Recent Advancements in the Tribological Modelling of Rough Interfaces
Abstract
:1. Introduction
2. BEM Formulation for Elastic Sliding Contacts
3. BEM Formulation for Viscoelastic Sliding Contacts
4. Results and Discussion
4.1. Two-Dimentional Viscoelastic Sliding Rough Contacts: The Role of Anisotropy
4.2. Adhesion in Elastic Contacts of Thin Layers
4.3. Frictional Elastic/Viscoelastic Sliding Rough Contacts of Thin Layers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thatte, A.; Salant, R.F. Effects of multi-scale viscoelasticity of polymers on high-pressure, high-frequency sealing dynamics. Tribol. Int. 2012, 52, 75–86. [Google Scholar] [CrossRef]
- Shukla, A.; Datta, T. Optimal Use of Viscoelastic Dampers in Building Frames for Seismic Force. J. Struct. 1999, 125, 401–409. [Google Scholar] [CrossRef]
- Geim, A.K.; Dubonos, S.V.; Gricorieva, I.V.; Novoselov, K.S.; Zhukov, A.A.; Shapoval, S.Y. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Dening, K.; Heepe, L.; Afferrante, L.; Carbone, G.; Gorb, S. Adhesion control by inflation: Implications from biology to artificial attachment device. Appl. Phys. A Mater. Sci. Process. 2014, 116, 567–573. [Google Scholar] [CrossRef]
- Arzt, E.; Gorb, S.; Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 2003, 100, 10603–10606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Ryu, S.; Tokareva, O.; Gronau, G.; Jakobsen, M.M.; Huang, W.; Rizzo, D.J.; Li, D.; Stai, C.; Pugno, N.; et al. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat. Commun. 2015, 6, 6892. [Google Scholar] [CrossRef] [Green Version]
- Angelini, T.E.; Dunn, A.C.; Uruena, J.M.; Dickrell, D.J.; Burris, D.L.; Sawyer, W.G. Cell Friction. Faraday Discuss. 2012, 156, 31–39. [Google Scholar] [CrossRef]
- Dunn, A.C.; Cobb, J.A.; Kantzios, A.N.; Lee, S.J.; Sarntinoranont, M.; Tran-Son-Tay, R.; Sawyer, W.G. Friction Coefficient Measurement of Hydrogel Materials on Living Epithelial Cells. Tribol. Lett. 2008, 30, 13–19. [Google Scholar] [CrossRef]
- Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nature 2016, 15, 937. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Williamson, J.B.P. Contact of Nominally Flat Surfaces. Proc. R. Soc. Lond. A 1966, 295, 300–319. [Google Scholar]
- Greenwood, J.A.; Putignano, C.; Ciavarella, M. A Greenwood & Williamson theory for line contact. Wear 2011, 270, 332–334. [Google Scholar]
- Bush, A.W.; Gibson, R.D.; Thomas, T.R. The elastic contact of a rough surface. Wear 1975, 35, 87–111. [Google Scholar] [CrossRef]
- Carbone, G.; Bottiglione, F. Asperity contact theories: Do they predict linearity between contact area and load? J. Mech. Phys. Solids 2008, 56, 2555–2572. [Google Scholar] [CrossRef]
- Sahlia, R.; Pallares, G.; Ducottet, C.; Ben Alid, I.E.; Al Akhrassd, S.; Guiberta, M.; Scheibert, J. Evolution of real contact area under shear and the value of static friction of soft materials. Proc. Natl. Acad. Sci. USA 2017, 115, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, G.; Scaraggi, M.; Tartaglino, U. Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. Eur. Phys. J. E—Soft Matter 2009, 30, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C.; Afferrante, L.; Carbone, G.; Demelio, G. The influence of the statistical properties of self-affine surfaces in elastic contact: A numerical investigation. J. Mech. Phys. Solids 2012, 60, 973–982. [Google Scholar] [CrossRef]
- Putignano, C.; Afferrante, L.; Carbone, G.; Demelio, G. A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solids Struct. 2012, 49, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Paggi, M.; Ciaveralla, M. The coefficient of proportionality k between real contact area and load, with new asperity models. Wear 2010, 268, 1020–1029. [Google Scholar] [CrossRef]
