Oxford, UK, 2014; ISBN 9780080983462. [Google Scholar]
- Schulz, M.; Kourkoulas, D. Regulation (EU) No 517/2014 of The European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006. Off. J. Eur. Union 2014, 57, L150. [Google Scholar]
- Lorentzen, G.; Pettersen, J. A New, Efficient and Environmentally Benign System for Car Air-Conditioning. Int. J. Refrig. 1993, 16, 4–12. [Google Scholar] [CrossRef]
- Kim, M.H.; Pettersen, J.; Bullard, C.W. Fundamental Process and System Design Issues in CO2 Vapor Compression Systems. Prog. Energy Combust. Sci. 2004, 30, 119–174. [Google Scholar] [CrossRef]
- Jiang, H.; Aute, V.; Radermacher, R. CoilDesigner: A General-Purpose Simulation and Design Tool for Air-to-Refrigerant Heat Exchangers. Int. J. Refrig. 2006, 29, 601–610. [Google Scholar] [CrossRef]
- Fronk, B.M.; Garimella, S. Water-Coupled Carbon Dioxide Microchannel Gas Cooler for Heat Pump Water Heaters: Part II—Model Development and Validation. Int. J. Refrig. 2011, 34, 17–28. [Google Scholar] [CrossRef]
- García-Cascales, J.R.; Vera-García, F.; Gonzálvez-Maciá, J.; Corberán-Salvador, J.M.; Johnson, M.W.; Kohler, G.T. Compact Heat Exchangers Modeling: Condensation. Int. J. Refrig. 2010, 33, 135–147. [Google Scholar] [CrossRef]
- Yin, J.M.; Bullard, C.W.; Hrnjak, P.S. R-744 Gas Cooler Model Development and Validation. Int. J. Refrig. 2001, 24, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Khatoon, S.; Ishaque, S.; Kim, M.H. Modeling and Analysis of Air-Cooled Heat Exchanger Integrated with Supercritical Carbon Dioxide Recompression Brayton Cycle. Energy Convers. Manag. 2021, 232, 113895. [Google Scholar] [CrossRef]
- Chai, L.; Tsamos, K.M.; Tassou, S.A. Modelling and Evaluation of the Thermohydraulic Performance of Finned-Tube Supercritical Carbon Dioxide Gas Coolers. Energies 2020, 13, 1031. [Google Scholar] [CrossRef] [Green Version]
- Heun, M.K.; Dunn, W.E. Performance and Optimization of Microchannel Condensers; ACRC TR-81; Air Conditioning and Refrigeration Center: Urbana, IL, USA, 1995; p. 269. [Google Scholar]
- Mehendale, S.; Li, Z.; Aute, V.; Park, C. Refrigerant Circuit Optimization of Dual-Mode Single-Row Microchannel Heat Exchangers Used for R410A Heat Pumps. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 11–14 July 2016; pp. 1–10. [Google Scholar]
- Lawrence, N.; Elbel, S. Numerical Study on the Design of Microchannel Evaporators for Ejector Refrigeration Cycles. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 11–14 July 2016; pp. 1–10. [Google Scholar]
- Yin, X.W.; Wang, W.; Patnaik, V.; Zhou, J.S.; Huang, X.C. Evaluation of Microchannel Condenser Characteristics by Numerical Simulation. Int. J. Refrig. 2015, 54, 126–141. [Google Scholar] [CrossRef]
- Saleem, A.; Kim, M.H. Air-Side Thermal Hydraulic Performance of Microchannel Heat Exchangers with Different Fin Configurations. Appl. Therm. Eng. 2017, 125, 780–789. [Google Scholar] [CrossRef]
