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Abstract: With the continuous development of the 3D LiDAR (Light Detection And Ranging)
mapping algorithm and its application in various fields, the size of the point cloud map becomes
a bottleneck that limits the 3D LiDAR mapping algorithm from running for a long time. In this
paper, a 3D LiDAR mapping method based on scan-to-map and variable resolution NDT (normal-
distributions transform) registration is proposed. When updating the global map, variable resolution
processing can reduce the size of the global map and improve the accuracy of map construction. In
addition, the size of the map created by the mapping algorithm is proportional to the size of the space
and does not grow infinitely over time. The mapping experiments using a rotating LiDAR in the
room, corridor, and outdoor environments show that the algorithm has higher mapping accuracy
and smaller map size than without considering the variable resolution strategy. The experimental
results of the map construction for a long time in an appropriate test area illustrate that the map built
by the algorithm does not grow infinitely with time in the fixed space. In summary, by adjusting the
map resolution adaptively according to the curvature of different areas in the 3D LiDAR mapping
process, the proposed variable resolution strategy can maintain the size of the global map almost
proportional to the size of the space. Moreover, the mapping accuracy can be improved as well.

Keywords: 3D LiDAR mapping; scan-to-map; NDT; variable resolution

1. Introduction

3D environment map construction technology has a wide range of application prospects,
such as precision agriculture [1], building reconstruction [2], search and rescue [3], tree
surveying [4], terrain mapping [5], historical building appearance mapping [6], and so on.
Therefore, it is of great significance to study the 3D environment map construction technology.

LiDAR (Light Detection And Ranging) and camera are mainly used for 3D mapping.
For example, a monocular camera is used for real-time UAV (Unmanned Aerial Vehicle)
dense mapping [7], an RGB-D camera is used for indoor unbounded RGB-D dense point
cloud 3D reconstruction with high accuracy [8], and a LiDAR is used for environment
map construction to cope with challenging agricultural scenarios [9]. The camera can only
be used in a well-lit environment, while the use of LiDAR is almost unaffected by the
environment. Compared with the camera, LiDAR has higher accuracy and a larger field of
view, so we use 3D LiDAR to conduct research on 3D map construction.

3D environment maps are represented in many different ways, including point
cloud [10], mesh [11], surfel [4], grid [12,13], polarized LiDAR Map [14], etc. The point
cloud is an effective way to represent the real environment. With the rapid develop-
ment of LiDAR, there is more and more research on LiDAR-based mapping algorithms,
such as [15–17]; all are based on research of 3D LiDAR mapping algorithms. Since the
point cloud can represent the surrounding environment simply and intuitively, it is more
convenient to use than other types of map representation, so we use point cloud as the
map representation.

When using the point cloud as the map representation, the map will become denser
and denser over time, even with the limited environment. The conventional methods to
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solve this problem include removing redundant points according to the distance between
point clouds [18,19] or the time interval over the capturing time of the point cloud [20].
Some researchers also tackle the above question by detecting the overlap degree of sub-
maps and carrying out map fusion [21–23]. The method of removing redundant points in
the map according to the distance between point clouds is similar to uniform downsam-
pling, which is convenient to implement, but it cannot distinguish objects with different
features. The strategy of removing redundant points according to the time when the point
cloud is added to the global map does not make use of the previous point cloud informa-
tion, which is not suitable for constructing a point cloud map. The method of detecting
the overlap degree of the sub-maps requires maintaining the sub-maps, which is difficult
to implement.

To solve the problem of significant redundancy caused by repeated scanning of the
same space, we propose to process the map with a variable resolution strategy and adap-
tively adjust the point cloud density of different locations in the map according to their
curvature. Thus, different locations in the map have reasonable point cloud density. This
ensures that the map size varies with the size of the space rather than growing infinitely
over time. In addition, in the process of variable resolution processing of the map, redun-
dant points are removed according to the probability density value of each point in the
global map, which is helpful in improving the accuracy of map construction.

The main contributions of this paper are as follows:

• A novel strategy of variable resolution processing for point cloud maps is proposed,
which can reduce the map size effectively without decreasing the mapping accuracy;

• The size of the map generated with the proposed strategy increases proportionately to
the environmental extent rather than the scanning time;

• The experimental results in both structured and unstructured environments demon-
strated the efficiency of the proposed method.

The rest of the paper is organized as follows. Section 2 reviews some research related
to this paper. Section 3 introduces the algorithm of the whole system. Section 4 intro-
duces the experiment results and discussion. The experimental environment includes a
room environment, a corridor environment, an outdoor environment, and a conference
room environment. Section 5 summarizes the paper and puts forward suggestions for
future modification.