- Yastrebov, V.A.; Anciaux, G.; Molinari, J.F. Contact between representative rough surfaces. Phys. Rev. E 2012, 86, 035601(R). [Google Scholar] [CrossRef] [Green Version]
- Yastrebov, V.A.; Anciaux, G.; Molinari, J.F. The role of the roughness spectral breadth in elastic contact of rough surfaces. J. Mech. Phys. Solids 2017, 107, 469–493. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Farris, T.N. Spectral Analysis of Two-Dimensional Contact Problems. J. Tribol. 1996, 118, 320–328. [Google Scholar] [CrossRef]
- Stanley, H.M.; Kato, T. An FFT-Based Method for Rough Surface Contact. J. Tribol. 1997, 119, 481–485. [Google Scholar] [CrossRef]
- Campana, C.; Muser, M.H. Contact Mechanics of Real vs Randomly Rough Surfaces: A Green’s Function Molecular Dynamics Study. Europhys. Lett. 2007, 77, 38005. [Google Scholar] [CrossRef]
- Dapp, W.B.; Lücke, A.; Persson, B.N.J.; Müser, M.H. Self-affine elastic contacts: Percolation and leakage. Phys. Rev. Lett. 2012, 108, 244301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takewaki, I. Building Control with Passive Dampers: Optimal Performance-Based Design for Earthquakes; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bao, G.; Suresh, S. Cell and molecular mechanics of biological materials. Nat. Mater. 2003, 2, 715–725. [Google Scholar] [CrossRef]
- Hunter, S.C. The rolling contact of a rigid cylinder with a viscoelastic half space. Trans. ASME Ser. E J. Appl. Mech. 1961, 28, 611–617. [Google Scholar] [CrossRef]
- Carbone, G.; Putignano, C. A novel methodology to predict sliding/rolling friction in viscoelastic materials: Theory and experiments. J. Mech. Phys. Solids 2013, 61, 1822–1834. [Google Scholar] [CrossRef]
- Grosch, K.A. The Relation between the Friction and Visco-Elastic Properties of Rubber. Proc. R. Soc. Lond. Ser. A Math. Phys. 1963, 274, 21–39. [Google Scholar]
- Putignano, C.; Reddyhoff, T.; Carbone, G.; Dini, D. Experimental investigation of viscoelastic rolling contacts: A comparison with theory. Tribol. Lett. 2013, 51, 105–113. [Google Scholar] [CrossRef]
- Putignano, C.; Reddyhoff, T.; Dini, D. The influence of temperature on viscoelastic friction properties. Tribol. Int. 2016, 100, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Kusche, S. Frictional force between a rotationally symmetric indenter and a viscoelastic half-space. J. Appl. Math. Mech. 2017, 97, 226–239. [Google Scholar] [CrossRef]
- Carbone, G.; Putignano, C. Rough viscoelastic sliding contact: Theory and experiments. Phys. Rev. E 2014, 89, 032408. [Google Scholar] [CrossRef] [PubMed]
- Koumi, K.E.; Chaise, T.; Nelias, D. Rolling contact of a rigid sphere/sliding of a spherical indenter upon a viscoelastic half-space containing an ellipsoidal inhomogeneity. J. Mech. Phys. Solids 2015, 80, 1–25. [Google Scholar] [CrossRef]
- Putignano, C.; Carbone, G.; Dini, D. Mechanics of Rough Contacts in Elastic and Viscoelastic Thin Layers. Int. Solids Struct. 2015, 69–70, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C.; Carbone, G.; Dini, D. Theory of reciprocating contact for viscoelastic solids. Phys. Rev. E 2016, 93, 043003. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C.; Carbone, G. Viscoelastic Damping in alternate reciprocating contacts. Sci. Rep. 2017, 7, 8333. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C.; Carbone, G. Viscoelastic reciprocating contacts in presence of finite rough interfaces: A numerical investigation. J. Mech. Phys. Solids 2018, 114, 185–193. [Google Scholar] [CrossRef]
