Multi-Objective Optimization of Material Removal Rate and Tool Wear in Rough Honing Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honing Process
2.2. Design of Experiments
2.3. Determination of Material Removal Rate (Qm) and Tool Wear (Qp)
- Qm (cm/min): Material removal rate
- Qp (cm3/min): Tool wear
2.4. Regression Models and Multi-Objective Optimization
3. Results and Discussion
3.1. Linear Model for Qm
3.2. Linear Model for Qp
3.3. Multi-Objective Optimization
3.3.1. Optimization with the Same Importance Level for Qm and Qp
3.3.2. Optimization When Qm Is Preponderant
3.3.3. Optimization When Qp Is Preponderant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasaki, T.; Okamura, K. The cutting mechanism of honing. Bull. JSME 1958, 2, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Mezghani, S.; Demirci, I.; Yousfi, M.; El Mansori, M. Running-in wear modeling of honed surface for combustion engine cylinderliners. Wear 2013, 302, 1360–1369. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, K.D.; Ramamoorthy, B. Surface Texture Evaluation of Cylinder Liners Using Machine Vision. In Proceedings of the EHAC’12/ISPRA/NANOTECHNOLOGY’12: Proceedings of the 11th WSEAS International Conference on Electronics, Hardware, Wireless and Optical Communications, and Proceedings of the 11th WSEAS International Conference on Signal Processing, Robotics and Automation, and Proceedings of the 4th WSEAS International Conference on Nanotechnology, Cambridge, UK, 22–24 February 2012; pp. 143–148. Available online: http://www.wseas.us/e-library/conferences/2012/CambridgeUK/NAISEH/NAISEH-22.pdf (accessed on 14 December 2021).
- Wong, V.W.; Tung, S.C. Overview of automotive engine friction and reduction trends—Effects of surface, material, and lubricant-additive technologies. Friction 2016, 4, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Anderberg, C.; Pawlus, P.; Rosén, B.-G.; Thomas, T.R. Alternative descriptions of roughness for cylinder liner production. J. Mater. Process. Technol. 2009, 209, 1936–1942. [Google Scholar] [CrossRef]
- Ma, S.; Liu, Y.; Wang, Z.; Wang, Z.; Huang, R.; Xu, J. The Effect of Honing Angle and Roughness Height on the Tribological Performance of CuNiCr Iron Liner. Metals 2019, 9, 487. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.S.; Kim, S.M.; Lee, Y.Z. The effect of plateau honing on the friction and wear of cylinder liners. Wear 2018, 400, 207–212. [Google Scholar] [CrossRef]
- Moos, U.; Bähre, D. Analysis of process forces for the precision honing of small bores. Procedia CIRP 2015, 31, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Klocke, F. Manufacturing Processes 2—Grinding, Honing, Lapping; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Troglio, A.J. Performance evaluation of multi-stone honing tool by experimental design methods. In Proceedings of the International Honing 2003 Conference, Itasca, IL, USA, 8–9 April 2003; Volume MR03-232, pp. 1–24. [Google Scholar]
- Kanthababu, M.; Shunmugam, M.S.; Singaperumal, M. Identification of significant parameters and appropriate levels in honing of cylinder liners. Int. J. Mach. Mach. Mater. 2009, 5, 80. [Google Scholar] [CrossRef]
- Tang, T.; Liu, C.; Wang, R. Optimization of honing surface roughness of carburized holes based on gra-rsm. Machines 2021, 9, 291. [Google Scholar] [CrossRef]
- Bell, S.B.; Maden, H.; Needham, G. The influence of grit size and stone pressure on honing. Precis. Eng. 1981, 3, 47. [Google Scholar] [CrossRef]