2. State of the Art

This section introduces some 3D mapping systems and measures to reduce the re-
dundant points in the map. The strategies for removing redundant points in the map
include removing redundant points according to the distance between point clouds or the
time when the point cloud was added to the global map, detecting the overlap degree of
sub-maps and merging the sub-maps with higher overlap degree, point cloud compression,
and multi-resolution maps, etc.

Removing redundant points according to the distance between point clouds is a
common method to remove redundant points. There are different ways to implement it. In
paper [18], before adding a new point to the global map, it is necessary to search within
a certain radius of the point, and this point will be added to the map only if no results
are returned. If there are already points within the radius, only the point with the least
uncertainty is kept. In paper [19], the points whose distance is less than a certain threshold
are directly removed. The nature of this way of removing redundant points is similar to the
uniform downsampling of the point cloud, but the disadvantage is that different features
cannot be distinguished.

The strategy of removing redundant points based on when the point cloud was added
to the map is crude. In paper [20], a planar feature is stored in each voxel of the global map.
When the uncertainty of the planar feature in a voxel converges, all the historical points are
discarded, and the estimated planar parameters are retained. Once a new point appears,
only the latest 10 points are kept, and the new plane features composed of these 10 points
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are calculated. This way of updating the map only uses the newly obtained information of
a few point clouds and does not consider the information of the previous point clouds at
the location. In this case, the global map is represented by plane elements, and the strategy
of removing redundant points according to the time when the point cloud was added to
the global map is feasible, but it may not be appropriate for the point cloud map.

It is a good way to reduce the size of the map by merging sub-maps. The map update
strategy in paper [21] is to search all the sub-maps involved in the closed loop when a
closed loop is detected, and then fuse these sub-maps together. Sub-map fusion can save
memory by preventing new sub-maps from being created when the same space is revisited.
This has the advantage of making the reconstruction complexity proportional to the amount
of space explored, rather than the duration of the exploration. However, this scheme only
works when the closed loop is detected, and searching all the sub-maps after the closed
loop is detected also needs more time. Paper [22] introduces a sub-map fusion strategy
based on overlapping scan space on the basis of paper [21]. Sub-map overlap is calculated
by comparing volume reconstruction and occupancy information stored in each sub-map.
If the overlap of two sub-maps exceeds the threshold, it indicates that there is significant
redundancy between the sub-maps, and map fusion is required. The calculation of sub-map
overlap also requires traversing a large number of sub-maps, resulting in a large amount
of computation. In paper [23], a method to calculate the map increment is proposed, and
only the incremental part is added when the map is updated. It is also a time-consuming
operation to calculate the map increment in this method.

There have also been some studies on reducing the size of the map by compressing the
point cloud. In paper [24], a Recurrent Neural Network is used to compress the point cloud.
In paper [25], a clustering method is used to compress the point cloud. In paper [26], a
voxelized point cloud compression scheme is proposed. In paper [27], a point cloud coding
scheme is proposed. Although these point cloud compression schemes can significantly
reduce the size of point cloud maps, they are more suitable for point cloud storage and
transmission than for online map construction, because point cloud maps need to be
compressed and decompressed frequently when this method is used for online mapping.

In some studies, multi-resolution maps are used to remove redundant information
in maps. In paper [28], a multi-resolution voxel map representation method is proposed
to observe the occupancy probability of different voxels, and only the voxels with higher
occupancy probability are retained. This method is suitable for occupancy voxel maps. In
paper [29], different resolutions are set according to the distance between the point cloud
and the sensor. This method is suitable for scenarios where the sensor is fixed, but it is not
easy to implement when the sensor is moving.

The variable resolution strategy proposed in this paper can consider different types
of features in the map, and adopt different resolutions for different positions adaptively,
which can better express the information in the environment. In addition, the map update
is carried out in the local area covered by the point cloud of the current LiDAR scan, which
is more convenient to implement. These features can be very helpful for some applications,
such as building reconstruction and search rescue. The proposed mapping algorithm can
significantly reduce the map data size during building reconstruction and search rescue
while preserving adequate environmental information.

3. Method

This section introduces the entire 3D LiDAR mapping system in detail. Section 3.1
describes the overall structure of the algorithm process, Section 3.2 describes the scan-to-
map based NDT (normal-distributions transform) registration algorithm, and Section 3.3
describes the variable resolution update strategy of the global map.