- Putignano, C.; Dini, D. Soft matter lubrication: Does solid viscoelasticity matter? Acs Appl. Mater. Interfaces 2017, 9, 42287–42295. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C. Soft lubrication: A generalized numerical methodology. J. Mech. Phys. Solids 2020, 134, 103748. [Google Scholar] [CrossRef]
- Putignano, C.; Burris, D.L.; Moore, A.; Dini, D. Cartilage rehydration: The sliding-induced hydrodynamic triggering mechanism. Acta Biomater. 2021, 125, 90–99. [Google Scholar] [CrossRef]
- Putignano, C.; Menga, N.; Afferrante, L.; Carbone, G. Viscoelasticity induces anisotropy in contacts of rough solids. J. Mech. Phys. Solids 2019, 129, 147–159. [Google Scholar] [CrossRef]
- Bottiglione, F.; Carbone, G.; Mangialardi, L.; Mantriota, G. Leakage mechanism in flat seals. J. Appl. Phys. 2009, 106, 104902. [Google Scholar] [CrossRef]
- Lorenz, B.; Persson, B.N.J. Leak rate of seals: Effective-medium theory and comparison with experiment. Eur. Phys. J. E 2010, 31, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Dapp, W.B.; Müser, M.H. Fluid leakage near the percolation threshold. Sci. Rep. 2016, 6, 19513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vladescu, S.; Putignano, C.; Marx, N.; Keppens, T.; Reddyhoff, T.; Dini, D. The percolation of liquid through a compliant seal—An experimental and theoretical study. J. Fluids Eng. 2019, 141, 031101. [Google Scholar] [CrossRef]
- Persson, B.N.J. Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E 2002, 8, 385–401. [Google Scholar] [CrossRef]
- Pastewka, L.; Robbins, M.O. Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. USA 2014, 111, 3298–3303. [Google Scholar] [CrossRef] [Green Version]
- Menga, N.; Carbone, G.; Dini, D. Do uniform tangential interfacial stresses enhance adhesion? J. Mech. Phys. Solids 2019, 133, 103744. [Google Scholar] [CrossRef]
- Violano, G.; Afferrante, L. Size effects in adhesive contacts of viscoelastic media. Eur. J. Mech.-A/Solids 2022, 96, 104665. [Google Scholar] [CrossRef]
- Violano, G.; Chateauminois, A.; Afferrante, L. Rate-dependent adhesion of viscoelastic contacts, Part I: Contact area and contact line velocity within model randomly rough surfaces. Mech. Mater. 2021, 160, 103926. [Google Scholar] [CrossRef]
- Violano, G.; Chateauminois, A.; Afferrante, L. Rate-dependent adhesion of viscoelastic contacts. Part II: Numerical model and hysteresis dissipation. Mech. Mater. 2021, 158, 103884. [Google Scholar] [CrossRef]
- Medina, S.; Dini, D. A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int. J. Solids Struct. 2014, 51, 2620–2632. [Google Scholar] [CrossRef] [Green Version]
- Persson, B.N.J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 2001, 115, 3840–3861. [Google Scholar] [CrossRef]
- Yang, C.; Persson, B.N.J. Molecular Dynamics Study of Contact Mechanics: Contact Area and Interfacial Separation from Small to Full Contact. Phys. Rev. Lett. 2008, 100, 024303. [Google Scholar] [CrossRef] [Green Version]
- Hyun, S.; Pei, L.; Molinari, J.-F.; Robbins, M.O. Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 2004, 70, 026117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campana, C.; Mueser, M.H.; Robbins, M.O. Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter 2008, 20, 354013. [Google Scholar] [CrossRef]
- Menga, N.; Putignano, C.; Carbone, G.; Demelio, G.P. The sliding contact of a rigid wavy surface with a viscoelastic half-space. Proc. R. Soc. A 2014, 470, 20140392. [Google Scholar] [CrossRef] [Green Version]