- Gunnasegaran, P.; Mohammed, H.A.; Shuaib, N.H.; Saidur, R. The Effect of Geometrical Parameters on Heat Transfer Characteristics of Microchannels Heat Sink with Different Shapes. Int. Commun. Heat Mass Transf. 2010, 37, 1078–1086. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Gao, J. Influence of Geometric Parameters on Flow and Heat Transfer Performance of Micro-Channel Heat Sinks. Appl. Therm. Eng. 2016, 107, 870–879. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Shi, M.; Wu, J. Three-Dimensional Numerical Simulation of Heat and Fluid Flow in Noncircular Microchannel Heat Sinks. Int. Commun. Heat Mass Transf. 2009, 36, 917–920. [Google Scholar] [CrossRef]
- Jing, D.; He, L. Numerical Studies on the Hydraulic and Thermal Performances of Microchannels with Different Cross-Sectional Shapes. Int. J. Heat Mass Transf. 2019, 143, 118604. [Google Scholar] [CrossRef]
- Huang, L.; Aute, V.; Radermacher, R. Airflow Distribution and Design Optimization of Variable Geometry Microchannel Heat Exchangers. Sci. Technol. Built Environ. 2015, 21, 693–702. [Google Scholar] [CrossRef]
- Ishaque, S.; Kim, M.H. Refrigerant Circuitry Optimization of Finned Tube Heat Exchangers Using a Dual-Mode Intelligent Search Algorithm. Appl. Therm. Eng. 2022, 212, 118576. [Google Scholar] [CrossRef]
- Glazar, V.; Trp, A.; Lenic, K. Optimization of Air-Water Microchannel Heat Exchanger Using Response Surface Methodology. Int. J. Heat Mass Transf. 2020, 157, 119887. [Google Scholar] [CrossRef]
- Ge, Y.T.; Tassou, S.A.; Santosa, I.D.; Tsamos, K. Design Optimisation of CO2 Gas Cooler/Condenser in a Refrigeration System. Appl. Energy 2015, 160, 973–981. [Google Scholar] [CrossRef] [Green Version]
- Okasha, A.; Müller, N.; Deb, K. Bi-Objective Optimization of Transcritical CO2 Heat Pump Systems. Energy 2022, 247, 123469. [Google Scholar] [CrossRef]
- Garcia, J.C.S.; Tanaka, H.; Giannetti, N.; Sei, Y.; Saito, K.; Houfuku, M.; Takafuji, R. Multiobjective Geometry Optimization of Microchannel Heat Exchanger Using Real-Coded Genetic Algorithm. Appl. Therm. Eng. 2022, 202, 117821. [Google Scholar] [CrossRef]
- Ishaque, S.; Kim, M.H. Numerical Modeling of an Outdoor Unit Heat Exchanger for Residential Heat Pump Systems with Nonuniform Airflow and Refrigerant Distribution. Int. J. Heat Mass Transf. 2021, 175, 121323. [Google Scholar] [CrossRef]
- Kim, M.H.; Bullard, C.W. Development of a Microchannel Evaporator Model for a CO2 Air-Conditioning System. Energy 2001, 26, 931–948. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 978-0-471-45728-2. [Google Scholar]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Kim, M.H.; Bullard, C.W. Air-Side Thermal Hydraulic Performance of Multi-Louvered Fin Aluminum Heat Exchangers. Int. J. Refrig. 2002, 25, 390–400. [Google Scholar] [CrossRef]