For clarity, some denotations used in this paper are presented as follows. The coordi-
nate system {M} is defined as the global coordinate system, and the point cloud in {M} is
denoted as MC, where MC = {Mp0, Mp1, Mp2, · · · }, Mpi ∈ R3 is a point in point cloud MC.
{Lk} is the LiDAR frame at time k, the point cloud in frame {Lk} is denoted as Lk C, where
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Lk C = {Lk p0.Lk p1, Lk p2, · · · }, Lk pi ∈ R3 is a point in point cloud Lk C. The 3D geometry
transformation from frame {Lk} to global frame {M} is denoted as M

Lk
T, M

Lk
T ∈ SE(3), where

SE(3) is the special Euclidean group.

3.1. System Overview

The pipeline of the 3D LiDAR mapping system proposed in this paper is shown in
Figure 1. The measurement error of LiDAR scanning is relatively large at a far distance, and
the measured points with a small range are induced by the vehicle body itself. Therefore,
a distance filter is applied to remove the aforementioned disturbing measurements. The
filtered measurement is Lk C. Then, the constant turn rate and velocity (CTRV) model [30]
is used to correct the distortion in Lk C, which results in a new point cloud Lk C′. Then, the
reference point cloud MCre f is extracted from the global map MC to overlap with Lk C′. A
scan-to-map NDT algorithm is used to register Lk C′ and MCre f , and the transformation M

Lk
T

from frame {Lk} to the global frame {M} is obtained. Lk C′ can be fine-tuned using the
registration results, which outputs a corrected point cloud Lk C′′. Lk C′′ is merged to MC
with an adaptive variable resolution strategy, which, as it is mentioned above, provides
simplified and accurate environment models.

Figure 1. The pipeline of the 3D LiDAR mapping system.

The global map is managed using an Octree [31] for efficient voxel queries, where the
point cloud belonging to a voxel is stored in the corresponding cell. The voxel-related proper-
ties, such as the mean and covariance of the local point cloud, the curvature, and the number
of the points, are stored in a hash table [32], denoted as H, for fast information extraction.

3.2. Scan-to-Map NDT Registration

Compared with the scan-to-scan registration method, the scan-to-map registration
method can largely avoid cumulative registration errors [33], so the scan-to-map method is
used for point cloud registration in this paper.

3.2.1. Select the Global Reference Cloud

To reduce the computational burden, the scan-to-map registration method in this
paper is not to register the current point cloud Lk C′ directly with the global point cloud MC
but to select a sub-map point cloud MCre f in MC that has overlapping areas with Lk C′.

Lk C′ is converted to the global frame {M} with Equation (1), and denoted by MC′.

Mp′ = M
Lk

Rpre · Lk p′ + M
Lk

tpre (1)

where Lk p′ ∈ Lk C′, Mp′ ∈ MC′. Mp′ are the points after Lk p′ is transformed to frame {M},
M
Lk

Rpre ∈ R3×3 and M
Lk

tpre ∈ R3 are the rotation matrix and translation vector of the predicted
frame {Lk} with respect to the global frame {M}. M

Lk
Rpre and M

Lk
tpre are calculated from

Equations (2) and (3), respectively, using the CTRV model.

M
Lk

Rpre =
M
Lk−1

R · Lk−2
Lk−1

R (2)

M
Lk

tpre =
M
Lk−1

R · Lk−2
Lk−1

t + M
Lk−1

t (3)
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where M
Lk−1

R ∈ R3×3 and M
Lk−1

t ∈ R3 are the rotation matrix and translation vector of the

frame {Lk−1} with respect to the frame {M}, and Lk−2
Lk−1

R ∈ R3×3 and Lk−2
Lk−1

t ∈ R3 are the
rotation matrix and translation vector of the frame {Lk−1}with respect to the frame {Lk−2}.

In order to guarantee a sufficient overlap between MC′ and MCre f in the subsequent
registration process, 26 voxels Vadj adjacent to Vi in the global map point cloud MC are
searched and added to the Octree of MCre f . Since the pose discrepancy between MC′ and MC
is limited after applying the CTRV model, a single layer expansion with 26 adjacent voxels
is enough to ensure an overlap between MC′ and MCre f . Only the mean and covariance
matrix of the point clouds in voxels are useful in the NDT registration process. Therefore,
we only need to record the voxel index in the Octree of MCre f , and the corresponding voxel
properties, including the mean and covariance matrix, can be quickly found in the global
hash table H.

3.2.2. The NDT Registration

The NDT is a method of compactly representing a surface. The transform maps a point
cloud to a smooth surface representation, described as a set of local probability density
functions (PDFs), each of which describes the shape of a section of the surface. The NDT
registration is to find M

Lk
T that maximizes the likelihood that the points of the current scan

lie on the reference scan surface [34].
The initial guess of the M

Lk
T is denoted as M

Lk
Tpre, which includes M

Lk
Rpre and M

Lk
tpre.

