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Abstract: Automatic navigation of agricultural machinery is an important aspect of Smart Farming.
Intelligent agricultural machinery applications increasingly rely on machine vision algorithms to
guarantee enhanced in-field navigation accuracy by precisely locating the crop lines and mapping
the navigation routes of vehicles in real-time. This work presents an overview of vision-based tractor
systems. More specifically, this work deals with (1) the system architecture, (2) the safety of usage,
(3) the most commonly faced navigation errors, (4) the navigation control system of tractors and
presents (5) state-of-the-art image processing algorithms for in-field navigation route mapping. In
recent research, stereovision systems emerge as superior to monocular systems for real-time in-field
navigation, demonstrating higher stability and control accuracy, especially in extensive crops such
as cotton, sunflower, maize, etc. A detailed overview is provided for each topic with illustrative
examples that focus on specific agricultural applications. Several computer vision algorithms based
on different optical sensors have been developed for autonomous navigation in structured or semi-
structured environments, such as orchards, yet are affected by illumination variations. The usage of
multispectral imaging can overcome the encountered limitations of noise in images and successfully
extract navigation paths in orchards by using a combination of the trees’ foliage with the background
of the sky. Concisely, this work reviews the current status of self-steering agricultural vehicles and
presents all basic guidelines for adapting computer vision in autonomous in-field navigation.

Keywords: computer vision; smart farming; self-steering tractors; autonomous navigation;
agricultural vehicles; image analysis; precision agriculture; Agriculture 5.0

1. Introduction

Crop monitoring can lead to profitable decisions if properly managed. Recent advances
in data analysis and management are turning agricultural data into the key elements for
critical decision-making in favor of farmers. In-field acquired sensory data can be used
as efficient information for effective resource management towards maximum production
and sustainability [1]. Cloud computing has been subsequently developed to handle the
unprecedented volume of acquired data, known as Big Data, creating new prospects for
data-intensive techniques in the agricultural domain [2]. Data-based farm management,
combined with robotics and the integration of Artificial Intelligence (AI) techniques, paves
the way for the next generation of agriculture, namely Agriculture 5.0.

Agriculture 4.0, also known as Digital or Smart Farming, incorporates precision agri-
culture principles and data processing to assist farmers’ operational decisions [2,3]. Smart
farming provides a practical and systematic tool that aims to detect unforeseen problems
that are hard to notice either due to the lack of experienced workers or due to large-scale
farms that are difficult surveil. Going one step further, Agriculture 5.0 incorporates robotics
and AI algorithms to already existing data-driven farms [1,4], implying autonomous de-
cision systems and unmanned operations. The concept of Agriculture 5.0 along a crop
management cycle is illustrated in Figure 1. The crop management system starts from the
crop. Spatial measurements of crops imply on-the-go in-field monitoring platforms. The
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platforms collect data from the crop, soil and environment through remote sensing and
provide spatial inputs to the decision system. AI algorithms are employed for effective
real-time decision-making and action, driven by the decision system, occurs as a reaction
to the sensory feedback. The process is repeated throughout the crop’s life cycle. The
advent of robots [5] and non-invasive sensors with their simultaneous reduction in size [6],
emerging digital technologies such as remote sensing [7], the Internet of Things (IoT) [8]
and Cloud Computing [9], support the process.

Figure 1. The concept of Agriculture 5.0 along a crop management cycle.

On-the-go monitoring platforms are mounted on agricultural vehicles. Smart sen-
sors can provide conventional agricultural vehicles, such as tractors, with adequate self-
awareness and extend them into self-steering vehicles with built-in intelligence, able to act
autonomously in the field. Therefore, the agricultural vehicles of Agriculture 5.0 are either
self-steering tractors or autonomous robots [10].

Agricultural machinery, such as tractors, is meant to operate for many hours in large
areas and perform repetitive tasks. The automatic navigation of agricultural vehicles can
ensure the high intensity of automation of cultivation tasks, the enhanced precision of
navigation between crop structures, an increase in operation safety and a decrease in human
labor and operation costs. Autonomous navigation systems have been employed toward the
mechanization of different agricultural tasks [10]: weeding, harvesting, spraying, planting,
etc. Autonomy is obtained by sensing the environment. In general, automated navigation
of agricultural tracts can be achieved by using either local positioning information or global
positioning information [11]. Local information refers to the relative position of the tractor
with respect to the crops, provided by sensors mounted on the tractor, such as vision
sensors (cameras), laser scanners, ultrasonic sensors, odometers, Internal Measurement
Units (IMU), gyroscopes, digital compasses, etc. Global information refers to the absolute
position of the tractor in the field, provided by the Geo-Positioning System (GPS).

This work focuses on the use of local positioning information obtained by vision
sensors toward self-steering tractors. The scope of the present research is to provide an
overview of vision-based, self-steering tractor systems. The main contributions of this work
are: (1) to highlight the degree of integration of computer vision in the field of tractors,
identifying the usefulness of this technology in specific functions and applications, (2) to
augment the knowledge on agricultural vision-based navigation methods, (3) to provide
evidence on related trends and challenges and (4) to extend the knowledge on vision-based
machinery, covering aspects such as architecture, sensors, algorithms and safety issues.
This research aims to prove the feasibility of machine vision applications in the targeted
problem of agricultural machinery navigation and extend the provided knowledge to other
contexts in favor of the broader research community, e.g., towards autonomous navigation
for off-road vehicles, etc.

Towards this end, this work reviews the following aspects: (1) the system architecture,
(2) the safety of usage, (3) the most commonly faced navigation errors, (4) the navigation
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control system of vision-based, self-steering tractors and to present (5) state-of-the-art
image processing algorithms for in-field navigation route mapping. The remainder of the
paper focuses on the five aforementioned categories. A detailed overview is provided for
each category with illustrative examples that focus on specific agricultural applications.
Finally, a resume of the most important conclusions of the reviewed literature is presented.

2. Evolution of Vision-Based Self-Steering Tractors

The rapid development of computers, electronic sensors and computing technologies
in the 1980s has motivated the interest in autonomous vehicle guidance systems. A num-
ber of guidance technologies have been proposed [12,13]; ultrasonic, optical, mechanical,
etc. Since the early 1990s, GPS systems have been used widely as relatively newly intro-
duced and accurate guiding sensors in numerous agricultural applications towards fully
autonomous navigation [14]. However, the high cost of reliable GPS sensors made them
prohibitive to use in agricultural navigation applications. Machine vision technologies
based on optical local sensors could be alternatively used to guide agricultural vehicles
when crop row structures can be observed. Then, the camera system could determine the
relative position of the machinery in relation to the crop rows and guide the vehicle be-
tween them to perform field operations. Local features could help to fine-tune the trajectory
of the vehicle on-site. The latter is the main reason why most of the existing studies on
vision-based guided tractors focus on structured fields that are characterized by crop rows.
A number of image processing methodologies have been suggested to define the guidance
path from crop row images; yet only a finite number of vision-based guidance systems
have been developed for real in-field applications [15].

Machine vision was first introduced for the automatic navigation of tractors and
combines in the 1980s. In 1987, Reid and Searcy [16] developed a dynamic thresholding
technique to extract path information from field images. The same authors, later in the same
year [17], proposed a variation of their previous work. The guidance signal was computed
by the same algorithm. Additionally, the distribution of the crop-background was estimated
by a bimodal Gaussian distribution function, and run-length encoding was employed for
locating the center points of row crop canopy shapes in thresholded images. Billingsley
and Schoenfisch [18] designed a vision guidance system to steer a tractor relative to crop
rows. The system could detect the end of the row and warn the driver to turn the tractor.
The tractor could automatically acquire its track in the next row. The system was further
optimized later by changes in technology; however, the fundamental principles of their
previous research have remained the same [19]. Pinto and Reid [20] proposed a heading
angle and offset determination using principal component analysis in order to visually
guide a tractor. The task was addressed as a pose recognition problem where a pose was
defined by the combination of heading angle and offset. In [21], Benson et al. developed
a machine vision algorithm for crop edge detection. The algorithm was integrated into a
tractor for automated harvest to locate the field boundaries for guidance. The same authors,
in [22], automated a maize harvest with a combine vision-based steering system based on
fuzzy logic.

In [23], three machine vision guidance algorithms were developed to mimic the per-
ceptive process of a human operator towards automated harvest, both in the day and
at night, reporting accuracies equivalent to a GPS. In [24], a machine vision system was
developed for an agricultural small-grain combine harvester. The proposed algorithm used
a monochromatic camera to separate the uncut crop rows from the background and to
calculate a guidance signal. Keicher and Seudert [25] developed an automatic guidance
system for mechanical weeding in crop rows based on a digital image processing system
combined with a specific controller and a proportional hydraulic valve. Åstrand and
Baerveldt performed extensive research on the vision-based guidance of tractors and devel-
oped robust image processing algorithms integrated with agricultural tractors to detect the
position of crop rows [26]. Søgaard and Olsen [27] developed a method to guide a tractor
with respect to the crop rows. The method was based on color images of the field surface.
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Lang [28] proposed an automatic steering control system for a plantation tractor based on
the direction and distance of the camera to the stems of the plants. Kise [29] presented a
row-detection algorithm for a stereovision-based agricultural machinery guidance system.
The algorithm used functions for stereo-image processing, extracted elevation maps and
determined navigation points. In [30], Tillett and Hague proposed a computer vision
guidance system for cereals that was mounted on a hoe tractor. In subsequent work [31],
they presented a method for locating crop rows in images and tested it for the guidance
of a mechanical hoe in winter wheat. Later, they extended the operating range of their
tracking system to sugar beets [32]. Subramanian et al. [33] tested machine vision for the
guidance of a tractor in a citrus grove alleyway and compared it to a laser radar. Both
approaches for path tracking performed similarly. An automatic steering rice transplanter
based on image-processing self-guidance was presented by Misao [34]. The steering system
used a video camera zoom system. Han et al. [35] developed a guidance directrix planner
to control an agricultural vehicle that was converted to the desired steering wheel angle
through navigation. In [36], Okamoto et al. presented an automatic guidance system based
on a crop row sensor consisting of a charge-coupled device (CCD) camera and an image
processing algorithm, implemented for the autonomous guidance of a weeding cultivator.

Autonomous tractor steering is the most established among agricultural naviga-
tion technologies; self-steering tractors have already been commercialized for about two
decades [12,13]. Commercial tractor navigation techniques involve a fusion of sensors and
are not based solely on machine vision; therefore, they are not in the scope of this research.