- Giannavola, M.S.; Hrnjak, P.S. Experimental Study of System Performance Improvements in Transcritical R744 Systems for Mobile Air-Conditioning and Heat Pumping; Acrc CR-46; Air Conditioning and Refrigeration Center: Urbana, IL, USA, 2002; Volume 61801, p. 231. [Google Scholar]
Core volume (m3) | 0.00332 | |
Refrigerant pass | 13-11-10 | |
Fin | Type | Louvered fins |
Height (mm) | 8.89 | |
Pitch (mm) | 2.5 | |
Width (mm) | 16 | |
Thickness (mm) | 0.10 | |
Louver pitch (mm) | 0.99 | |
Louver angle (°) | 23 | |
Louver length (mm) | 5.98 | |
Tube | Number of tubes | 34 |
Tube length (mm) | 545 | |
Number of ports | 11 | |
Port diameter (mm) | 0.79 | |
Wall thickness (mm) | 0.43 | |
Web thickness (mm) | 0.70 |
S.No | Compressor Speed [RPM] | Tri [°C] | Pri [kPa] | Tai [°C] | ṁr [g/s] | ṁa [g/s] |
---|---|---|---|---|---|---|
I17-1 | 106.8 | 9833 | 43.6 | 20.78 | 451 | |
I17-2 | 111.7 | 10,355 | 43.6 | 19.80 | 451 | |
I17-3 | 950 | 115.8 | 10,888 | 43.6 | 19.02 | 452 |
I17-4 | 119.7 | 11,388 | 43.6 | 18.45 | 452 | |
I17-5 | 123.0 | 11,854 | 43.6 | 17.96 | 452 | |
I6-1 | 115.8 | 12,464 | 55.1 | 26.39 | 457 | |
I6-2 | 118.0 | 12,672 | 55.0 | 25.91 | 457 | |
I6-3 | 950 | 119.2 | 12,855 | 55.0 | 25.61 | 457 |
I6-4 | 120.5 | 12,960 | 54.9 | 25.26 | 456 | |
I6-5 | 125.0 | 13,335 | 54.9 | 24.47 | 456 | |
I6-6 | 126.6 | 13,592 | 54.9 | 23.94 | 456 | |
M03-1 | 124.7 | 10,937 | 42.7 | 37.84 | 537 | |
M03-2 | 1800 | 124.3 | 10,950 | 42.8 | 38.05 | 537 |
M03-3 | 125.0 | 10,974 | 42.9 | 37.75 | 537 | |
M03-4 | 124.7 | 10,975 | 42.9 | 37.93 | 537 | |
H03-1 | 129.3 | 10,338 | 43.6 | 56.39 | 701 | |
H03-2 | 3000 | 129.5 | 10,351 | 43.9 | 56.39 | 700 |
H03-3 | 138.6 | 10,792 | 43.5 | 56.36 | 701 | |
H03-4 | 142.6 | 11,025 | 43.7 | 54.83 | 700 | |
H03-5 | 148.9 | 11,756 | 43.5 | 50.13 | 700 |
Parameter | Range | Parameter | Range |
---|---|---|---|
No. of tubes | 12–95 | Heat exchanger height (m) | 0.130–1.031 |
No. of ports | 9–21 | Heat exchanger width (m) | 0.015–0.024 |
No. of passes | 3,4,5 | Heat exchanger length (m) | 0.216–1.706 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, N.; Ishaque, S.; Kim, M.-H.; Choi, S. Modeling and Optimization of a Micro-Channel Gas Cooler for a Transcritical CO2 Mobile Air-Conditioning System. Machines 2022, 10, 1177. https://doi.org/10.3390/machines10121177
Ullah N, Ishaque S, Kim M-H, Choi S. Modeling and Optimization of a Micro-Channel Gas Cooler for a Transcritical CO2 Mobile Air-Conditioning System. Machines. 2022; 10(12):1177. https://doi.org/10.3390/machines10121177
Chicago/Turabian StyleUllah, Naveed, Shehryar Ishaque, Man-Hoe Kim, and Sanghun Choi. 2022. "Modeling and Optimization of a Micro-Channel Gas Cooler for a Transcritical CO2 Mobile Air-Conditioning System" Machines 10, no. 12: 1177. https://doi.org/10.3390/machines10121177
APA StyleUllah, N., Ishaque, S., Kim, M. -H., & Choi, S. (2022). Modeling and Optimization of a Micro-Channel Gas Cooler for a Transcritical CO2 Mobile Air-Conditioning System. Machines, 10(12), 1177. https://doi.org/10.3390/machines10121177