Denote the difference between the optimal solution of M
Lk

T and the M
Lk

Tpre as ∆T, ∆T ∈ SE(3).
The likelihood function is defined as

Ψ =
n

∏
i=1

ξ(h(∆T, Mp′i)) (4)

or, equivalently, in its negative logistic form:

− logΨ = −
n

∑
i=1

log(ξ(h(∆T, Mp′i))) (5)

where Mp′i ∈ MC′. The definition of h(∆T, Mp′i) is given in Equation (6), and the definition
of ξ(p) is given in Equation (7).

h(∆T, Mp′i) = ∆T · Mp′i (6)

ξ(p) =
1

(2π)3/2|∑i|
1/2 exp

{
−1

2
(p− µi)

T∑−1
i (p− µi)

}
(7)

where ξ(p) is the probability density function corresponding to voxel Vi of point cloud
MCre f , p ∈ R3. µi ∈ R3 is the mean of points in voxel Vi, and ∑∑∑i ∈ R3×3 is the covariance
matrix of points in voxel Vi.

Points with small probability density significantly deteriorate the registration results.
A mixture of a normal distribution and a uniform distribution can be used to approximate
Equation (5) to eliminate the influence of outliers on the results.

f (∆T) = −
n

∑
i=1

g(h(∆T, Mp′i)) (8)

where the definition of g(p) is given in Equation (9).

g(p) = −d1 · exp(−d2

2
(p− µi)

T∑−1
i (p− µi)) (9)

where d1 and d2 are constants. The readers are referred to the article [34] for details.
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The Newton method is used to solve the following nonlinear optimization problems.

∆T∗ = argmin
∆T

f (∆T) (10)

∆T∗ =
[

∆R∗ ∆t∗

0 1

]
(11)

where ∆R∗ ∈ R3×3 is the rotation matrix and ∆t∗ ∈ R3 is the translation vector.
Accordingly, the rotation M

Lk
R and translation M

Lk
t of the LiDAR frame can be updated,

as shown in Equations (12) and (13).

M
Lk

R = ∆R∗ · M
Lk

Rpre (12)

M
Lk

t = ∆R∗ · M
Lk

tpre + ∆t∗ (13)

3.3. Map Maintenance

With the pose of the current scan registered, the new point cloud needs to be merged
into the global map, which is called global map updating. The first step is to refine
the point cloud correction for Lk C with the optimized registration results. The rotation
matrix Lk−1

Lk
R and translation vector Lk−1

Lk
t between the frame k and k − 1 is calculated in

Equations (14) and (15).
Lk−1
Lk

R = M
Lk−1

R−1 · M
Lk

R (14)

Lk−1
Lk

t = M
Lk−1

R−1 · (M
Lk

t− M
Lk−1

t) (15)

The re-corrected scan Lk C′′ is converted to the global frame {M} with Equation (16),
and denoted as MC′′.

Mp′′ = M
Lk

R · Lk p′′ + M
Lk

t (16)

where Lk p′′ ∈ Lk C′′, Mp′′ ∈ MC′′.
The essence of our variable resolution method is to maintain a geometric-adaptive

point density in the map updating process. Denote the changed voxel set as V. Firstly, the
curvature αi of the point cloud in voxel Vi ∈ V is calculated according to Equation (17).

αi =
λ0_i

λ0_i + λ1_i + λ2_i
(17)

where λ0_i, λ1_i and λ2_i are the eigenvalues of the covariance matrix of the point cloud in
voxel Vi, and satisfy λ0_i ≤ λ1_i ≤ λ2_i.

Then, the density upper limit ρlim_i of the point cloud in voxel Vi is calculated according
to Equation (18).

ρlim_i = fmax_density(αi) =


ρmin αi < αmin
η · αi αmin ≤ αi ≤ αmax
ρmax αi > αmax

(18)

where ρmin is the lower bound of ρlim_i, ρmax is the upper bound of ρlim_i, η is a user-defined
coefficient, αmin is the lower bound of αi, and αmax is the upper bound of αi. They can be
tuned under the constraints αmin = ρmin

η and αmax = ρmax
η . The higher the curvature of the

point cloud in the voxel, the higher the upper limit of the density of the point cloud. If we
need a denser map, we can set ρmin, ρmax, and η larger, and vice versa.