Although vision-based tractor navigation systems have been developed, their com-
mercial application is still in its early stages, due to problems affecting their reliability, as
reported subsequently. However, relevant research reveals the potential of vision-based
automatic guidance in agricultural machinery; thus, the next decade is expected to be
crucial for vision-based self-steering tractors to revolutionize the agricultural sector. A
revolution is also expected by the newest trend in agriculture: agricultural robots, namely
Agrobots, that claim to replace tractors. Agrobots can navigate autonomously in fields
based on the same principles and sensors and can work on crop scale with precision and
dexterity [5]. However, compared to tractors, an Agrobot is a sensitive, high-cost tool that
can perform specific tasks. In contrast, a tractor is very durable and sturdy, can operate
under adverse weather conditions and is versatile since it allows for the flexibility to adapt
to a multitude of tools (topping tools, lawnmowers, sprayers, etc.) for a variety of tasks.
Therefore, tractors are key pieces of equipment for all farms, from small to commercial
scale, and at present, there is no intention to replace them but to upgrade them in terms of
navigational autonomy.

3. Safety Issues

Most of the injuries related to agricultural activities are connected to the use of agricul-
tural tractors [37,38]. The latter is attributed to the following reasons: (1) the large number
of small farms lacking expert equipment and operators, (2) the wide range of agricultural
tasks in need of machinery contribution, (3) the engagement of the same operators for
all the different tasks, which require both the adaptation of different tools to the tractors
and different handling, (4) the seasonal work associated with changes in the field per
season in addition to the constant alteration of workspaces that do not allow the user to get
acquainted with the environment, (5) the use of outdated machinery not complying with
safety regulations and (6) the use of obsolete sensors that have not been updated to their
more recent improved versions with better technical specifications and performance.

In order for self-steering tractors to fully act autonomously, the autonomous steering
system needs to be safer and more precise than any human operator. Therefore, the study
of tractor safety issues can help the design of safer systems towards complete navigation
autonomy. However, self-steering tractors are only to provide steering aid to the human
operator rather than to replace him. Driving for hours along the vast farms is attention-
intensive and tedious. The tractor needs to autonomously navigate through crop lines and
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the presence of the human operator is to respond to emergencies regarding navigation
troubleshooting and to perform additional agricultural operations, e.g., pruning, spraying,
etc. [11]. Many researchers investigate tractor safety issues. Their focus is mainly on
issues related to technical features such as vibrations [39], rollover protection systems
(ROPS) [40], ergonomic design with respect to the operator’s position [41], etc. Safety issues
are also related to the operators’ skills and attitudes [42]. Feasible solutions for monitoring
mechanical hazards suggest devices to monitor the status of a tractor’s components [43].
Other researchers investigated the augmentation of the visibility of the human operator [44],
while advanced solutions such as virtual reality (VR) for intuitive tractor navigation have
also been proposed [45]. Since error prevention is not always possible, it is common for
the burden to fall on systems that monitor and report system malfunctions in a timely
manner. Warning and alert systems [46], as well as emergency notification systems in
case of accidents [47], have been developed to keep the operator awake and situationally
aware. In general, situational awareness while operating agricultural machinery in complex
and dynamic environments, such as fields, is critical. By using design and practical
interventions, farmers’ situational awareness can be supported and enhanced and, thus,
prevent fatal incidents [48]. Figure 2 depicts the most common reasons leading to tractor
safety issues [37].

Figure 2. The most common reasons leading to tractor safety issues.

When it comes to self-steering tractors, safety is closely related to the reliability of the
steering system architecture, in terms of both hardware and software. The latter depends
on the degree of autonomy of the system; yet, even for steering systems of the same degree
of autonomy, architectures may significantly differ. A typical sensory-based autonomous
navigation system consists of (1) a sensory-based perception system, (2) an algorithm-based
decision system and (3) an actuator-based activation system. Errors can occur in all three
parts of the system. Therefore, the most common errors can be either perception errors,
decision errors or activation errors.

Activation errors include the instability of the electrohydraulic control system, the
side slip of the tractor when turning at high speed, the real-time control of the vehicle, the
steering in upland, the operating speed, etc. Decision errors mainly emanate from misjudg-
ing slopes. Perception errors are attributed to the measurements of the sensory system.
In the case of self-steering tractor systems based on machine vision, all perception errors
result from the image processing unit and methods [49]. Image acquisition and processing
in real time with simultaneous decision making needs to be fast and accurate. The trade-off
between the speed and accuracy of detection algorithms in dynamic environments such
as fields is a challenge. In-field automated guidance is identified as crop row guidance.
Crop conditions affect the system’s performance to such an extent that it cannot function
properly if the crop is not clearly detected. Therefore, crop rows need to be distinguishable
under varying environmental conditions. Missing plants, small plants of different stages
of growth or with different densities of leaves and weeds are the most common problems
for identifying crop row structures. Weeds are highly similar in features to certain kinds
of small crops, e.g., sugar beets have the same green color, size and shape. Therefore,
the vision algorithms need to be robust for crops of all stages of growth and tolerant to
weeds [26]. Another disturbance is due to lighting conditions; changes in the brightness of
the field may affect the algorithms. Moreover, direct sunlight may cause shadows from the
tractor, leading to unfortunate detection results [32].
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The perception system includes optical sensors. The quality and positioning of the
sensors are crucial, since proximal sensing can derive comprehensive data. A camera
mounted on the cab can view more than one mounted on the head of the tractor. The height
of crops can also restrict the crop row detection ability of the system. Tractors are ground
vehicles; therefore, acquired sensory data is in crop scale and can be characterized by in-
creased accuracy and high resolution. When the data is of such high quality, environmental
conditions such as lighting and shadowing may severely deteriorate the accuracy of the
system [50]. Figure 3 summarizes the main issues related to errors of the visual perception
systems of self-steering tractors.

Figure 3. The main issues related to errors of the visual perception systems of self-steering tractors.

According to the above, vision-based steering, although flexible, can be affected by
in-field factors. Multi-sensory systems that fuse the information from a variety of sensors
can significantly increase the steering accuracy [49]. This is the main reason why there are
no navigation systems in the recent literature that rely solely on vision. Future automated
guidance systems will mainly rely on multi-sensory fusing techniques. However, fields
remain complicated and unstable environments, which focuses future research in artificial
intelligence and machine learning towards self-learning and self-adapting guiding systems.

4. Self-Steering Tractors’ System Architecture

In what follows, the basic modeling of self-steering tractors is presented. A vision-
based system architecture is provided and key elements essential for performing au-
tonomous navigation operations are reviewed.

4.1. Basic Modeling

In order to develop autonomous driving machinery, a cyclic flow of information is
required; it is known as the sense-perceive-plan-act (SPPA) cycle [51]. The SPPA cycle
connects sensing, perceiving, planning and acting through a closed-loop relation; sensors
collect (sense) physical information, the information is received and interpreted (perceive),
feasible trajectories for navigation are selected (plan) and the tractor is controlled to follow
the selected trajectory (act). Figure 4 illustrates the basic modeling of self-steering tractors.

Figure 4. A basic modeling of self-steering tractors.

In order to automate the guidance of tractors, two basic elements need to be combined:
basic machinery and cognitive driving intelligence (CDI). CDI needs to be integrated into
both hardware and software for the navigation and control of the platform. Navigation
includes localization, mapping and path planning, while control includes all regulating
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steering parameters, e.g., steering rate and angle, speed, etc. CDI is made possible by
using sensory data from navigation and localization sensors, algorithms for path planning
and software for steering control. The basic machinery refers to the tractor where the CDI
will be applied. Based on the above and in relation to the SPPA cycle, the basic elements
for the automated steering of tractors are sensors for object detection, localization and
mapping [52–54], path planning algorithms [55], path tracking and steering control [56].
Table 1 includes a list of the aforementioned basic elements for an autonomous self-steering
tractor. Most commonly used sensors and algorithms are also included in Table 1.

Table 1. An indicative list of basic elements for vision-based autonomous self-steering tractors.

Sensors Object Detection Localization and Mapping Path Planning Path Tracking and
Steering Control

Optical sensors Convolutional neural
network (CNN)

Simultaneous localization
and mapping (SLAM) A* algorithm Proportional integral

derivative (PID)

Radar
Region-based fully

convolutional
network (R-FCN)

Dead reckoning Dijkstra Algorithm Stanley controller

Laser scanner Fast R-CNN Curb localization D* Algorithm Pure pursuit algorithm
Light detection and

ranging (LiDAR) Faster R-CNN Visual object detection Rapidly Exploring
Random Trees (RRT) Fuzzy logic controller

Ultrasonic Histogram of oriented
gradients (HOG) Particle filter Genetic Algorithm (GA) Neural Networks

Global positioning
system (GPS) Single shot detector (SSD) Extended Kalman filter Ant Colony Algorithm H-infinity controller

Global navigation satellite
system (GNSS)

You only look
once (YOLO) Covariance intersection Firefly Algorithm Model

predictive controller
Internal measurement unit

(IMU)
Odometry

4.2. Vision-Based Architecture

A fundamental vision-based architecture for self-steering tractors is presented in [29].
Figure 5 illustrates the flow diagram of the proposed vision-based navigation system.

Figure 5. A fundamental flow of the vision-based navigation systems of tractors.

The main sensor of the architecture is an optical sensor. The optical sensor captures
images that are processed by a computer (PC), which also receives real-time kinematic
global GPS (RTK-GPS) information and extracts the steering signal. The steering signal
is fed to the tractor control unit (TCU) that generates a pulse width modulation (PWM)
signal to automate steering. The closed loop of the steering actuator is comprised of an
electrohydraulic steering valve and a wheel angle sensor. The system prototype of Figure 5
was installed on a commercial tractor, and a series of self-steering tests were conducted to
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evaluate the system in the field. Results reported a root mean square (RMS) error of lateral
deviation of less than 0.05 m on straight and curved rows for speed of up to 3.0 m/s.

4.3. Path Tracking Control System

The basic design principle of a path-tracking control system comprises three main
systems, as depicted in Figure 6: image detection, tracking and a steering control system.
Acquired images from an optical sensor, i.e., a camera, are sent to a computer for real-
time processing. The center of the crop row line is identified, and the navigation path is
extracted. The system uses a feedback sensory signal for the proportional steering control
of the electrohydraulic valve of the vehicle for adaptive path tracking [57].

Figure 6. The basic design of a path tracking control system.