- Szabo, O. Examination of material removal process in honing: EBSCOhost. Acta Tech. Corviniensis-Bulletin Eng. 2014, 7, 35–38. [Google Scholar]
- Vrac, D.; Sidjanin, L.; Balos, S. The Effect of Honing Speed and Grain Size on Surface Roughness and Material Removal Rate during Honing. Acta Polytech. Hung. 2014, 11, 163–175. [Google Scholar]
- Vrac, D.S.; Sidjanin, L.P.; Kovac, P.P.; Balos, S.S. The influence of honing process parameters on surface quality, productivity, cutting angle and coefficients of friction. Ind. Lubr. Tribol. 2012, 64, 77–83. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Álvarez-Flórez, J.; Domínguez-Fernández, A. Effect of grain size and density of abrasive on surface roughness, material removal rate and acoustic emission signal in rough honing processes. Metals 2019, 9, 860. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, J.H.; Jain, N.K. Modeling of material removal rate and surface roughness in finishing of bevel gears by electrochemical honing process. J. Mater. Process. Technol. 2014, 214, 200–209. [Google Scholar] [CrossRef]
- Chohan, J.S. Analysis of material removal rate in magnetic assisted abrasive honing process. Mater. Today Proc. 2021, 37, 3516–3519. [Google Scholar] [CrossRef]
- Jiang, F.; Li, J.; Yan, L.; Sun, J.; Zhang, S. Optimizing end-milling parameters for surface roughness under different cooling/lubrication conditions. Int. J. Adv. Manuf. Technol. 2010, 51, 841–851. [Google Scholar] [CrossRef]
- Cabanettes, F.; Dimkovski, Z.; Rosén, B.-G. Roughness variations in cylinder liners induced by honing tools’ wear. Precis. Eng. 2015, 41, 40–46. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vu, T.C.; Duong, Q.D. Multi-responses optimization of finishing honing process for surface quality and production rate. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 604. [Google Scholar] [CrossRef]
- Lawrence, K.D.; Ramamoorthy, B. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines. Appl. Surf. Sci. 2016, 365, 19–30. [Google Scholar] [CrossRef]
- Zwolińska, B.; Tubis, A.A.; Chamier-Gliszczyński, N.; Kostrzewski, M. Personalization of the MES system to the needs of highly variable production. Sensors 2020, 22, 6484. [Google Scholar] [CrossRef] [PubMed]
- Sivatte-Adroer, M.; Llanas-Parra, X.; Buj-Corral, I.; Vivancos-Calvet, J. Indirect model for roughness in rough honing processes based on artificial neural networks. Precis. Eng. 2016, 43, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Buj Corral, I.; Llanas Parra, X.; Sivatte Adroer, M. Neural network modelling of Abbott-Firestone roughness parameters in honing processes. Int. J. Surf. Sci. Eng. 2017, 11, 512. [Google Scholar] [CrossRef]
- ISO 6106.2013; Abrasive Products—Checking the Grain Size of Superabrasives. The International Organization for Standardization: Geneva, Switzerland, 2013; p. 9.
- ISO 6104:2005; Superabrasive Products—Rotating Grinding Tools with Diamond or Cubic Boron Nitride—General Survey, Designation and Multilingual Nomenclature. The International Organization for Standardization: Geneva, Switzerland, 2005; p. 11.
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Bai, Y.J.; Zhang, L.H.; Ren, C.G. Experimental investigation on honing of small holes. Key Eng. Mater. 2007, 329, 303–308. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Vivancos-Calvet, J.; Coba-Salcedo, M. Modelling of surface finish and material removal rate in rough honing. Precis. Eng. 2014, 38, 100–108. [Google Scholar] [CrossRef]