Then, the upper limit nmax_i of points number in voxel Vi can be calculated, as shown
in Equation (19).

nmax_i = ρlim_i · L3 (19)
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where L is the edge length of the voxel.
If the point number ni after map merging is larger than nmax_i, it implies that redun-

dant points exist in the Vi and need to be removed. Firstly, γ ∗ nmax_i points with larger
probability density values are separated as the maintaining points, then (1− γ) ∗ nmax_i
points are randomly selected from the left part and treated as the maintaining points as
well, the other points which do not belong to the maintaining points will be removed. Here,
γ is an adjustable coefficient. The probability density value of each point in voxel Vi is
calculated as shown in Equation (7). In the process of NDT registration, outliers will have
a certain impact on the registration results, so reserving the points with high probability
density will help improve the accuracy of NDT registration and then improve the accuracy
of map construction.

The map maintenance process described above is concluded as in Algorithm 1. In
addition, we need to update the mean µi and covariance matrix ∑∑∑i of the new point cloud
in each voxel Vi ∈ V in the global hash table H for further registration usage.

Algorithm 1: Variable Resolution Strategy
Data: voxel set V in global map, voxel edge length L, parameter γ
Result: voxel set V after variable resolution processing.
for voxel Vi ∈ V do

query point number ni of Vi;
compute curvature αi of Vi;
compute max point cloud density ρlimi

;
nmaxi = ρlimi

∗ L3;
if ni ≤ nmaxi then

continue;
else

separate γ ∗ nmaxi points as maintaining points whose probability density
values are larger;

select (1− γ) ∗ nmaxi points in the left points randomly as the maintaining
points as well;

remove the remaining points that do not belong to the maintaining points;
end

end
Return V

4. Experiment Results and Discussion

We verified the variable resolution NDT method in three different environments
(room environment, corridor environment, and outdoor environment) for performance
evaluation. In addition, we carried out a long-time experiment to illustrate the advantages
of our mapping algorithm in decreasing the map data size.

4.1. Equipment Introduction

In the experiment, a mobile robot equipped with a 16-line rotating LiDAR (as shown
in Figure 2a) was used to conduct the environment mapping experiment. The LiDAR can
rotate around the X-axis shown in Figure 2a with respect to the vehicle body to obtain a
larger field of view for environmental mapping. Specific device parameters are shown in
Table 1. During the data-capturing process, the robot navigates along the given path, and
the LiDAR captures the point cloud continuously. The ground truth of the environment
is captured by a high-accuracy laser scanner system that can rotate around its Z-axis, as
shown in Figure 2b, whose system accuracy is 0.003 m in the range of 5 m. Specific device
parameters are shown in Table 2.
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Figure 2. The equipment used in the experiment. (a) shows the mobile robot equipped with a
16-line rotating LiDAR. (b) shows the portable laser scanner used in the experiment to obtain the
environmental truth value.

Table 1. The parameters of the spin LiDAR equipped on the mobile robot.

Sensor Type Line Number FOV Scan Frequency Frequency around
X Axis System Accuracy

VLP-16 16 270◦ 10 Hz 0.2 Hz 0.006 m *

* System accuracy in the range of 5 m.

Table 2. The parameters of the portable laser scanner.

Sensor Type Line Number FOV Scan Frequency Rotate Range
around Z Axis System Accuracy

Hokuyo UST-30LX 1 270◦ 40 Hz 180◦ 0.003 m *

* System accuracy in the range of 5 m.

4.2. Mapping Accuracy Analysis

To verify the efficiency of the variable resolution strategy on the accuracy of mapping,
we carried out experiments in the room, corridor, and outdoor environments, respectively,
and collected the environment truth value to compare the point-to-point map error with
the algorithm without variable resolution strategy.

4.2.1. Room Environment

The room environment mapping experiment is carried out in the scene as shown in
Figure 3. The scene is a laboratory with some experimental equipment and desks placed
against the wall.

The environment ground truth is shown in Figure 4(a-1,a-2), the mapping result
without considering the variable resolution strategy is shown in Figure 4(b-1,b-2), and the
mapping result considering the variable strategy is shown in Figure 4(c-1,c-2). The full
map is on the left and the interior details are on the right. Because the LiDAR can scan
through the glass to get the outdoor scene, the map is not only the indoor scene but also
part of the outdoor railing. There is no point cloud on the ground in the upper right part of
Figure 4(b-2,c-2), because the mobile robot moves in the lower left part of the scene when
collecting the point cloud data. It can be seen from Figure 4(c-1,c-2) that the density of the
point cloud in different parts of the map is different. The density of the point cloud is low
in areas with small curvature (such as ceiling, wall, and floor) and high in areas with large
curvature (such as the experimental equipment). This effectively reduces the number of
redundant points in the map.
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Figure 3. The scene of the room environment.