4.4. Basic Sensors

Sensors record physical data from the environment and convert them into digital
measurements that can be processed by the system. Determining the exact position of
sensors on a tractor presupposes knowledge of both the operation of each sensor (field of
view, resolution, range, etc.) and the geometry of the tractor, so that by being placed in the
appropriate position onboard the vehicle, the sensor could perform to its maximum [58].
Navigation sensors can be either object sensors or pose sensors. Object sensors are used
for the detection and identification of objects in the surrounding environment, while pose
sensors are used for the localization of the tractor. Both categories can include active types
of sensors, i.e., sensors that generate energy to measure things such as LiDAR, radar or
ultrasonic, or passive types of sensors, e.g., optical sensors, GNSS, etc.

Sensory fusion can enhance navigation accuracy. The selection of appropriate sensors
is based upon a number of factors, such as the sampling rate, the field of view, the reported
accuracy, the range, the cost and the overall complexity of the final system. A vision-based
system usually combines sensory data from cameras with data acquired from LiDAR,
RADAR scanners, ultrasonic sensors, GPS and IMU.

Cameras capture 2D images by collecting light reflected on 3D objects. Images from
different perspectives can be combined to reconstruct the geometry of the 3D navigation
scenery. Image acquisition, however, is subject to the noise applied by the dynamically
changing environmental conditions such as weather and lighting [59]. Thus, a fusion of
sensors is required. LiDAR sensors can provide accurate models of the 3D navigation
scene and, therefore, are used in autonomous navigation applications for depth perception.
LiDAR sensors emit a laser light, which travels until it bounces off of objects and returns
to the LiDAR. The system measures the travel time of the light to calculate distance,
resulting in an elevation map of the surrounding environment. Radars are also used for
autonomous driving applications [60]. Radars transmit an electromagnetic wave and
analyze its reflections, deriving radar measurements such as range and radial velocity.
Similar to radars, ultrasonic sensors calculate the object-source distance by measuring the
time between the transmission of an ultrasonic signal and its reception by the receiver.
Ultrasonic sensors are commonly used to autonomously locate and navigate a vehicle [61].
GPS and IMU are additional widely used sensors for autonomous navigation systems.
GNSS can provide the geographic coordinates and time information to a GPS receiver
anywhere on the planet as long as there is an unobstructed line of sight to at least four
GPS satellites. The main disadvantage of GPS is that it sometimes fails to be accurate
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due to obstacles blocking the signals, such as buildings, trees or intense atmospheric
conditions. Therefore, GPS is usually fused with IMU measurements to ensure signal
coverage and precise position tracking. An IMU combines multiple sensors like a gyroscope,
accelerometer, digital compass, magnetometer, etc. When fused with a high-speed GNSS
receiver and combined with sophisticated algorithms, reliable navigation and orientation
can be delivered.

5. Vision-Based Navigation

Vision-based navigation can be performed by using monocular vision, binocular vision
or multi-vision, depending on the number of visual sensors and by using appropriate image
processing algorithms.

5.1. Monocular Vision Methods

Monocular vision is widely used for navigation purposes in agricultural machin-
ery [20]. Essentially, the problem of visual in-field navigation is about detecting crop lines
and obstacles on the pathway in between the crop lines. In [62], a monocular vision system
was proposed to guide a tractor; the vehicle captured images while moving through the
crop rows and corrected the steering angle by identifying the heading and offset errors
from the line. Results indicated acceptable performance, with a 0.024 m maximum error of
position identification in the offset and 1.5◦ in the attitude angle for a 0.25 m/s navigation
speed. In [19], the proposed monocular vision system was able to automatically drive a
tractor for a 35 s trial at a speed of 1 m/s with an accuracy of 0.020 m. In [24], a monocular
vision system was developed to guide a tractor at a maximum velocity of 1.3 m/s with
an overall accuracy of 0.050 m, in day and night navigation trials. The monocular vision
system in [63] resulted in steering performance comparable to steering by human operators,
with an accuracy of 0.050 m at 0.16, 0.5 and 1.11 m/s. The same research team as in [64]
developed a monocular vision guiding system that could navigate for a 125-m run by
keeping a stable distance of 10 cm from the left side of the crop row in varying environ-
mental illumination with two different speeds: 1.33 m/s and 3.58 m/s. In both cases, for
70 trials, the robotic system performed 95% of the trials and a standard deviation (SD)
from the predetermined route was identical to that of a human driver. Monocular sensing
for crop line tracking was also used in [65]; 95% of rows were segmented correctly over a
distance of 5 km at a maximum speed of 1.94 m/s. In [36], the proposed monocular vision
system achieved a round mean square (RMS) offset error and a heading error between the
camera and the crop row less than 0.030 m and 0.3◦, respectively. The robotic monocular
vision-based sprayer of [66] reported an average error of 0.010 m inside a straight plant path
and 0.011 m and 0.078 m before and after a 90◦ turn, respectively. The system introduced
in [67] relied on monocular vision to guide a vehicle inside artificial crop rows with a speed
of 1.5 m/s and accuracy of ±0.020 m. In [68], the proposed system was able to navigate
by using only monocular vision in different environmental illuminations. The reported
mean of the lateral deviation in a straight line was 0.018 m, while the minimum deviation
in curves reached 0.161 m. Guidance accuracy was similar to that of guiding with an RTK
GPS sensor. A monocular vision-based method to track the direction and lateral offset
of crop rows was presented in [69]. The method could perform in different cultivations
without modifications. The minimum RMS error for open loop experiments was 0.034 m,
while for close loop experiments, it was 0.028 m.

Monocular vision, when compared to binocular vision, simplifies the hardware, but it needs
to be coupled with more complex algorithms in order to function with adequate accuracy [70].
Towards this end, many algorithms have been developed, focusing mainly on: (1) expert
systems, (2) image processing, (3) crop-row segmentation and (4) path determination.

Expert systems are based on human knowledge. Two basic approaches have been
considered: one that uses only images and one that builds a map of the trajectory. The
first approach relies on images extracted from the predetermined navigation route; the
vehicle drives in the specified path as it is captured from one image to another by com-
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puting its relative position from the current image and moving accordingly [71–74]. This
approach avoids reconstructing the entire navigation scene and defines the environment
from overlapping images. The second approach builds a map of the environment a priori,
resulting in faster and more accurate localization and navigation. On one hand, the latter
is time-consuming. On the other hand, the process is done offline and before use. In
addition, fusion with appropriate sensors such as GPS can provide global coordinates
for the localization of the vehicle [68,75]. SLAM combined with monocular vision has
also been considered [76]; however, a small landmark database is required for real-time
navigation responses.

Image processing algorithms are essential for effective navigation to deal with weeds,
shadowing and other noise that infect in-field acquired images. To this end, monocular
vision systems use near infrared (NIR) cameras, grayscale cameras or filters to determine
the optical properties of crops that are strongly related to their physical properties, such as
greenness [77]. The latter can help segmentation tasks to detect crop rows by discriminating
between green and non-green features in a scene or gray levels of soil [26] in order to deal
with light changes, weed noise [78], etc.

Navigation methods based on crop-row segmentation focus on detecting multiple
crop rows and determining their exact position so as to define the navigation pathway in
between them [79,80]. Alternatively, methods for direct path determination can be applied.
A typical method to determine pathways is the Hough transform; yet, it is sensitive to
discontinuities and needs considerable computational time [81]. Variations of the Hough
transform, such as adaptive Hough transform [82], intrinsic blob analysis [83] and curve
fitting [84], are introduced to deal with the reported defects.

5.2. Binocular Vision Methods

Binocular vision combines two monocular cameras simultaneously so that each camera
contributes to a single common perception. Information acquired by a binocular vision system
can be used to define the exact location of objects in a scene. Compared to monocular vision,
binocular vision can provide better overall depth, distance measurements and 3D viewing
details, therefore, it is more resistant to varying illuminations and more accurate in locating
regions of interest [59]. Binocular vision systems are used for the autonomous navigation of
agricultural vehicles. In [85], a low-cost binocular vision system is proposed for the automatic
driving of an agricultural machine. The results indicated a mean deviation between the actual
middle of the road and traveled trajectory of 0.031 m, 0.069 m and 0.105 m, for straight, multi-
curvature and undulating roads, respectively. An adaptive binocular vision-based algorithm
was proposed in [86]. Experiments on S-type and O-type paths resulted in an absolute mean
of turning angle of 0.7◦ and an absolute standard deviation of 1.5◦ for navigation speeds less
than 0.5 m/s. In [59], a navigation algorithm based on binocular vision is proposed, resulting
in a correct detection rate greater than 92.78% for the average deviation angle, an absolute
average value less than 1.05◦ and an average standard deviation less than 3.66◦ in paths without
turnrows. A tractor path-tracking control system based on binocular vision is presented in [57].
In-field experiments indicated a mean absolute deviation of course angle of 0.95◦ and a standard
deviation of 1.26◦.

Binocular vision-based algorithms for autonomous vehicle navigation in agriculture focus
mainly on: (1) obstacle detection, (2) 3D scene reconstruction and (3) crop-row detection.

Obstacle detection methods are critical for the safety of in-field automated operations
of agricultural machinery. Binocular vision can provide the depth information of obstacles
in an agricultural scene by stereo matching; thus, its application in obstacle detection
attracts growing attention [87]. One binocular vision approach is based on an inverse
perspective transformation and the selection of non-zero disparity zones [88]. This method
is effective when applied on flat surfaces. Other approaches use the plane-line projection
characteristics of the UV-disparity, where the height and width of obstacles are acquired
from the height of vertical line segments in V-disparity maps and the length of horizontal
line segments in U-disparity maps, respectively [89]. These methods can detect simple
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obstacles in structured environments. The most common approach is based on binocular
stereo matching [90]. However, the stereo matching of in-field images is time-consuming
and not very precise. In order to enhance the precision of stereo matching, motion analysis
for object tracking can be considered (2008). Moreover, the processing time could be
reduced by considering fewer points than the entire 3D reconstruction of a field scene.

The 3D reconstruction of a field scene can determine all surrounding environments
accurately with adequate detail [85]. Binocular vision-based methods can provide 3D
field maps even in unstructured and complex environments [91]. An accurate disparity
map can help agricultural machinery to navigate safely in the fields [92]. However, stereo
matching methods are preferable for 3D scene reconstruction due to reduced processing
times, making them more flexible for real-time applications.

Crop-row detection algorithms based on binocular vision are effective when applied to
fields where the crops are significantly higher than the weeds [93], due to complex in-field
features that obstruct quick and accurate stereo matching. Crop rows are traditionally
detected by Hough transform or by horizontal strip segmentation, but these methods do
not fully exploit binocular vision techniques [59]. Binocular vision combined with a pure
pursuit path-tracking algorithm can provide reliable information to navigate tractors in the
fields [57]. The continuous advancements in image processing and automatic control can
guarantee accurate real-time information about the surrounding environment for automatic
vehicle control in the near future.

