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Abstract: In this study, we present and discuss a variant of the classical vehicle routing problem (VRP),
namely the heterogeneous multitype fleet green automated guided vehicle (AGV) routing problem
with time windows (HFGVRPTW) applied in the workshops of flexible manufacturing systems (FMS).
Specifically, based on the analysis of AGV body structure and motion state, transport distance and
energy consumption are selected as two optimization objectives. According to the characteristics
and application context of the problem, this paper designs a hybrid genetic algorithm with large
neighborhood search (GA-LNS) considering the farthest insertion heuristic. GA-LNS is improved
by increasing the local search ability of genetic algorithm to enhance the solution optimal quality.
Extensive computational experiments which are generated from Solomon’s benchmark instances
and a real case of FMS are designed to evaluate and demonstrate the efficiency and effectiveness of
the proposed model and algorithm. The experimental results reveal that compared with using the
traditional homogeneous fleet, the heterogeneous multitype AGV fleet transportation mode has a
huge energy-saving potential in workshop intralogistics.

Keywords: vehicle routing problem; heterogeneous multitype fleet; AGV; time windows; energy
consumption; hybrid genetic algorithm

1. Introduction

Industry 4.0, as a revolutionary industrial paradigm, has given today’s manufacturing
industry a new technical environment and competition context. Nowadays, global manu-
facturing industries are transforming from mass production to multi-variety, small-batch
and customized production modes [1,2]. FMS is beneficial to improving production sys-
tem efficiency and increasing production process flexibility. Thus, FMS has been rapidly
constructed in recent decades. As a flexible material handling device inside FMS, AGV
can improve the production flexibility, it has gradually replaced manual handling with an
uncompromised performance in recent years [3,4].

Nowadays, energy conservation and green manufacturing have already become a
trend of manufacturing industry [5]. Nevertheless, the current energy-saving research is
still focused on automated workstations or production equipment, and the optimization
of the material handling system in FMS is insufficient. When the AGV performs handling
tasks, it is usually powered by loaded batteries which have to be charged every 8–10 h [6].
Therefore, the task execution will be interrupted by charging, which will cause delays of
the production plan. Thus, how to effectively schedule and plan energy-saving paths is
paramount to AGV, which can not only save energy-consumption of the entire FMS, but
also improved the stability of the material handling system.
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In the workshop of modern FMS with many customized products and large volume of
materials it is hardly to achieve better green economic benefits by using homogeneous AGV
fleet transportation. In contrast, the use of heterogeneous multitype AGVs fleet, which differ
in capacities and energy consumption, has multiple advantages such as improving vehicle
utilization, relieving the pressure of traffic flow in workshop, and reducing workshop
intralogistics cost to a certain extent [7].

HFGVRPTW as a variant of the classical vehicle routing problem with time windows
(VRPTW) was proposed. Furthermore, this research is considering the increasing attention
to the sustainable of manufacturing process and the application context of energy-saving
workshops, the energy-saving path planning of the heterogeneous multitype fleet AGVs
was studied. The difficulty of this research is to coordinate and optimize economic and
environmental benefits through scientific planning of the vehicle fleet size, vehicle types
and traverse path under the time windows and capacity constraints.

Among the numerous previous studies on green vehicle routing problem (GVRP),
the energy consumption or fuel consumption is closely relevant to the real-time payload
weight of vehicles body [8–10]. Nevertheless, as shown as Figure 1, reference [11] through
implemented simulation model and statistical analysis of experimental data, it is confirmed
that the servo motor output power of the AGV body rises with increasing payload weight,
but this power fluctuation phenomenon shows only minor deviations. Considering this
energy consumption characteristic of AGVs, based on reasonable assumptions and quanti-
tative analysis of the motion state of AGVs transportation process, an AGV path planning
model was established with two performance indicators of transportation distance and
energy consumption. Then, by solving this model and analyzing the experimental results,
we hope to reveal superiority of the proposed model and algorithm over the homogeneous
fleet transportation.
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The purpose of this paper is to minimize transportation distance and energy-consumption
for the heterogeneous multitype AGVs fleet to complete the loading task. Our main
contributions in this research can be summarized as follows:

• We analyze the motion state and vehicle body structure of AGVs, so that the established
mathematical model is more suitable for the actual application.