Figure 4. The result of the room environment mapping experiment (colored by depth). (a-1,a-2) show
the ground truth. (b-1,b-2) show the mapping result without variable resolution strategy.
(c-1,c-2) show the mapping result with variable resolution strategy. The full maps are on the left, and
the interior details are on the right.
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The CloudCompare software is used to align the point clouds shown in Figure 4(b-1,c-1)
with the ground truth shown in Figure 4(a-1), and then, we randomly select some areas shown
in Figure 5 to calculate the mean absolute error (MAE). The results are shown in Table 3. We
selected a total of 8 areas to calculate the mapping error, among which areas 1–3 are the
ceiling, areas 5 and 8 are the walls, area 4 is a piece of experimental equipment, and areas
6 and 7 are the desks. The mapping errors in these areas are smaller when the variable
resolution processing strategy is used than when the strategy is not used. The accuracy of
area 2 is improved most obviously, and the error is reduced by 14.58%.

Figure 5. The selected areas of the room environment used to calculate the mapping error. Several
kinds of regions are selected and colored separately, with each type of region colored in the same color.
Areas 1–3 are the ceiling, areas 5 and 8 are the walls, area 4 is a piece of experimental equipment, and
areas 6 and 7 are the desks.

Table 3. The mapping error (MAE/m) comparison of the room environment.

Area Index Without Variable
Resolution

With Variable
Resolution Area Index Without Variable

Resolution
With Variable

Resolution

1 0.0039 0.0031 5 0.0055 0.0052
2 0.0048 0.0041 6 0.0115 0.0112
3 0.0062 0.0061 7 0.0097 0.0093
4 0.0064 0.0063 8 0.0046 0.0042

Smaller errors are in bold.

4.2.2. Corridor Environment

The corridor environment mapping experiment is carried out in the scene as shown in
Figure 6. The scene is a U-shaped corridor with walls on one side and railings on the other.

Figure 6. The scene of the corridor environment.
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The environment ground truth is shown in Figure 7(a-1,a-2), the mapping result
without considering the variable resolution strategy is shown in Figure 7(b-1,b-2), and the
mapping result considering the variable strategy is shown in Figure 7(c-1,c-2). It can be
seen that after considering the variable resolution strategy for the map, the density of the
point cloud in the areas with low curvature (such as ceiling and floor) in the map is low,
and the density of the point cloud in the areas with high curvature (such as railing) is high.

Figure 7. The result of the corridor environment mapping experiment (colored by depth).
(a-1,a-2) show the ground truth. (b-1,b-2) show the mapping result without variable resolution
strategy. (c-1,c-2) show the mapping result with variable resolution strategy. The full maps are on the
left, and the interior details are on the right.
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We selected a total of 16 areas (as shown in Figure 8) to calculate the mapping error
(as shown in Table 4), among which areas 1–5 are the ceiling, areas 6 and 7 are the floor,
areas 8–13 are the railings, and areas 14–16 are the walls. When considering the variable
resolution strategy, the mapping errors in these regions are smaller than those without
considering the strategy. The accuracy of area 14 is improved most obviously, and the error
is reduced by 56.65%.

Figure 8. The selected areas of the corridor environment used to calculate the mapping error. Several
kinds of regions are selected and colored separately, with each type of region colored in the same color.
Areas 1–5 are the ceiling, areas 6 and 7 are the floor, areas 8–13 are the railings, and areas 14–16 are
the walls.

Table 4. The mapping error (MAE/m) comparison of the corridor environment.

Area Index Without Variable
Resolution

With Variable
Resolution Area Index Without Variable

Resolution
With Variable

Resolution

1 0.0743 0.0694 9 0.0787 0.0627
2 0.0304 0.0284 10 0.0657 0.0435
3 0.0418 0.0394 11 0.0243 0.0217
4 0.0569 0.0503 12 0.0382 0.0283
5 0.0977 0.0973 13 0.0571 0.0560
6 0.0207 0.0188 14 0.0729 0.0316
7 0.0186 0.0171 15 0.0176 0.0167
8 0.0682 0.0573 16 0.0623 0.0444

Smaller errors in bold.

4.2.3. Outdoor Environment

The outdoor environment mapping experiment is carried out in the scene as shown in
Figure 9. This scene is a section of the road on the campus. Several cars are parked on the
road, many tall trees on the right side, a flower bed on the left, and some short trees on the
flower bed.