Classification of Stereovision Methods

Stereovision analysis consists of the following basic steps: (1) image acquisition, (2) the
modeling of the camera, (3) feature extraction, (4) stereo matching, (5) determination
of depth and (6) interpolation. Stereo matching, i.e., the identification of pixels in two
images that correspond to the same 3D point in the scene, is the most important step of the
process. In order to resolve the stereo matching problem a set of constraints are applied:
epipolar geometry, similarity, uniqueness and smoothness [94]. Epipolar geometry defines the
correspondence between two pixels in stereo images by relating 3D objects to their 2D
projection. The similarity constraint matches pixels with similar properties. Uniqueness
defines the existence of a unique match between two pixels in stereo images, apart from
occlusions. Finally, the smoothness constraint determines a smooth change in neighboring
disparity values, apart from discontinuities resulting from sharp edges.

Stereo matching methods can be either local, global or semi-global [95]. Local methods
achieve matching on a local window. Challenges are due to regions with repetitive or low
textures that introduce ambiguities. Global methods result in disparity maps with high
accuracy, but global methods are computationally expensive due to the calculation of the
disparity of every pixel in an image by optimizing a global energy function. Semi-global
methods are introduced to balance disparity maps’ estimation accuracy and computational
time by performing the optimization of the global energy function on part of the entire
image. Vision-based disparity estimation algorithms are comprised of the following basic
steps that formulate stereo matching as a multistage optimization problem: (1) computation
of cost, (2) aggregation of cost, (3) optimization of disparity and (4) refinement of disparity.
The speed and accuracy of disparity estimation are equally important and are taken into
consideration for the overall performance evaluation of stereo vision algorithms. The
research focuses on reducing computational complexity while achieving better disparity
estimation accuracy. The latter is the greater challenge when developing a stereovision
algorithm [96]. Traditional stereo matching algorithms are mainly software-based imple-
mentations of global and local methods of generating disparity maps [97]. The ability to
deliver stereo matching in real time by using parallel processing or additional hardware
in less processing time paved the way for new research in the field. Recently, due to
the advancement of convolutional neural networks, stereo matching is treated as a deep
learning task [98].
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5.3. Multi-Vision Methods

Multi-vision systems include input images of multiple vision sensors. In [99] three
images for three cameras and GPS data were fused to generate a localization system. The
use of multiple cameras reduced the complexity of the system since the final image was
extracted by image stitching without the need to rotate the cameras to capture multiple
viewing angles. Compared to conventional stereo vision systems, the proposed multi-
camera system resulted in better viewing angles four times faster. Trinocular vision and
odometry were used in [100], while in [101] a multi-vision method was introduced for
multi-sensor surveillance and long-distance localization.

A comparative table (Table 2) of all vision-based navigation algorithms for self-steering
tractors reviewed in this work is subsequently provided. Details regarding the utilized
vision systems and the performance of the algorithms are included in the same table. It
should be noted that methods included in Table 2 use cameras as their main navigation
sensor. Additional sensors included in Table 2 are auxiliary or only used to enable com-
parison between sensors and methods. Moreover, only the methods that have been tested
for navigation and localization purposes are considered and included in Table 2. Many
vision-based navigation algorithms have been developed, their performance to detect crop
rows has been investigated and their potential use in vehicle guidance has been evalu-
ated [102,103], yet only a part of them has actually been integrated into agricultural vehicles
and tested in real-life navigation applications.
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Table 2. A comparative table of vision-based navigation algorithms applied to agricultural machinery.

Ref. Vision
System Visual Sensors Additional

Sensors Image Processing Algorithm Application Performance

[62] Monocular SONY-CCD-TR55, Focal
length 0.011 m N/A

HSI to detect different colored crops, Horizontal
Scanning Method and Least Squares Method to

detect the boundary of crop row

Tested on a 4-Wheel drive tractor in a
Komatsuna field on 3 rows 20 m long at
0.2 m intervals of 1.7 m and 0.7 m width

0.024 m maximum error in the offset and
1.5◦ in the attitude angle for 0.25 m/s

navigation speed

[19] Monocular Creative technology Ltd.
‘Video Blaster’ 3rd revision N/A

Level-adjustment thresholding to discriminate
rows from gaps, an averaging technique using a
viewport to locate rows, regression analysis to fit

the best line

Tested on a CASE 7 140 tractor model to
target a white tape 15 mm width at a

35-s run
0.020 m accuracy at a speed of 1 m/s

[24] Monocular Cohu 2100
monochromatic camera

Trimble 4400
RTK GPS

Histogram-based segmentation, line-by-line
low-pass filtering, blob analysis

Tested on a Case 2188 combine harvester,
in-lab and on a typical Illinois field with

an average yield of 8.61 t/ha

0.050 m overall accuracy in day and
night navigation trials at a speed of

1.3 m/s

[63] Monocular
Metal-oxide

semiconductor-type color
camera Hitachi VK-C3400A

N/A

A contrast algorithm applied on a color
histogram to detect rows, image scanning with
intensity threshold to locate left edge of rows,

and a color discrimination algorithm applied to
color histograms, average color intensity

calculation, image scanning to locate both edges
of rows

Tested on a 15 kW General Electric
ElecTrac lawn tractor, in-lab and on a

Michigan State University corn farm for
1.5 m

0.050 m best performance at testing
speed of 0.16, 0.5 and 1.11 m/s

[64] Monocular

Three-element video
camera Model WVD5100 by
Panasonic, with a vertically
polarizing filter in front of

the lens

N/A

Calibration to determine target reference color
from average color intensity of histograms for
crop row detection, image scanning to locate

the row

Tested on a J.I. Case-IH 7110 tractor, for
a 125-m run by keeping a stable distance
of 10 cm from the left side of a corn crop

row in varying environmental
illumination for 70 trials

95% of the trials reported SD from the
predetermined route identical to that of
a human driver with speeds of 1.33 and

3.58 m/s

[65] Monocular Sony CCD color camera

Radar, Laser,
Encoders,

Potentiometers,
Limit switches,

INS, GPS

Intensity segmentation and color segmentation
to detect and track the crop cut line

Tested on standard self-propelled New
Holland Model 2550 windrower over 5

km in El Centro, California

95% of rows were segmented correctly at
a speed of 1.94 m/s

[36] Monocular CCD color camera N/A
Ground coordinate image transformation, R and

G histogram image intensity integration to
extract crop areas

Tested on a weeding machine, Nichinoki
Seiko Inc. NAK-5, and a tractor at a farm

of Hokkaido University over 150 m

0.030 m RMS offset error and 0.3◦
heading error between camera and crop

row for speeds of up to 1.3 m/s

[66] Monocular Sony FCB-EX7805
CCD camera N/A

Path segmentation using color thresholding,
image scanning to determine path edges, least

squares and RANSAC to find best fit lines,
intersection detection

Tested on Singh sprayer in a greenhouse
for a tape path and a plant path of 61 cm

width for both a straight path and a
90◦ turn

0.010 m average error inside a straight
plant path and 0.011 m-before/0.078

m-after a 90◦ turn at a speed of 0.2 m/s

[67] Monocular Not specified Encoders

Infrared images to heighten contrast between
plants and soil, amplitude threshold to identify
the area of plants, Hough transform to determine

position of rows

Tested on a commercially manufactured
tractor for use on horticultural plots

inside artificial crop rows

±0.020 m peak offset error with a speed
of 1.5 m/s

[68] Monocular
A camera equipped with a
fish-eye lens with a 130◦

field of view
N/A

3D map reconstruction, key frame selection,
camera motion computation, Hierarchical

bundle adjustment

Tested on an experimental electric
vehicle, Cycab, on a 127 m trajectory in

sunny and cloudy weather

0.018 m mean of the lateral deviation in
straight line, 0.161 m minimum

deviation in curves



Machines 2022, 10, 129 14 of 22

Table 2. Cont.

Ref. Vision
System Visual Sensors Additional

Sensors Image Processing Algorithm Application Performance

[69] Monocular Microsoft LifeCam Cinema
web camera

IMU (CH Robotics
UM6),

RTK-GPS/INS
(Novatel FlexPack

with Tactical
Grade IMU)

Lens distortion and down-sample correction,
image stabilization, warp of image into overhead

view, estimation of dominant parallel texture,
image skewing for heading correction, frame

template generation

Tested on a John Deere Gator TE electric
utility vehicle for spraying weeds in
wheat and sorghum stubble fields in

Emerald, Australia, during day
and night

0.034 m minimum RMS error for
open-loop experiments, 0.028 m for

closed-loop experiments

[26] Monocular

COHU CCD gray-scale
camera with a near-infrared

filter 780 nm and 8.5 mm
focal length lens

N/A

Opening operation on image to get an intensity
independent gray-level image, thresholding to
derive a binary image, perspective transform of
world to image coordinates, Hough transform to

find crop boxes

Tested on an inter-row cultivator tractor
and a mobile robot for 5.5 Km in a sugar

beet field

0.027 m SD for the position of the tractor
and 0.023 m for the robot

[78] Monocular Color video camera GPS receiver

Thresholding of H component histogram of HIS
color model to discriminate plants, vertical

projection method to detect number and position
of crop rows, linear scanning method to detect

crop lines

Tested on a tractor in a corn field in
Shang Zhuang under varying

illuminations

0.027 m maximum average error at
speeds of 0.6, 1.0 and 1.4 m/s

[104] Monocular GoPro Hero 3+ with a near
infrared filter at 750 nm N/A

Lower part of mage cropped, green plane
extraction from cropped image, thresholding to

extract path plane, filtering to remove noise,
centroid of path plane determination

Tested on a GEARs Surface Mobility
Platform in a laboratory setting and in a

peach orchard

0.023 m RMS in-Lab, 0.021 m
RMS in-field

[16] Monocular

Camera with a near infrared
optical filter 850 nm and 100

nm bandwidth and an
auto-iris lens

N/A
Image intensity distribution, thresholding based
on distribution of image pixels, segmentation of

guidance rows

Tested on a Nebraska Ford tractor in a
cotton field with straight lines of Texas

agricultural experiment station
0.35 to 0.55 m heading error

[17] Monocular

MOS camera with near
infrared Oriel model

number 57700 SSO-nm,
narrow-band pass filter and
a Computar APC, 1: 1.3 25

mm auto-iris lens

N/A

Image subsampling to evaluate the intensity of
sample size, Bayes thresholding and class

mixture coefficient calculation, RLE to identify
edge points of crop rows, heuristic detection
algorithm to determine parameters of lines

belonging to crop rows

Tested on a Ford 7710 tractor in cotton,
sorghum and soybean crop rows

−0.65 m to 0.90 m heading error, 0.0 m
to −0.27 m offset error, with speeds of

0.88, 1.55 and 2.13 m/s

[30] Monocular
Pulnix TM500 charge
coupled device (CCD)

video camera
N/A Thresholding, features extraction

Tested on a tractor-mounted steerage
hoe for cereals by Garford Farm

Machinery at speeds up to 1.66 m/s

0.013 m standard error in hoe position
independent of speed

[18] Monocular Video Blaster
camera inference N/A

Regression analysis to estimate the best-fit line
through a row of blobs within a frame,
thresholding for brightness adjustment