- Müser, M.H.; Dapp, W.B.; Bugnicourt, R.; Sainsot, P.; Lesaffre, N.; Lubrecht, T.A.; Persson, B.N.J.; Harris, K.; Bennett, A.; Schulze, K.; et al. Meeting the contact-mechanics challenge. Tribol. Lett. 2017, 65, 118. [Google Scholar] [CrossRef] [Green Version]
- Papangelo, A.; Putignano, C.; Hoffmann, N. Self-excited vibrations due to viscoelastic interactions. Mech. Syst. Signal Process. 2020, 144, 106894. [Google Scholar] [CrossRef]
- Papangelo, A.; Putignano, C.; Hoffmann, N. Critical thresholds for mode-coupling instability in viscoelastic contacts. Nonlinear Dyn. 2021, 104, 2995–3011. [Google Scholar] [CrossRef]
- Menga, N.; Afferrante, L.; Carbone, G. Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. J. Mech. Phys. Solids 2016, 95, 517–529. [Google Scholar] [CrossRef]
- Carbone, G.; Mangialardi, L. Analysis of the adhesive contact of confined layers by using a Green’s function approach. J. Mech. Phys. Solids 2008, 56, 684–706. [Google Scholar] [CrossRef]
- Menga, N.; Afferrante, L.; Carbone, G. Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates. Int. J. Solids Struct. 2016, 88, 101–109. [Google Scholar] [CrossRef]
- Menga, N.; Foti, D.; Carbone, G. Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators. Meccanica 2017, 52, 2807–2817. [Google Scholar] [CrossRef]
- Menga, N.; Afferrante, L.; Demelio, G.P.; Carbone, G. Rough contact of sliding viscoelastic layers: Numerical calculations and theoretical predictions. Tribol. Int. 2018, 122, 67–75. [Google Scholar] [CrossRef]
- Sackfield, A.; Hills, D.A.; Nowell, D. Mechanics of Elastic Contacts; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Barber, J.R. Contact Mechanics; Springer: Berlin/Heidelberg, Germany, 2018; Volume 250. [Google Scholar]
- Nowell, D.; Hills, D.A.; Sackfield, A. Contact of dissimilar elastic cylinders under normal and tangential loading. J. Mech. Phys. Solids 1988, 36, 59–75. [Google Scholar] [CrossRef]
- Chen, W.W.; Wang, Q.J. A numerical model for the point contact of dissimilar materials considering tangential tractions. Mech. Mater. 2008, 40, 936–948. [Google Scholar] [CrossRef]
- Chen, W.W.; Wang, Q.J. A numerical static friction model for spherical contacts of rough surfaces, influence of load, material, and roughness. J. Tribol. 2009, 131, 021402. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, W.Z.; Wang, H.; Zhu, D.; Hu, Y.Z. Partial slip contact analysis on three-dimensional elastic layered half space. J. Tribol. 2010, 132, 021403. [Google Scholar] [CrossRef]
- Elloumi, R.; Kallel-Kamoun, I.; El-Borgi, S. A fully coupled partial slip contact problem in a graded half-plane. Mech. Mater. 2010, 42, 417–428. [Google Scholar] [CrossRef]
- Bentall, R.H.; Johnson, K.L. An elastic strip in plane rolling contact. Int. J. Mech. 1968, 10, 637–663. [Google Scholar] [CrossRef]
- Nowell, D.; Hills, D.A. Contact problems incorporating elastic layers. Int. J. Solids Struct. 1988, 24, 105–115. [Google Scholar] [CrossRef]
- Nowell, D.; Hills, D.A. Tractive rolling of tyred cylinders. Int. J. Mech. Sci. 1988, 30, 945–957. [Google Scholar] [CrossRef]
- Menga, N. Rough frictional contact of elastic thin layers: The effect of geometric coupling. Int. J. Solids Struct. 2019, 164, 212–220. [Google Scholar] [CrossRef]
- Menga, N.; Carbone, G.; Dini, D. Exploring the effect of geometric coupling on friction and energy dissipation in rough contacts of elastic and viscoelastic coatings. J. Mech. Phys. Solids 2021, 148, 104273. [Google Scholar] [CrossRef]
- Kogut, L.; Komvopoulos, K. Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 2003, 94, 3153–3162. [Google Scholar] [CrossRef]