The environment ground truth is shown in Figure 10(a-1,a-2), the mapping result
without considering the variable resolution strategy is shown in Figure 10(b-1,b-2), and the
mapping result considering the variable strategy is shown in Figure 10(c-1,c-2). The ground
section in Figure 10(a-1,a-2) has several circular vacancies evenly spaced. The reason is
that the portable laser scanner cannot scan the area under the device while collecting
environmental truth values, and the scanners in adjacent positions are far apart, so they
cannot cover each other’s scanning vacancies. If adjacent scannings are captured in a
small distance, as in the indoor scene, the whole process would be time-consuming and
inefficient. Figure 10(c-2) shows the effect of the variable resolution strategy. In the map,
the part with small curvature (such as ground) has a small density of point clouds, while
the part with large curvature (such as trees and cars) has a large density of point clouds.
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Figure 9. The scene of the outdoor environment.

Figure 10. The result of the outdoor environment mapping experiment (colored by depth).
(a-1,a-2) show the ground truth. (b-1,b-2) show the mapping result without variable resolution
strategy. (c-1,c-2) show the mapping result with variable resolution strategy. The full maps are on the
left, and the interior details are on the right.
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We selected 30 areas (as shown in Figure 11) to calculate the mapping error (as shown
in Table 5), among which areas 1–5 are the ground, areas 6–16 are the flower bed, areas 17–19
are the cars, areas 20–23 are the tall trees, and areas 24–30 are the short trees. The mapping
errors of 28 regions with the variable resolution strategy are smaller than those without the
strategy. The accuracy of area 4 is improved most obviously, and the error is reduced by
47.50%. In the above three scenes, the most apparent error improvement is in the plane
region, that is, the region with small curvature. In the variable resolution map, more
abnormal points will be removed from the area with small curvature, so the area with small
curvature is more likely to have a significant error improvement.

Figure 11. The selected areas of the outdoor environment used to calculate the mapping error. Several
kinds of regions are selected and colored separately, with each type of region colored in the same color.
Areas 1–5 are the ground, areas 6–16 are the flower bed, areas 17–19 are the cars, areas 20–23 are the tall
trees, and areas 24–30 are the short trees.

Table 5. The mapping error (MAE/m) comparison of the outdoor environment.

Area Index Without Variable
Resolution

With Variable
Resolution Area Index Without Variable

Resolution
With Variable

Resolution

1 0.0545 0.0417 16 0.0327 0.0327
2 0.0522 0.0416 17 0.0358 0.0356
3 0.0579 0.0517 18 0.0277 0.0287
4 0.0400 0.0210 19 0.0299 0.0290
5 0.0218 0.0194 20 0.0490 0.0485
6 0.0288 0.0254 21 0.0546 0.0541
7 0.0196 0.0188 22 0.0640 0.0630
8 0.0284 0.0261 23 0.0737 0.0735
9 0.0298 0.0269 24 0.0437 0.0423

10 0.0344 0.0340 25 0.0466 0.0453
11 0.0241 0.0234 26 0.0371 0.0359
12 0.0390 0.0382 27 0.0474 0.0456
13 0.0417 0.0374 28 0.0536 0.0516
14 0.0324 0.0294 29 0.0642 0.0621
15 0.0245 0.0218 30 0.0515 0.0499

Smaller errors are in bold.

4.3. Map Size Comparison

In the three experiments in Section 4.2, the comparison of the map size is shown in
Table 6. For the room environment, the size of the global map with variable resolution
strategy is reduced to 61.02% of that without variable resolution strategy. For the corridor
environment, the map size is reduced to 62.67%. For the outdoor environment, the map
size is reduced to 79.86%. Because there are relatively few areas with small curvature in the
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outdoor environment, the proportion of map size reduction is smaller than in the room and
corridor environment.

Table 6. The map size comparison.

Method
Map Size (Point Number)

Room Corridor Outdoor

without variable resolution 6,173,086 10,355,562 10,986,566
with variable resolution 3,767,088 6,490,328 8,774,072

Smaller numbers are in bold.

4.4. Long-Time Running Experiment

In order to verify the advantages of the variable resolution map update strategy
proposed in this paper to build maps in the same space for a long time, but the map does
not grow infinitely over time, we conducted repeated mapping for a long time in the
experimental scene of a conference room as shown in Figure 12 to cover most details in
the scene. This conference room scene has several tables and chairs in the middle of the
room and some chairs at the side of the room. The roof of the conference room is a strip
multi-storey non-planar structure.

Figure 12. The scene of a conference room.