Tested on a Case Maxxum 100
horsepower tractor for 100 m in a cotton

field

0.5 m initial displacement error from
row for speeds of 1 m/s and 5 m/s,

settles at 0.050 m after 20 m

[31] Monocular
Standard CCD camera

sensitive in the near
infra-red

N/A Bandpass filtering to extract image intensity due
to crop rows

Tested on a mechanical hoe in winter
wheat at Silsoe, UK

0.0156 m positional error, at a speed of
1.6 m/s

[32] Monocular

Standard mono-chrome
CCD with a near infrared

bandpass filter and 4.8 mm
focal length

N/A
Saturation detection in histograms of pixel

intensities, image thresholding, Kalman filtering
to extract row features

Tested on a hoe of 6 m span standard
design by Garford Farm Machinery Ltd.

for a 110 m

0.016 m SD in lateral error and ±0.010 m
mean bias at 1.6 m/s



Machines 2022, 10, 129 15 of 22

Table 2. Cont.

Ref. Vision System Visual Sensors Additional
Sensors Image Processing Algorithm Application Performance

[33] Monocular
Sony FCB-EX780S “block”
single CCD analog color

video camera

Lidar SICK LMS
200, DGPS receiver

Segmentation algorithm, adaptive thresholding,
morphological operations

Tested on a John Deere 6410 tractor in a
citrus grove on a 22 m straight path and

a 17 m curve

0.028 m average error in curved path at a
speed of 3.1 m/s

[59] Binocular

Bumblebee2 parallel
binocular camera

BB2-08S2C-38 (baseline 120
mm, focal length 3.8 mm,

horizontal field of view 66◦)

N/A

Improved 2G-R-B grayscale transformation,
Harris corner point detection, rank NSAD region

matching, RANSAC refining of disparity,
location of 3D position, crop row classification,

centerline pathway determination

Tested on a manual four-wheel trolley in
cotton fields on cloudy and sunny days
with a speed between 1.0 and 2.0 m/s

92.78% detection rate for average
deviation angle, 1.05◦absolute average

value, 3.66◦ average SD

[29] Binocular STH-MD1 (VidereDesign,
CA) stereo camera RTK-GPS

Disparity map computing, 3D points
reconstruction, C-to-V transformation, elevation
map creation, median filtering, navigation point

determination

Tested on a John Deere 7700 tractor in
soya bean fields

0.050 m RMS error of lateral deviation
on straight and curved rows at speeds

up to 3.0 m/s

[86] Binocular
Bumblebee2 binocular
vision system Model

BB2-03S2C-60
N/A

SURF for feature extraction and matching to
obtain feature pairs, confidence density image

construction by integrating the enhanced
elevation image and the corresponding binarized

crop row image

Tested on a smart agricultural robot
manufactured in Shanghai, China on

S-type and O-type in-lab simulated crop
plant leaves paths

0.7◦ absolute mean of turning angle and
1.5◦ absolute SD for speed less than

0.5 m/s

[57] Binocular Bumblebee 2 by Point Grey N/A

Excess green minus excess red function to
transform RGB to greyscale, smallest uni-value
segment assimilating nucleus detector to detect

contour of crop rows, stereo matching with
Census transform to calculate disparity of corner

points of crop rows

Tested on Revo Leopard TG1254 tractor
in a cotton leaves line with a crop

distance of 0.60 cm, row spacing of 1.20
m and 0.25 m minimum and 0.50 m

maximum height of leaves at 1.2 m/s

0.95◦ mean absolute deviation of course
angle/1.26◦ SD, 0.040 m mean absolute
deviation of lateral position/0.049 m SD,
2.99◦ mean absolute deviation of frond

wheel angle/0.036 m SD

[85] Binocular
RER-720P2 CAM-90 by

RERVISION Technology
Co., Ltd. (Shenzhen, China)

RTK-GPS

Threshold segmentation, RGB to HSV color
space conversion, HSV channel segmentation,
Otsu threshold segmentation of V component

and morphological filtering, point operation of S
and V components and Otsu threshold
segmentation for shadow processing

Tested on an experimental autonomous
carrier in a field road 1.2 m wide with a

change in altitude and curvature

0.031 m, 0.069 m and 0.105 m mean
deviation for straight, multi-curvature
and undulating roads, respectively, at

2 m/s

[21] Multi-vision
Two COHU 2100 series

monochrome cameras with
800 nm narrow band

NIR filters
N/A Full image processing, vertical transition image

reduction and adaptive fuzzy linear regression
Tested on Case 2188 Axial-Flow

Combine in a corn field
Not reported (The algorithm

satisfactorily guided the combine)

[22] Multi-vision
Two COHU 2100 series

monochrome cameras with
800 nm filters and 3 mm

focal length lens
AFS beacon GPS

Two-class K-means threshold segmentation, run
length encoding to simplify the segmented
image, classification, transition detection,

sequential linear regression, adaptive fuzzy
evaluation

Tested on Case 2188 Axial-Flow
Combine in a corn field

Not reported (The system successfully
autonomously harvested corn at speeds

of up to 2.66 m/s.

[23] Multi-vision Three cameras

Trimble (Sunnyvale,
CT) Ag122 beacon
GPS, Trimble 4400
RTK GPS receiver

Adaptive segmentation based on histograms of
image intensity row-by-row low-pass filtering,

blob analysis by run length encoding, linear
regression to track the center inter-row

Tested on a Case 2188 rotary combine in
a corn field of 4.6 ha at day and night for
14 runs with a maximum speed between

0.8 m/s to 1.3 m/s

0.006 m overall accuracy with 0.133 m
SD, 0.003 m average daytime accuracy

and 0.133 m SD, −0.024 m average
nighttime accuracy and 0.129 m SD
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6. Discussion

The autonomous navigation of agricultural machinery is an important aspect of smart
farming and has been widely used in several agricultural practices for sustainable high yield
production and in-field automation. Computer vision has been integrated into agricultural
machinery to guarantee enhanced navigation accuracy in real in-field conditions. Figure 7
illustrates the categories of agricultural machinery to which navigation algorithms have
been integrated, according to the bibliography of Table 2. The actual problem that the use
of computer vision aims to overcome is the exact localization of crop lines, the mapping of
the navigation routes and its real-time correction.

Figure 7. Types of agricultural machinery that use vision-based navigation methods.

Navigation control systems are based on monocular vision and, more recently, on
binocular vision or multi-vision systems. Optical sensors provide images to effective image
processing algorithms. The extracted data from image processing are then fused with
additional data from other on-board sensors. All processing is completed in real time on a
computer mounted to the autonomous vehicle.

According to the revised bibliography, it has resulted that multi-vision and stereovision
systems are superior to monocular vision systems and meet the agricultural requirements
for navigating vehicles in the fields. However, monocular systems are more often found in
the literature, according to Table 2. The latter can be better visualized in Figure 8. This is due
to the simpler system design, the comparatively low-cost of the monocular vision sensors
and the less complex image processing algorithms that accompany them. Additionally,
although the use of one camera is affected by environmental noise, navigation results
still range to sustainable levels of accuracy, allowing monocular vision systems to drive a
tractor safely.

Figure 8. The distribution of tractor navigation literature based on the type of vision system.



Machines 2022, 10, 129 17 of 22

In particular, binocular vision systems demonstrate higher stability control accuracy,
allowing for automatic control of the navigation path between the crop lines, especially for
large crops such as cotton, sunflower, maize, etc. Indicatively, an algorithm [59] for detecting
crop rows based on binocular vision combines image pre-processing, stereo matching and
centerline detection of multiple rows. The method first converts the stereoscopic image
to grayscale by using the improved 2G-R-B greyscale transformation. Then, the Harris
corner point detector is employed to extract the candidates for stereo matching. The 3D
coordinates of crop rows are calculated with stereo matching by the disparities between the
binocular images. Finally, the crop lines are determined by using the normalized sum of
absolute difference for matching (NSAD) metric and the random sample consensus method
(RANSAC) for the optimization of disparity. The results demonstrated the efficiency of
the algorithm in dealing with various visual noises such as lighting, shadows, weeds and
density of crop rows. Moreover, results revealed the satisfactory speed and accuracy of
the algorithm, especially when the camera was mounted at an appropriate height on the
vehicle and when the crops were significantly higher than the weeds. The latter is more
common in orchards.

In the case of vision-based autonomous navigation in orchards, several algorithms
have been developed that take advantage of terrestrial structures such as tree trunks and
foliage. Many approaches combine data from two or more sensors in order to detect and
locate objects, while in recent years RGB-D, Kinect and other sensors have been widely
used [104]. Even though methods with sensor fusion perform satisfactorily in orchards,
they are challenged by shading, the altering angle of the sun, the chromatic similarity of
crops, the visibility of tree trunks in the adjacent rows, etc.

A recent methodology [105] provided a solution to the above challenges by combining
the tree foliage with the background sky instead of tree trunks and the ground; by looking
up instead of down, environmental factors decreased considerably. The method used a
multispectral camera mounted on the front of an agricultural vehicle to capture images and
a computer to process them in real time. The captured image was cropped and the lower
part was used to extract the green color plane, which provided greater contrast between
the foliage and the sky. Simple thresholding was applied to derive the path plane of the
agricultural vehicle. Finally, after filtering out the noise, the centroid path plane resulted.
Results revealed the potential of this original approach to successfully guide agricultural
vehicles in orchards.