Variable | Low Level | High Level |
---|---|---|
GS (ISO 6106) | 76 | 181 |
DE (ISO 6104) | 30 | 75 |
VL (m/min) | 20 | 32 |
VT (min−1) | 80 | 180 |
PR (N/cm2) | 450 | 600 |
Experiment | GS (ISO 6106) | DE | VL (m·min−1) | VT (min−1) | PR (N/cm2) | Qm Exper. (cm/min) | Qp Exper. (cm3/min) |
---|---|---|---|---|---|---|---|
1 | 76 | 30 | 20 | 80 | 450 | 0.130 | 0.008 |
2 | 181 | 30 | 20 | 80 | 450 | 0.311 | 0.059 |
3 | 76 | 75 | 20 | 80 | 450 | 0.249 | 0.011 |
4 | 181 | 75 | 20 | 80 | 450 | 0.106 | 0.003 |
5 | 76 | 30 | 32 | 80 | 450 | 0.134 | 0.008 |
6 | 181 | 30 | 32 | 80 | 450 | 0.258 | 0.032 |
7 | 76 | 75 | 32 | 80 | 450 | 0.207 | 0.015 |
8 | 181 | 75 | 32 | 80 | 450 | 0.150 | 0.003 |
9 | 76 | 30 | 20 | 180 | 450 | 0.336 | 0.054 |
10 | 181 | 30 | 20 | 180 | 450 | 0.493 | 0.071 |
11 | 76 | 75 | 20 | 180 | 450 | 0.367 | 0.010 |
12 | 181 | 75 | 20 | 180 | 450 | 0.660 | 0.015 |
13 | 76 | 30 | 32 | 180 | 450 | 0.290 | 0.019 |
14 | 181 | 30 | 32 | 180 | 450 | 0.489 | 0.084 |
15 | 76 | 75 | 32 | 180 | 450 | 0.415 | 0.023 |
16 | 181 | 75 | 32 | 180 | 450 | 0.386 | 0.016 |
17 | 76 | 30 | 20 | 80 | 600 | 0.237 | 0.034 |
18 | 181 | 30 | 20 | 80 | 600 | 0.303 | 0.087 |
19 | 76 | 75 | 20 | 80 | 600 | 0.286 | 0.024 |
20 | 181 | 75 | 20 | 80 | 600 | 0.405 | 0.039 |
21 | 76 | 30 | 32 | 80 | 600 | 0.191 | 0.027 |
22 | 181 | 30 | 32 | 80 | 600 | 0.291 | 0.032 |
23 | 76 | 75 | 32 | 80 | 600 | 0.277 | 0.010 |
24 | 181 | 75 | 32 | 80 | 600 | 0.394 | 0.035 |
25 | 76 | 30 | 20 | 180 | 600 | 0.383 | 0.061 |
26 | 181 | 30 | 20 | 180 | 600 | 0.500 | 0.078 |
27 | 76 | 75 | 20 | 180 | 600 | 0.371 | 0.028 |
28 | 181 | 75 | 20 | 180 | 600 | 0.743 | 0.065 |
29 | 76 | 30 | 32 | 180 | 600 | 0.539 | 0.106 |
30 | 181 | 30 | 32 | 180 | 600 | 0.565 | 0.122 |
31 | 76 | 75 | 32 | 180 | 600 | 0.423 | 0.031 |
32 | 181 | 75 | 32 | 180 | 600 | 0.538 | 0.024 |
33 | 126 | 50 | 26 | 130 | 525 | 0.399 | 0.045 |
GS (ISO 6106) | DE (ISO 6104) | VT (min−1) | PR (N/cm2) | Qm (cm/min) | Qp (cm3/min) | Composite Desirability |
---|---|---|---|---|---|---|
181 | 75 | 180 | 456.01 | 0.508232 | 0.0183842 | 0.741495 |
GS (ISO 6106) | DE (ISO 6104) | VT (min−1) | PR (N/cm2) | Qm (cm/min) | Qp (cm3/min) | Composite Desirability |
---|---|---|---|---|---|---|
181 | 75 | 180 | 600 | 0.596095 | 0.0409946 | 0.760863 |
GS (ISO 6106) | DE (ISO 6104) | VT (min−1) | PR (N/cm2) | Qm (cm/min) | Qp (cm3/min) | Composite Desirability |
---|---|---|---|---|---|---|
128 | 75 | 165.9 | 450 | 0.394140 | 0.0135332 | 0.855239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buj-Corral, I.; Sivatte-Adroer, M. Multi-Objective Optimization of Material Removal Rate and Tool Wear in Rough Honing Processes. Machines 2022, 10, 83. https://doi.org/10.3390/machines10020083
Buj-Corral I, Sivatte-Adroer M. Multi-Objective Optimization of Material Removal Rate and Tool Wear in Rough Honing Processes. Machines. 2022; 10(2):83. https://doi.org/10.3390/machines10020083
Chicago/Turabian StyleBuj-Corral, Irene, and Maurici Sivatte-Adroer. 2022. "Multi-Objective Optimization of Material Removal Rate and Tool Wear in Rough Honing Processes" Machines 10, no. 2: 83. https://doi.org/10.3390/machines10020083
APA StyleBuj-Corral, I., & Sivatte-Adroer, M. (2022). Multi-Objective Optimization of Material Removal Rate and Tool Wear in Rough Honing Processes. Machines, 10(2), 83. https://doi.org/10.3390/machines10020083