The environment ground truth is shown in Figure 13(a-1,a-2), the mapping result
without considering the variable resolution strategy is shown in Figure 13(b-1,b-2), and
the mapping result considering the variable strategy is shown in Figure 13(c-1,c-2). Since
there are many flat parts in this environment (for example, the ground and walls), most of
the point cloud density is small after the variable resolution strategy is applied, as shown
in Figure 13(c-1,c-2). Since the ceiling in this environment is not a planar structure, the
curvature is relatively high, and the point cloud density is also rather large when the
variable resolution strategy is used, as shown in Figure 13(c-1).

We selected 18 areas (as shown in Figure 14) to calculate the mapping error (as shown
in Table 7), among which areas 1–6 are the ceiling, areas 7–9 are the floor, areas 10 and 11
are the walls, areas 12–15 are the chairs, and areas 16–18 are the tables. The mapping errors
of 17 regions are smaller when the variable resolution strategy is considered compared
with when the strategy is not considered.
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Figure 13. The result of the conference room environment mapping experiment (colored by depth).
(a-1,a-2) show the ground truth. (b-1,b-2) show the mapping result without variable resolution
strategy. (c-1,c-2) show the mapping result with variable resolution strategy. The full map is on the
left and the interior details are on the right.

The size of the maps obtained by the two algorithms is 17,677,016 (without variable
resolution strategy) and 6,438,981 (with variable resolution strategy), respectively. The size
of the global map with the variable resolution strategy is reduced to 36.43% of that without
the variable resolution strategy. The data reduction is expected to be more significant if the
experiment time is further extended.
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In the mapping process of the two algorithms, the comparison of the size of the global
map over time is shown in Figure 15. When we consider using the variable resolution
strategy on the map during map construction, the size of the global map will almost stop
growing after the scope of the map covers the experimental space rather than increase
infinitely with time, as shown in the blue curve in Figure 15. When the variable resolution
strategy is not considered for the map construction, the size of the global map will increase
infinitely over time, as shown in the red curve in Figure 15. This advantage of the variable
resolution strategy proposed in this paper is suitable for long-time mapping because the
map size grows with space rather than time.

Figure 14. The selected areas of the conference room environment used to calculate the mapping
error. Several kinds of regions are selected and colored separately, with each type of region colored
in the same color. Areas 1–6 are the ceiling, areas 7–9 are the floor, areas 10 and 11 are the walls,
areas 12–15 are the chairs, and areas 16–18 are the tables.

Table 7. The mapping error (MAE/m) comparison of the conference room environment.

Area Index Without Variable
Resolution

With Variable
Resolution Area Index Without Variable

Resolution
With Variable

Resolution

1 0.0245 0.0231 10 0.0083 0.0074
2 0.0147 0.0129 11 0.0072 0.0057
3 0.0153 0.0138 12 0.0148 0.0125
4 0.0049 0.0043 13 0.0104 0.0076
5 0.0110 0.0102 14 0.0088 0.0075
6 0.0075 0.0070 15 0.0101 0.0092
7 0.0140 0.0119 16 0.0055 0.0107
8 0.0075 0.0064 17 0.0092 0.0088
9 0.0177 0.0153 18 0.0078 0.0073

Smaller errors are in bold.

Figure 15. The comparison of map size changes over time under two algorithms.
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Figure 16 shows the mapping result of the three time points in the blue line in Figure 15.
Figure 16a represents the mapping result at 60 s, at which most of the information in the
scene was already constructed. Figure 16b shows the mapping result at 90 s, at which all
the scene’s information was almost constructed. Figure 16c illustrates the mapping result
at the last moment, at which the detailed information in the scene was further improved.
After the 90 s, the scope of map construction covered all the space in the scene, so the map
size almost stayed the same.

Figure 16. The result of the conference room environment mapping experiment with variable
resolution strategy in three time points (colored by depth). (a) shows the result at 60 s. (b) shows the
result at 90 s. (c) shows the result at the last moment.

5. Conclusions

In order to solve the problem that the global map grows infinitely with time even
in a fixed space in the process of 3D LiDAR mapping, this paper proposes a 3D LiDAR
mapping algorithm based on a scan-to-map and NDT registration algorithm, which adopts
a variable resolution strategy when updating the global map. The density of the point
cloud in the global map adaptively changes with the curvature of different positions. Using
this strategy, the size of the map can be reduced with the premise of ensuring the accuracy
of the map construction so that the global map changes with space instead of growing
infinitely with time.

Experiments in a room environment, corridor environment, outdoor environment, and
conference room environment verify the effectiveness of the LiDAR mapping algorithm.

In the future, we may study LiDAR mapping in large-scale dynamic environments.
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