- Menga, N.; Ciavarella, M. A Winkler solution for the axisymmetric Hertzian contact problem with wear and finite element method comparison. J. Strain Anal. Eng. 2015, 50, 156–162. [Google Scholar] [CrossRef]
- Piveteau, L.-D.; Girona, M.I.; Schlapbach, L.; Barboux, P.; Boilot, J.-P.; Gasser, B. Thin films of calcium phosphate and titanium dioxide by a sol-gel route: A new method for coating medical implants. J. Mater. Sci. Mater. Med. 1999, 10, 161–167. [Google Scholar] [CrossRef]
- Allen, M.; Myer, B.; Rushton, N. In Vitro and In Vivo Investigations into the Biocompatibility of Diamond-Like Carbon (DLC) Coatings for Orthopedic Applications. J. Biomed. Mater. 2001, 58, 319–328. [Google Scholar] [CrossRef]
- Kwak, M.K.; Jeong, H.-E.; Suh, K.Y. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv. Mater. 2011, 23, 3949–3953. [Google Scholar] [CrossRef]
- Bacon, K.D.; Cummins, C.F. Pressure-Sensitive Adhesive. U.S. Patent US2285570 A, 9 June 1942. [Google Scholar]
- Peterson, D.R.; Stupp, S.I. Poly(amino Acid) Adhesive Tissue Grafts. U.S. Patent US5733868 A, 31 March 1998. [Google Scholar]
- Al-Harthi, M.A.; Bakather, O.Y.; De, S.C. Pressure Sensitive Adhesive. U.S. Patent US8697821 B1, 15 April 2014. [Google Scholar]
- Menga, N.; Afferrante, L.; Pugno, N.M.; Carbone, G. The multiple V-shaped double peeling of elastic thin films from elastic soft substrates. J. Mech. Phys. Solids 2018, 113, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Menga, N.; Dini, D.; Carbone, G. Tuning the periodic V-peeling behavior of elastic tapes applied to thin compliant substrates. Int. J. Mech. Sci. 2020, 170, 105331. [Google Scholar] [CrossRef] [Green Version]
- Putignano, C.; Afferrante, L.; Mangialardi, L.; Carbone, G. Equilibrium states and stability of pretensioned adhesive tapes. Beilstein J. Nanotechnol. 2014, 5, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Ceglie, M.; Menga, N.; Carbone, G. The role of interfacial friction on the peeling of thin viscoelastic tapes. J. Mech. Phys. Solids 2022, 159, 104706. [Google Scholar] [CrossRef]
- Johnson, K.L.J. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Menga, N.; Carbone, G. The surface displacements of an elastic half-space subjected to uniform tangential tractions applied on a circular area. Eur. J. Mech.-A/Solids 2019, 73, 137–143. [Google Scholar] [CrossRef]
- Christensen, R.M. Theory of Viscoelasticity; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701. [Google Scholar] [CrossRef]
- Putignano, C. Oscillating viscoelastic periodic contacts: A numerical approach. Int. J. Mech. Sci. 2021, 208, 106663. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. The statistical analysis of a random, moving surface. Philos. Trans. R. Soc. Lond. A 1957, 249, 321. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menga, N.; Putignano, C.; Carbone, G. Recent Advancements in the Tribological Modelling of Rough Interfaces. Machines 2022, 10, 1205. https://doi.org/10.3390/machines10121205
Menga N, Putignano C, Carbone G. Recent Advancements in the Tribological Modelling of Rough Interfaces. Machines. 2022; 10(12):1205. https://doi.org/10.3390/machines10121205
Chicago/Turabian StyleMenga, Nicola, Carmine Putignano, and Giuseppe Carbone. 2022. "Recent Advancements in the Tribological Modelling of Rough Interfaces" Machines 10, no. 12: 1205. https://doi.org/10.3390/machines10121205
APA StyleMenga, N., Putignano, C., & Carbone, G. (2022). Recent Advancements in the Tribological Modelling of Rough Interfaces. Machines, 10(12), 1205. https://doi.org/10.3390/machines10121205