Future work may include state-of-the-art sensors and algorithms for newly introduced
vision-based system architecture. Regarding image processing algorithms, there are several
issues to be addressed. First, algorithms must balance the processing of large amounts
of data from the environment with low processing times so that decisions can be made
in real time. Complicated and multiple input data may provide a better understanding
of the surroundings, yet result in increased processing time, obstructing the real time
control and actions of the tractor. Second, optimal navigation accuracies are achieved
with multi-sensor systems; vision, although flexible, is affected by environmental noise. A
variety of sensors can lead to advanced accuracies in navigation, mapping and the position
estimation of tractors. Therefore, future work must focus on fusion techniques that are
able to deal efficiently with data from multiple sensors. Factors such as the variation of the
vehicle’s speed, irregular terrain and varying controllers should also be considered. Figure 9
summarizes the range of maximum navigation speeds at which the best performance of
the algorithms in Table 2 were obtained. It seems that the optimal speed for a tractor is
between 1–2 m/s, which is fast enough for sustainable automation and sufficient for the
data processing of the autonomous navigation algorithms. However, it should be noted
that speeds over 2 m/s are usually used in cultivations with tall (e.g., corn) or dense plants
(e.g., cotton), where the crop line is theoretically detected more easily.
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Figure 9. The ranges of maximum navigations speeds.

Effective control algorithms are very important in dynamic outdoor environments.
When autonomous navigation is employed in structured or semi-structured environments
where disturbances are known or can be easily predicted, simulations and expert knowledge
can be used efficiently to control a guiding system. However, a complicated environment
introduces many uncertainties into the system. For this reason, future work should concen-
trate on control algorithms that are able to self-learn from and self-adapt to the environment.
Finally, a future investigation should focus further on in-field testing for different types of
crops at different growing stages and under varying environmental conditions.

The referenced literature revealed that autonomous navigation systems of agricultural
vehicles have been in the spotlight for decades, paving the way for the sustainable agricul-
ture of the future. However, research needs to be perpetual in order to face challenges and
overcome all reported limitations.

7. Conclusions

Data-driven agriculture combined with appropriate sensory systems, including artifi-
cial intelligence methods, paves the way for the sustainable agriculture of the future. To
this end, a vision-based system is capable of providing precise navigation information to
autonomously guide a tractor to follow crop rows. Thus, the burden of the monotonous
crop row following-tasks will fall to the self-steering system and the operator could be
engaged in maneuvering and other tasks, thus increasing the guiding performance, the
working efficiency and the overall safety of farming operations.

The present work demonstrated the feasibility of machine vision systems in self-
steering tractors with respect to the following issues: vision-based tractors’ system ar-
chitecture, the safety of usage and navigation errors, the navigation control system of
vision-based self-steering tractors and state-of-the-art image processing algorithms for
in-field navigation route mapping. Research revealed the potential of machine vision
systems to autonomously navigate agricultural machinery in open fields in the future.

The aim of this work is to augment the knowledge on agricultural vision-based
navigation methods and provide evidence of trends and challenges in a systematic manner.
The reviewed methods included in this work could be used for future studies to extend the
knowledge of vision-based machinery architecture, sensors, algorithms and safety issues.
The provided knowledge could be extended from agricultural navigation tasks to other
contexts where the use of autonomously guided vehicles will be the focus of interest.

Author Contributions: Conceptualization, G.A.P.; methodology, D.O., A.K. and E.V.; investigation,
A.K., D.O. and E.V.; resources, A.K., D.O. and E.V.; writing—original draft preparation, E.V., D.O. and
A.K.; writing—review and editing, E.V. and G.A.P.; visualization, E.V.; supervision, G.A.P.; project
administration, G.A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Machines 2022, 10, 129 19 of 22

Informed Consent Statement: Not applicable.

Acknowledgments: This work was supported by the MPhil program “Advanced Technologies in
Informatics and Computers”, hosted by the Department of Computer Science, International Hellenic
University, Greece.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy

2020, 10, 207. [CrossRef]
2. Lokers, R.; Knapen, R.; Janssen, S.; van Randen, Y.; Jansen, J. Analysis of Big Data technologies for use in agro-environmental

science. Environ. Model. Softw. 2016, 84, 494–504. [CrossRef]
3. De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0: The future of farming technology. In Proceedings of the World Government

Summit, Dubai, United Arab Emirates, 11–13 February 2018; pp. 11–13.
4. Martos, V.; Ahmad, A.; Cartujo, P.; Ordoñez, J. Ensuring Agricultural Sustainability through Remote Sensing in the Era of

Agriculture 5.0. Appl. Sci. 2021, 11, 5911. [CrossRef]
5. Sparrow, R.; Howard, M. Robots in agriculture: Prospects, impacts, ethics, and policy. Precis. Agric. 2021, 22, 818–833. [CrossRef]
6. Aqeel-ur-Rehman; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture.

Comput. Stand. Interfaces 2014, 36, 263–270. [CrossRef]
7. Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of Remote Sensing in Agriculture-A Review. Int. J. Curr.

Microbiol. Appl. Sci. 2019, 8, 2270–2283. [CrossRef]
8. Fan, J.; Zhang, Y.; Wen, W.; Gu, S.; Lu, X.; Guo, X. The future of Internet of Things in agriculture: Plant high-throughput

phenotypic platform. J. Clean. Prod. 2021, 280, 123651. [CrossRef]
9. Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [CrossRef]
10. Shalal, N.; Low, T.; McCarthy, C.; Hancock, N. A Review of Autonomous Navigation Systems in Agricultural Environments. In

Proceedings of the Society for Engineering in Agriculture Conference: Innovative Agricultural Technologies for a Sustainable
Future, Barton, WA, Australia, 22–25 September 2013.

11. Rovira-Más, F.; Zhang, Q.; Reid, J.F.; Will, J.D. Machine Vision Based Automated Tractor Guidance. Int. J. Smart Eng. Syst. Des.
2003, 5, 467–480. [CrossRef]

12. Thomasson, J.A.; Baillie, C.P.; Antille, D.L.; Lobsey, C.R.; McCarthy, C.L. Autonomous Technologies in Agricultural Equipment: A
Review of the State of the Art. In Proceedings of the 2019 Agricultural Equipment Technology Conference, Louisville, KY, USA,
11–13 February 2019; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; pp. 1–17.

13. Baillie, C.P.; Lobsey, C.R.; Antille, D.L.; McCarthy, C.L.; Thomasson, J.A. A review of the state of the art in agricultural automation.
Part III: Agricultural machinery navigation systems. In Proceedings of the 2018 Detroit, Michigan, 29 July–1 August 2018;
American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018; p. 1.

14. Schmidt, G.T. GPS Based Navigation Systems in Difficult Environments. Gyroscopy Navig. 2019, 10, 41–53. [CrossRef]
15. Wilson, J. Guidance of agricultural vehicles—A historical perspective. Comput. Electron. Agric. 2000, 25, 3–9. [CrossRef]
16. Reid, J.; Searcy, S. Vision-based guidance of an agriculture tractor. IEEE Control Syst. Mag. 1987, 7, 39–43. [CrossRef]
17. Reid, J.F.; Searcy, S.W. Automatic Tractor Guidance with Computer Vision. In SAE Technical Papers; SAE International: Warrendale,

PA, USA, 1987.
18. Billingsley, J.; Schoenfisch, M. Vision-guidance of agricultural vehicles. Auton. Robots 1995, 2, 65–76. [CrossRef]
19. Billingsley, J.; Schoenfisch, M. The successful development of a vision guidance system for agriculture. Comput. Electron. Agric.

1997, 16, 147–163. [CrossRef]
20. Pinto, F.A.C.; Reid, J.F. Heading angle and offset determination using principal component analysis. In Proceedings of the ASAE

Paper, Disney’s Coronado Springs, Orlando, FL, USA, 12–16 July 1998; p. 983113.
21. Benson, E.R.; Reid, J.F.; Zhang, Q.; Pinto, F.A.C. An adaptive fuzzy crop edge detection method for machine vision. In Proceedings

of the 2000 ASAE Annual Intenational Meeting, Technical Papers: Engineering Solutions for a New Century, Milwaukee, WI,
USA, 9–12 July 2000; pp. 49085–49659.

22. Benson, E.R.; Reid, J.F.; Zhang, Q. Development of an automated combine guidance system. In Proceedings of the 2000 ASAE
Annual Intenational Meeting, Technical Papers: Engineering Solutions for a New Century, Milwaukee, WI, USA, 9–12 July 2000;
pp. 1–11.

23. Benson, E.R.; Reid, J.F.; Zhang, Q. Machine Vision Based Steering System for Agricultural Combines. In Proceedings of the 2001
Sacramento, Sacramento, CA, USA, 29 July–1 August 2001; American Society of Agricultural and Biological Engineers: St. Joseph,
MI, USA, 2001.

24. Benson, E.R.; Reid, J.F.; Zhang, Q. Machine vision-based guidance system for an agricultural small-grain harvester. Trans. ASAE
2003, 46, 1255–1264. [CrossRef]

25. Keicher, R.; Seufert, H. Automatic guidance for agricultural vehicles in Europe. Comput. Electron. Agric. 2000, 25, 169–194.
[CrossRef]

http://doi.org/10.3390/agronomy10020207
http://doi.org/10.1016/j.envsoft.2016.07.017
http://doi.org/10.3390/app11135911
http://doi.org/10.1007/s11119-020-09757-9
http://doi.org/10.1016/j.csi.2011.03.004
http://doi.org/10.20546/ijcmas.2019.801.238
http://doi.org/10.1016/j.jclepro.2020.123651
http://doi.org/10.1016/j.agsy.2017.01.023
http://doi.org/10.1080/10255810390445300
http://doi.org/10.1134/S207510871902007X
http://doi.org/10.1016/S0168-1699(99)00052-6
http://doi.org/10.1109/MCS.1987.1105271
http://doi.org/10.1007/BF00735439
http://doi.org/10.1016/S0168-1699(96)00034-8
http://doi.org/10.13031/2013.13945
http://doi.org/10.1016/S0168-1699(99)00062-9


Machines 2022, 10, 129 20 of 22

26. Åstrand, B.; Baerveldt, A.-J. A vision based row-following system for agricultural field machinery. Mechatronics 2005, 15, 251–269.
[CrossRef]

27. Søgaard, H.T.; Olsen, H.J. Crop row detection for cereal grain. In Precision Agriculture ’99; Sheffield Academic Press: Sheffield, UK,
1999; pp. 181–190. ISBN 1841270423.

28. Láng, Z. Image processing based automatic steering control in plantation. VDI Ber. 1998, 1449, 93–98.
29. Kise, M.; Zhang, Q.; Rovira Más, F. A Stereovision-Based Crop Row Detection Method for Tractor-automated Guidance. Biosyst.

Eng. 2005, 90, 357–367. [CrossRef]
30. Tillett, N.D.; Hague, T. Computer-Vision-based Hoe Guidance for Cereals—An Initial Trial. J. Agric. Eng. Res. 1999, 74, 225–236.