• We propose a hybrid genetic algorithm with large neighborhood search. Furthermore,
by enhancing the local search ability of genetic algorithm and optimization solution
can be ameliorated.

• We empirically demonstrate that the application of heterogeneous multitype AGVs
fleet in FMS can improve the performance of the average utilization resources and
energy efficiency.

The rest of the paper is organized as follows. Section 2 reviews the related literature
on the VRP, AGV path planning and outlines the research gaps. Section 3 established
mathematical programming models and analyzes the motion and energy consumption
of AGV transport. Furthermore, we proposed a hybrid improved algorithm GA-LNS for
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energy-saving HFGVRPTW in Section 4. To verify the model effectiveness and the robust-
ness of GA-LNS, we tested it on a set of benchmark instances and an actual environment
example. In Section 5, we present the results of those computational tests and investigation
the factors affecting the optimization objectives of model. Finally, conclusions and further
research directions are stated in Section 6.

2. Literature Review

In recent years, the green vehicle routing problem (GVRP) in workshop intralogistics
has been an important issue [12,13]. Relevant studies are concentrated on the following
two aspects: GVRP and heterogeneous multitype fleet vehicle routing problems with time
windows (HFVRPTW). Hence, there is need an organized literature review that seeks the
advancement in GVRP application in FMS. To make the literature overview clearer, Table 1
summarizes the above works. To conclude, although there are many GVRP variants, there
is still much room for improvement.

2.1. Green Vehicle Route Problem

In 2016, the International Energy Agency pointed out that transport activities were
the second largest contributor to CO2, accounting for 24% of global CO2 emissions [14].
The concept of GVRP is proposed by considering the eagerness to reduce carbon emissions
and realize green logistics [15]. GVRP is a variation of the classical VRP, belongs NP-hard
problem. The basic GVRP can be defined thus: under the premise that the location of
the loading point and the vehicle loading capacity are known, the number of departures
as well as the transport path of the vehicle are scientifically planned to meet the loading
requirements under various constraints while minimizing energy consumption. Moreover,
the established hypothesis is using a homogeneous vehicle fleet to perform loading tasks
and all loading points can only be served once [16].

It seems that GVRP only adds energy consumption indicator to the optimization goal,
which is not essentially different from the classical VRP. In fact, the mathematical model
and optimization solution of GVRP is much more complicated than classical VRP for the
energy consumption of the vehicle is affected by motion state, characteristics parameters
and real-time speed. Besides, most VRP research has commonly considered that transport
cost was mainly determined by the length of travel distance. In fact, shortening travel
distance cannot guarantee cost reduction because of different vehicle speed, motion state
and penalty cost caused by the time window constraint.

For AGV fleets in FMS, electrical energy consumption generates carbon emissions
and pollution as power supply [17]. Moreover, electricity cost is a significant part of the
transport cost which is the basis of GVRP study. The existing literatures have conducted
in-depth research on the impact of vehicle time-varying speed and average speed on
vehicle energy consumption. Furthermore, the comprehensive modal emissions model
(CMEM) is a parameterized approach based on energy consumption and carbon emission
production. CMEM is suitable for the energy consumption and emission prediction of
individual vehicles or an entire fleet of multispeed types [18]. Yang Y et al. [7] constructed
a heterogeneous fleet GVRP model with vehicle number constraints. This model is taking
the minimization of carbon emissions as the optimization goal, using CEME as a fuel con-
sumption measurement, considering the average vehicle speed during haul. However, in
the actual transport, the vehicle speed is fluctuant. In a similar study, Fuskasawa et al. [19]
use CMEM as a fuel consumption measurement model. In this scheme, speed is used as a
continuous decision variable to make the vehicle drive at the optimal speed on each road
section. A mathematical model with vehicle numbers and time windows is constructed.

In line with sustainable development, electrical vehicles are gradually replacing fuel
vehicles as the focus of GVRP studies. The electric VRP (EVRP) has become the main
trend in VRP-related issues. Compared with conventional fuel-powered vehicles, battery-
powered electric vehicles take a long time to charge. For this trait, the energy-consumption
model and the battery management technology of electric vehicles can adapt to the trans-
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portation requirements. Typically, Yiyong Xiao et al. [20] investigated the EVRP with time
windows (EVRPTW) by considering the speed-varying travel range and electricity con-
sumption throughout the vehicle tours. Seyed F. et al. [21] presents a new measure model
and solution for the scheduling problem of HFVRP which considers the fuel consumption
rate and customers’ satisfaction level.

On the other hand, Ugur B. et al. [22] integrated the electric vehicle idle time and
recharging time into the mathematical model. Qazi S. et al. [23] explored how different
routing techniques for the battery management of AGVs effect the efficiency performance of
a manufacturing facility. Mengting Zhao and Yuwei Lu [24] investigated a real-world EVRP
combining multiple features of VRP which is devised to decrease the total operational
cost. However, they ignored the change of the motion state of vehicle haul, which is
contrary to the actual situation. Yubang Liu et al. [25] investigated the task scheduling of
AGVs by taking the charging task and the time-varying speed. Considering the minimize
number of AGVs used and the amount of electricity consumption as optimization goal.
Macrina et al. [26] proposed a mixed vehicle fleet composed of electric and conventional
VRP with partial battery recharging and time windows.

From aforementioned studies, the appropriateness of metrics for vehicles energy
consumption is electric consumption and fuel consumption. They are closely related to
such factors as speed, vehicle characteristic parameters and travel distance. Besides, current
GVRP studies are mainly focused on the multiple vehicles route planning, scheduling for
outdoor logistics. The GVRP within FMS, which is different from the outdoor environment,
has not been explored in-depth. Although some GVRP studies were mentioned, the energy
consumption characteristics of AGV have not been fully considered, and the presented
models were either based on steady speed during the whole transport process or based on
battery management. Based on current research status, we proposed a model which can
directly calculate the AGV electric consumption in the entire transport haul with various
vehicle motion state.

2.2. Heterogeneous Multitype Fleet Vehicle Routing Problems with Time Windows

The use of heterogeneous multitype fleet transportation can reduce costs while en-
suring transportation efficiency. Reference [27] demonstrated that for urban logistics, a
heterogeneous fleet is superior to a homogeneous fleet. In FMS, the production scheduling
system often restricts the loading time of each loading point with a specific time inter-
val [22]. Because of HFVRPTW practical relevance and intrinsic complexity, it has been a
research topic for algorithm innovation and solving practical routing related problems.

Based on mathematic models and environment representation, numerous paths search
algorithms have been proposed in existing studies. They can be categorized into two types:
conventional algorithms and meta-heuristic algorithms. The former consists of branch-and-
price (BAP) algorithm and mixed integer linear programming algorithm. Ece Y. et al. [28]
considered the limited number of vehicles during the distribution process, orders need
to decrease the total travelling time. In this situation, some of customer orders tardy. To
minimize the total delay time, a mixed integer programming formulation to model this
problem is proposed. Wei Q. et al. [29] established a mixed-integer linear programming
model to deal a practical HFVRP to minimize the maximum routing time of vehicles. Yang
Yu et al. [7] proposed a dynamic BAP algorithm to precisely solve HFGVRPTW. Since the
exponential explosion problem in the process of solving the optimal path is unavoidable for
the conventional algorithm, caused its real-time performance is worse, so it is only suitable
for solving small-scale VRP problems.

In contrast, meta-heuristic algorithms are widely used to solve variant VRP problems
due to their extremely global search capabilities. Ugur B. et al. [22] proposed an EVRPTW
framework which considered multiple depots and a heterogeneous vehicle fleet. To deal
with the proposed problem, a series of neighborhood search operators were developed.
Nasser R.S. et al. [30] proposed an adaptive multi-local search algorithm to solve HFVRPTW
with two-dimensional loading constraints. Considering the HFVRP with simultaneous
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pickup and delivery, Napoleão N. et al. [31] proposed a randomized algorithm to tackle it.
However, the search efficiency of traditional heuristic algorithm is unsatisfactory, because it
is easy to fall into local optimal and lead to hardly achieve global optimization. Thus, most
existing research uses multipoint metaheuristic algorithms to solve VRP and its variant
problem. Vahid B. et al. [32] addressed HFVRPTW with multiple hard prioritized. Due
to the NP-hard problem, a bionic algorithms called binary artificial bee colony algorithm
is developed to solve the problem. Zhong et al. [33] devised a particle swarm optimiza-
tion algorithm to solve a mixed based on path optimization and integrated scheduling.
Zeng H et al. [34] investigated an improved genetic algorithm on AGVs path planning
which apply three-exchange crossover heuristic operators to produce more optimal off-
spring. The improvement and combination of two algorithms are more popular nowadays.
Hou D. et al. [35] was taking the minimizing distribution cost as the optimization solution
target, solve it by using a hybrid genetic algorithm. Puca et al. [36] address HFVRP, in their
approach, a hybrid meta-heuristic which combines an iterated local search with variable
neighborhood descend is proposed. The efficiency of the algorithm is tested by large-scale
well-known benchmark instances.