[CrossRef]
31. Hague, T.; Tillett, N.D. A bandpass filter-based approach to crop row location and tracking. Mechatronics 2001, 11, 1–12. [CrossRef]
32. Tillett, N.D.; Hague, T.; Miles, S.J. Inter-row vision guidance for mechanical weed control in sugar beet. Comput. Electron. Agric.

2002, 33, 163–177. [CrossRef]
33. Subramanian, V.; Burks, T.F.; Arroyo, A.A. Development of machine vision and laser radar based autonomous vehicle guidance

systems for citrus grove navigation. Comput. Electron. Agric. 2006, 53, 130–143. [CrossRef]
34. Misao, Y.; Karahashi, M. An image processing based automatic steering rice transplanter (II). In Proceedings of the 2000 ASAE

Annual Intenational Meeting, Technical Papers: Engineering Solutions for a New Century, Milwaukee, WI, USA, 9–12 July 2000;
pp. 1–5.

35. Han, S.; Dickson, M.A.; Ni, B.; Reid, J.F.; Zhang, Q. A Robust Procedure to Obtain a Guidance Directrix for Vision-Based Vehicle
Guidance Systems. In Proceedings of the Automation Technology for Off-Road Equipment Proceedings of the 2002 Conference,
Chicago, IL, USA, 26–27 July 2002; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2013; p. 317.

36. Okamoto, H.; Hamada, K.; Kataoka, T.; Terawaki, M.; Hata, S. Automatic Guidance System with Crop Row Sensor. In Proceedings
of the Automation Technology for Off-Road Equipment Proceedings of the 2002 Conference, Chicago, IL, USA, 26–27 July 2002;
American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2013; p. 307.

37. Fargnoli, M.; Lombardi, M. Safety Vision of Agricultural Tractors: An Engineering Perspective Based on Recent Studies
(2009–2019). Safety 2019, 6, 1. [CrossRef]

38. Kumar, A.; Varghese, M.; Mohan, D. Equipment-related injuries in agriculture: An international perspective. Inj. Control Saf.
Promot. 2000, 7, 175–186. [CrossRef]

39. Vallone, M.; Bono, F.; Quendler, E.; Febo, P.; Catania, P. Risk exposure to vibration and noise in the use of agricultural track-laying
tractors. Ann. Agric. Environ. Med. 2016, 23, 591–597. [CrossRef]

40. Irwin, A.; Poots, J. Investigation of UK Farmer Go/No-Go Decisions in Response to Tractor-Based Risk Scenarios. J. Agromedicine
2018, 23, 154–165. [CrossRef]

41. Jamshidi, N.; Abdollahi, S.M.; Maleki, A. A survey on the actuating force on brake and clutch pedal controls in agricultural tractor
in use in Iran. Polish Ann. Med. 2016, 23, 113–117. [CrossRef]

42. Fargnoli, M.; Lombardi, M.; Puri, D. Applying Hierarchical Task Analysis to Depict Human Safety Errors during Pesticide Use in
Vineyard Cultivation. Agriculture 2019, 9, 158. [CrossRef]

43. Bo, H.; Liang, W.; Yuefeng, D.; Zhenghe, S.; Enrong, M.; Zhongxiang, Z. Design and Experiment on Integrated Proportional
Control Valve of Automatic Steering System. IFAC Pap. 2018, 51, 389–396. [CrossRef]

44. Franceschetti, B.; Rondelli, V.; Ciuffoli, A. Comparing the influence of Roll-Over Protective Structure type on tractor lateral
stability. Saf. Sci. 2019, 115, 42–50. [CrossRef]

45. Kaizu, Y.; Choi, J. Development of a Tractor Navigation System Using Augmented Reality. Eng. Agric. Environ. Food 2012, 5,
96–101. [CrossRef]

46. Ehlers, S.G.; Field, W.E.; Ess, D.R. Methods of Collecting and Analyzing Rearward Visibility Data for Agricultural Machinery:
Hazard and/or Object Detectability. J. Agric. Saf. Health 2017, 23, 39–53. [PubMed]

47. Liu, B.; Koc, A.B. Field Tests of a Tractor Rollover Detection and Emergency Notification System. J. Agric. Saf. Health 2015, 21,
113–127.

48. Irwin, A.; Caruso, L.; Tone, I. Thinking Ahead of the Tractor: Driver Safety and Situation Awareness. J. Agromedicine 2019, 24,
288–297. [CrossRef]

49. Liu, B.; Liu, G.; Wu, X. Research on Machine Vision Based Agricultural Automatic Guidance Systems. In Computer and Computing
Technologies in Agriculture; Springer: Boston, MA, USA, 2008; Volume I, pp. 659–666. ISBN 9780387772509.

50. Lameski, P.; Zdravevski, E.; Kulakov, A. Review of Automated Weed Control Approaches: An Environmental Impact Perspective.
In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 940, pp. 132–147.
ISBN 9783030008246.

51. Rowduru, S.; Kumar, N.; Kumar, A. A critical review on automation of steering mechanism of load haul dump machine. Proc.
Inst. Mech. Eng. Part I J. Syst. Control Eng. 2020, 234, 160–182. [CrossRef]

52. Eddine Hadji, S.; Kazi, S.; Howe Hing, T.; Mohamed Ali, M.S. A Review: Simultaneous Localization and Mapping Algorithms. J.
Teknol. 2015, 73. [CrossRef]

53. Rodríguez Flórez, S.A.; Frémont, V.; Bonnifait, P.; Cherfaoui, V. Multi-modal object detection and localization for high integrity
driving assistance. Mach. Vis. Appl. 2014, 25, 583–598. [CrossRef]

http://doi.org/10.1016/j.mechatronics.2004.05.005
http://doi.org/10.1016/j.biosystemseng.2004.12.008
http://doi.org/10.1006/jaer.1999.0458
http://doi.org/10.1016/S0957-4158(00)00003-9
http://doi.org/10.1016/S0168-1699(02)00005-4
http://doi.org/10.1016/j.compag.2006.06.001
http://doi.org/10.3390/safety6010001
http://doi.org/10.1076/1566-0974(200009)7:3;1-N;FT175
http://doi.org/10.5604/12321966.1226852
http://doi.org/10.1080/1059924X.2017.1423000
http://doi.org/10.1016/j.poamed.2016.01.007
http://doi.org/10.3390/agriculture9070158
http://doi.org/10.1016/j.ifacol.2018.08.190
http://doi.org/10.1016/j.ssci.2019.01.028
http://doi.org/10.1016/S1881-8366(12)80021-8
http://www.ncbi.nlm.nih.gov/pubmed/29140617
http://doi.org/10.1080/1059924X.2019.1604279
http://doi.org/10.1177/0959651819847813
http://doi.org/10.11113/jt.v73.4188
http://doi.org/10.1007/s00138-011-0386-0


Machines 2022, 10, 129 21 of 22

54. Jha, H.; Lodhi, V.; Chakravarty, D. Object Detection and Identification Using Vision and Radar Data Fusion System for Ground-
Based Navigation. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN),
Noida, India, 7–8 March 2019; pp. 590–593.

55. Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A Survey of Path Planning Algorithms for Mobile Robots. Vehicles 2021, 3,
448–468. [CrossRef]

56. Ge, J.; Pei, H.; Yao, D.; Zhang, Y. A robust path tracking algorithm for connected and automated vehicles under i-VICS. Transp.
Res. Interdiscip. Perspect. 2021, 9, 100314. [CrossRef]

57. Zhang, S.; Wang, Y.; Zhu, Z.; Li, Z.; Du, Y.; Mao, E. Tractor path tracking control based on binocular vision. Inf. Process. Agric.
2018, 5, 422–432. [CrossRef]

58. Pajares, G.; García-Santillán, I.; Campos, Y.; Montalvo, M.; Guerrero, J.; Emmi, L.; Romeo, J.; Guijarro, M.; Gonzalez-de-Santos, P.
Machine-Vision Systems Selection for Agricultural Vehicles: A Guide. J. Imaging 2016, 2, 34. [CrossRef]

59. Zhai, Z.; Zhu, Z.; Du, Y.; Song, Z.; Mao, E. Multi-crop-row detection algorithm based on binocular vision. Biosyst. Eng. 2016, 150,
89–103. [CrossRef]

60. Schouten, G.; Steckel, J. A Biomimetic Radar System for Autonomous Navigation. IEEE Trans. Robot. 2019, 35, 539–548. [CrossRef]
61. Wang, R.; Chen, L.; Wang, J.; Zhang, P.; Tan, Q.; Pan, D. Research on autonomous navigation of mobile robot based on multi

ultrasonic sensor fusion. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference
(ITOEC), Chongqing, China, 14–16 December 2018; pp. 720–725.

62. Torii, T.; Takamizawa, A.; Okamoto, T.; Imou, K. Crop Row Tracking by an Autonomous Vehicle Using Machine Vision (part 2):
Field test using an autonomous tractor. J. Jpn. Soc. Agric. Mach. 2000, 62, 37–42.

63. Fehr, B.W.; Garish, J.B. Vision-guided row-crop follower. Appl. Eng. Agric. 1995, 11, 613–620. [CrossRef]
64. Gerrish, J.B.; Fehr, B.W.; Van Ee, G.R.; Welch, D.P. Self-steering tractor guided by computer-vision. Appl. Eng. Agric. 1997, 13,

559–563. [CrossRef]
65. Fitzpatrick, K.; Pahnos, D.; Pype, W.V. Robot windrower is first unmanned harvester. Ind. Robot. Int. J. 1997, 24, 342–348.

[CrossRef]
66. Younse, P.; Burks, T. Intersection Detection and Navigation for an Autonomous Greenhouse Sprayer using Machine Vision. In

Proceedings of the 2005 Tampa, Tampa, FL, USA, 17–20 July 2005; American Society of Agricultural and Biological Engineers:
St. Joseph, MI, USA, 2005; p. 1.

67. Hague, T.; Tillett, N.D. Navigation and control of an autonomous horticultural robot. Mechatronics 1996, 6, 165–180. [CrossRef]
68. Royer, E.; Bom, J.; Dhome, M.; Thuilot, B.; Lhuillier, M.; Marmoiton, F. Outdoor autonomous navigation using monocular vision.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6
August 2005; pp. 1253–1258.

69. English, A.; Ross, P.; Ball, D.; Corke, P. Vision based guidance for robot navigation in agriculture. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 29 September 2014; pp. 1693–1698.