The transportation network in the FMS is usually abstracted as a topological map
and the optimal paths are planned and searched based on it. Besides that, AGV is usually
treated as a particle. This simplification applies for most path planning, but this method
may affect the evaluation accuracy of transportation distance and energy consumption [36].
For example, when the AGV is turning through a path intersection of transport, the steering
energy consumption should be combined with the force of its steering mechanism and
speed change. Meanwhile, if the AGV is still abstract as a particle, it is not accurate to
analyze the energy consumption of the AGV movement. Furthermore, with the increase
of the path planning problem’s scale and corresponding constraints, it is a tough job to
obtain the optimal solution within a suitable time. For this reason, multipoint metaheuristic
algorithms have a strong search efficiency to deal with uncertainties of the environment
such as FMS, therefore in this study we proposed GA-LNS.

Table 1. Tabular form of the related reference.

Reference Algorithm Time Windows
Objective

Energy
Consumption Cost Other Heterogeneous

Vehicle Fleet

Fuskasawa et al. [19] (2016) Exact
√ √

Marcel Turkensteen [18] (2017) -
√

Zeng et al. [34] (2017) Heuristic
√

Zhang et al. [17] (2018) Heuristic
√

Seyed F. et al. [21] (2018) Heuristic
√ √ √

Macrina et al. [26] (2018) Heuristic

Yang et al. [7] (2019) Exact
√ √

Xiao et al. [20] (2019) Exact
√ √

Qazi S. et al. [23] (2019) Heuristic
√

Meng and Lu [24] (2019) Heuristic
√ √ √

Liu et al. [25] (2019) Hybrid
√

Napoleão N. et al. [31] (2019) Heuristic
√ √

Vahid B. et al. [32] (2019) Heuristic
√ √ √

Puca et al. [36] (2019) Heuristic
√ √ √

Nasser R.S. et al. [30] (2020) Heuristic
√ √

Zhong et al. [33] (2020) Hybrid
√ √

Ece Y. et al. [28] (2021) Exact
√ √

Wei Q, et al. [29] (2021) Exact
√ √

Ugur Bac and Mehmet Erdem [22] (2021) Heuristic
√ √ √

Hou D. et al. [35] (2021) Heuristic
√ √

Our study Hybrid
√ √ √
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3. Mathematical Model
3.1. Problem Description

The mathematical notations for the presented HFGVRPTW are given in Table 2.

Table 2. Notations.

Notation Description

Sets

A Set of graph edges
G Undirected graph representing a flexible manufacturing workshop
M Set of AGV types
N Set of loading points
O Set of all AGVs
S Ordered node set representing a path
V Node set of a graph

Indices

i, j Node, i, j ∈ V
k Acceleration stage index, k ∈ {1, 2, . . . , p}
l Deceleration stage index, l ∈ {1, 2, . . . , q}
m AGV type, m ∈ {1, 2, . . . , |M|}
n Number of nodes in the set of N, n ∈ {1, 2, . . . , n}
o Any AGV in the AGV set O, o ∈ {1, 2, . . . , O}
Parameters

aacc Acceleration of the accelerated motion [m/s2]
adec Acceleration of the decelerated motion [m/s2]
dij Distance between node i and , also, i 6= j [m]
D Total transport distance between nodes [m]
Dacc Total acceleration displacement [m]
Ddec Total deceleration displacement [m]
Dusm Uniform straight motion distance [m]
Durm Uniform turning motion distance [m]
Ek