70. da Silva, S.P.P.; Almeida, J.S.; Ohata, E.F.; Rodrigues, J.J.P.C.; de Albuquerque, V.H.C.; Reboucas Filho, P.P. Monocular Vision
Aided Depth Map from RGB Images to Estimate of Localization and Support to Navigation of Mobile Robots. IEEE Sens. J. 2020,
20, 12040–12048. [CrossRef]

71. Ohno, T.; Ohya, A.; Yuta, S. Autonomous navigation for mobile robots referring pre-recorded image sequence. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS ’96, Osaka, Japan, 8 November 1996; Volume 2,
pp. 672–679.

72. Remazeilles, A.; Chaumette, F.; Gros, P. Robot motion control from a visual memory. In Proceedings of the IEEE International
Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 5, pp. 4695–4700.

73. Montalvo, M.; Pajares, G.; Guerrero, J.M.; Romeo, J.; Guijarro, M.; Ribeiro, A.; Ruz, J.J.; Cruz, J.M. Automatic detection of crop
rows in maize fields with high weeds pressure. Expert Syst. Appl. 2012, 39, 11889–11897. [CrossRef]

74. Guerrero, J.M.; Guijarro, M.; Montalvo, M.; Romeo, J.; Emmi, L.; Ribeiro, A.; Pajares, G. Automatic expert system based on images
for accuracy crop row detection in maize fields. Expert Syst. Appl. 2013, 40, 656–664. [CrossRef]

75. Kidono, K.; Miura, J.; Shirai, Y. Autonomous visual navigation of a mobile robot using a human-guided experience. Rob. Auton.
Syst. 2002, 40, 121–130. [CrossRef]

76. Davison, A.J. Real-time simultaneous localisation and mapping with a single camera. In Proceedings of the Ninth IEEE
International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 2, pp. 1403–1410.

77. Vrochidou, E.; Bazinas, C.; Manios, M.; Papakostas, G.A.; Pachidis, T.P.; Kaburlasos, V.G. Machine Vision for Ripeness Estimation
in Viticulture Automation. Horticulturae 2021, 7, 282. [CrossRef]

78. Meng, Q.; Qiu, R.; He, J.; Zhang, M.; Ma, X.; Liu, G. Development of agricultural implement system based on machine vision and
fuzzy control. Comput. Electron. Agric. 2015, 112, 128–138. [CrossRef]

79. Burgos-Artizzu, X.P.; Ribeiro, A.; Guijarro, M.; Pajares, G. Real-time image processing for crop/weed discrimination in maize
fields. Comput. Electron. Agric. 2011, 75, 337–346. [CrossRef]

80. Jiang, G.; Wang, Z.; Liu, H. Automatic detection of crop rows based on multi-ROIs. Expert Syst. Appl. 2015, 42, 2429–2441.
[CrossRef]

81. Fernandes, L.A.F.; Oliveira, M.M. Real-time line detection through an improved Hough transform voting scheme. Pattern Recognit.
2008, 41, 299–314. [CrossRef]

http://doi.org/10.3390/vehicles3030027
http://doi.org/10.1016/j.trip.2021.100314
http://doi.org/10.1016/j.inpa.2018.07.003
http://doi.org/10.3390/jimaging2040034
http://doi.org/10.1016/j.biosystemseng.2016.07.009
http://doi.org/10.1109/TRO.2018.2889577
http://doi.org/10.13031/2013.25784
http://doi.org/10.13031/2013.21641
http://doi.org/10.1108/01439919710177137
http://doi.org/10.1016/0957-4158(95)00070-4
http://doi.org/10.1109/JSEN.2020.2964735
http://doi.org/10.1016/j.eswa.2012.02.117
http://doi.org/10.1016/j.eswa.2012.07.073
http://doi.org/10.1016/S0921-8890(02)00237-3
http://doi.org/10.3390/horticulturae7090282
http://doi.org/10.1016/j.compag.2014.11.006
http://doi.org/10.1016/j.compag.2010.12.011
http://doi.org/10.1016/j.eswa.2014.10.033
http://doi.org/10.1016/j.patcog.2007.04.003


Machines 2022, 10, 129 22 of 22

82. Leemans, V.; Destain, M.-F. Line cluster detection using a variant of the Hough transform for culture row localisation. Image Vis.
Comput. 2006, 24, 541–550. [CrossRef]

83. Fontaine, V.; Crowe, T.G. Development of line-detection algorithms for local positioning in densely seeded crops. Can. Biosyst.
Eng. 2006, 48, 19–29.

84. Zhang, L.; Grift, T.E. A New Approach to Crop-Row Detection in Corn. In Proceedings of the 2010 Pittsburgh, Pittsburgh, PA,
USA, 20–23 June 2010; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2010; p. 1.

85. Li, Y.; Wang, X.; Liu, D. 3D Autonomous Navigation Line Extraction for Field Roads Based on Binocular Vision. J. Sens. 2019,
2019, 1–16. [CrossRef]

86. Zhang, Z.; Li, P.; Zhao, S.; Lv, Z.; Du, F.; An, Y. An Adaptive Vision Navigation Algorithm in Agricultural IoT System for Smart
Agricultural Robots. Comput. Mater. Contin. 2020, 66, 1043–1056. [CrossRef]

87. Wang, Q.; Meng, Z.; Liu, H. Review on Application of Binocular Vision Technology in Field Obstacle Detection. IOP Conf. Ser.
Mater. Sci. Eng. 2020, 806, 012025. [CrossRef]

88. Zhang, T.; Li, H.; Chen, D.; Huang, P.; Zhuang, X. Agricultural vehicle path tracking navigation system based on information
fusion of multi-source sensor. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2015, 46, 37–42.

89. Dairi, A.; Harrou, F.; Senouci, M.; Sun, Y. Unsupervised obstacle detection in driving environments using deep-learning-based
stereovision. Rob. Auton. Syst. 2018, 100, 287–301. [CrossRef]

90. Ji, Y.; Li, S.; Peng, C.; Xu, H.; Cao, R.; Zhang, M. Obstacle detection and recognition in farmland based on fusion point cloud data.
Comput. Electron. Agric. 2021, 189, 106409. [CrossRef]

91. Ann, N.Q.; Achmad, M.S.H.; Bayuaji, L.; Daud, M.R.; Pebrianti, D. Study on 3D scene reconstruction in robot navigation using
stereo vision. In Proceedings of the 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS),
Selangor, Malaysia, 22 October 2016; pp. 72–77.

92. Song, D.; Jiang, Q.; Sun, W.; Yao, L. A Survey: Stereo Based Navigation for Mobile Binocular Robots. In Advances in Intelligent
Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1035–1046. ISBN 9783642373732.

93. Zhu, Z.X.; He, Y.; Zhai, Z.Q.; Liu, J.Y.; Mao, E.R. Research on Cotton Row Detection Algorithm Based on Binocular Vision. Appl.
Mech. Mater. 2014, 670–671, 1222–1227. [CrossRef]

94. Herrera, P.J.; Pajares, G.; Guijarro, M.; Ruz, J.J.; Cruz, J.M. A Stereovision Matching Strategy for Images Captured with Fish-Eye
Lenses in Forest Environments. Sensors 2011, 11, 1756–1783. [CrossRef]

95. Zhang, X.; Dai, H.; Sun, H.; Zheng, N. Algorithm and VLSI Architecture Co-Design on Efficient Semi-Global Stereo Matching.
IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4390–4403. [CrossRef]

96. Kumari, D.; Kaur, K. A Survey on Stereo Matching Techniques for 3D Vision in Image Processing. Int. J. Eng. Manuf. 2016, 6,
40–49. [CrossRef]

97. Hamzah, R.A.; Ibrahim, H. Literature Survey on Stereo Vision Disparity Map Algorithms. J. Sens. 2016, 2016, 1–23. [CrossRef]
98. Luo, W.; Schwing, A.G.; Urtasun, R. Efficient Deep Learning for Stereo Matching. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5695–5703.
99. Son, J.; Kim, S.; Sohn, K. A multi-vision sensor-based fast localization system with image matching for challenging outdoor

environments. Expert Syst. Appl. 2015, 42, 8830–8839. [CrossRef]
100. Se, S.; Lowe, D.; Little, J. Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks. Int.

J. Rob. Res. 2002, 21, 735–758. [CrossRef]
101. Guang-lin, H.; Li, L. The Multi-vision Method for Localization Using Modified Hough Transform. In Proceedings of the 2009 WRI

World Congress on Computer Science and Information Engineering, Los Angeles, CA, USA, 2 April–31 March 2009; pp. 34–37.
102. Rabab, S.; Badenhorst, P.; Chen, Y.-P.P.; Daetwyler, H.D. A template-free machine vision-based crop row detection algorithm.

Precis. Agric. 2021, 22, 124–153. [CrossRef]
103. Zhang, Y.; Yang, H.; Liu, Y.; Yu, N.; Liu, X.; Pei, H. Camera Calibration Algorithm for Tractor Vision Navigation. In Proceedings

of the 2020 3rd International Conference on E-Business, Information Management and Computer Science, Wuhan, China, 5–6
December 2020; ACM: New York, NY, USA, 2020; pp. 459–463.

104. Corno, M.; Furioli, S.; Cesana, P.; Savaresi, S.M. Adaptive Ultrasound-Based Tractor Localization for Semi-Autonomous Vineyard
Operations. Agronomy 2021, 11, 287. [CrossRef]

105. Radcliffe, J.; Cox, J.; Bulanon, D.M. Machine vision for orchard navigation. Comput. Ind. 2018, 98, 165–171. [CrossRef]

http://doi.org/10.1016/j.imavis.2006.02.004
http://doi.org/10.1155/2019/6832109
http://doi.org/10.32604/cmc.2020.012517
http://doi.org/10.1088/1757-899X/806/1/012025
http://doi.org/10.1016/j.robot.2017.11.014
http://doi.org/10.1016/j.compag.2021.106409
http://doi.org/10.4028/www.scientific.net/AMM.670-671.1222
http://doi.org/10.3390/s110201756
http://doi.org/10.1109/TCSVT.2019.2957275
http://doi.org/10.5815/ijem.2016.04.05
http://doi.org/10.1155/2016/8742920
http://doi.org/10.1016/j.eswa.2015.07.035
http://doi.org/10.1177/027836402761412467
http://doi.org/10.1007/s11119-020-09732-4
http://doi.org/10.3390/agronomy11020287
http://doi.org/10.1016/j.compind.2018.03.008

	Introduction 
	Evolution of Vision-Based Self-Steering Tractors 
	Safety Issues 
	Self-Steering Tractors’ System Architecture 
	Basic Modeling 
	Vision-Based Architecture 
	Path Tracking Control System 
	Basic Sensors 

	Vision-Based Navigation 
	Monocular Vision Methods 
	Binocular Vision Methods 
	Multi-Vision Methods 

	Discussion 
	Conclusions 
	References