acc Energy consumed to support the accelerated motion in the kth acceleration stage [J]
Ealm Energy consumption caused by all accelerated motion [J]
Esm AGV energy consumption caused by standby motion [J]
Eslm Total AGV energy consumption caused by standby motion [J]
Etotal Total transport energy consumption of one AGV [J]
Eulm Energy consumed by uniform motion in all uniform motion [J]
Eurm Total AGV energy consumption caused by uniform turn motion [J]
Eusm Total AGV energy consumption caused by uniform straight motion [J]
Fm Motor output driving force of vehicle type m [N]
ln Loading time at node n, and the loading time at node 0 is set to (0,+∞) [min]
Lm AGV length of vehicle type m [m]
[LTn, RTn] Time window of the node n
Qm Time window of the node n [kg]
qn The material weight of the point n [kg]
nT Number of nodes that an AGV turns through
om Any AGV of type m
Rm AGV turning radius of vehicle type m [m]
R1, R2, R3, R4 Turning radius of AGV wheel [m]
tk
acc Time of the kth acceleration stage [s]

tl
dec Time of the lth deceleration stage [s]

tij Total execution time of the one AGV from node i [s]
Tn The start time of the loading task at load point n
Ttotal Total execution time of one AGV [min]
v0k AGV initial velocity in the kth acceleration stage [m/s]
v0l AGV initial velocity in the lth deceleration stage [m/s]
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Table 2. Cont.

Notation Description

vr Uniform turning motion speed [m/s]
vs Uniform straight motion speed [m/s]
vtk AGV terminal velocity in the kth acceleration stage [m/s]
vtl AGV terminal velocity in the lth deceleration stage [m/s]
Wm AGV width of vehicle type m [m]
ηm Overall power factor of driving motors of vehicle type m

Decision Variable

xijom xijom =

{
1, if AGV om travels from node i to node j
0, otherwise

HFGVRPTW can be defined on a complete directed graph G = {V, A} with a set of
nodes V = {0} ∪N and a set of edges A = {(i, j)|i, j ∈ V, i 6= j}. Node 0 is the distribution
center of the heterogeneous multitype fleet AGVs, N = {1, 2, . . . , n} is the set of loading
point. An unlimited multitype fleet of heterogeneous AGVs is available at the workshop,
perform material loading and handling tasks for the entire workshop. The transit distance
and time on edge (i, j) are defined as dij and tij, respectively. The distribution center is
composed of M different types of AGVs. Each AGV type m = {1, 2, . . . , |M|} has a maximal
payload Qm, a motor output driving force Fm. Om is a collection of type m AGVs, om is any
AGV of type m. Each loading point n ∈ N has the quality of material qn, a loading time
ln, and a time window [LTn, RTn], where LTn and RTn are the earliest and latest allowable
start loading times, respectively. Each AGV should start the perform loading tasks of a
loading point within the given time windows. If the AGV arrives earlier than LTn, a waiting
energy consumption of the waiting time is incurred. If it is later than RTn, the loading task
execution fails. In Figure 2, two types of AGVs, i.e., Vehicle 1 and Vehicle 2, are used fulfill
loading tasks of the workshop. They need to start from the distribution center and return it
after serving a certain number of loading points. Therefore, with a given heterogeneous
multitype AGVs fleet and a given set of transport tasks, the overall problem is to determine
the optimal vehicle scheduling as well as AGVs path planning. The optimization objective
is to minimize the sum of transport distance and energy consumption.
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Additionally, the following assumptions are made for the model formulation. (1) All
loading points must be loaded. (2) The wheels do not slip when the AGV is in motion.
(3) The locations of the workstations in the workshop are fixed and known. (4) All AGVs
are parked in the starting point until scheduling commands are assigned. Once the material
handling process assigned, it may leaded some traffic problems. In this study, AGVs
prevent traffic problems by relying on the infrared obstacle avoidance module on their
vehicle body [5].
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3.2. Energy Consumption Analysis

When the AGV performs the handling work in the flexible manufacturing workshop,
it is usually powered by its own load battery. During the driving process of AGV, there
are mainly four kinds of motion states, i.e., standby motion, uniform motion, decelerated
motion, and accelerate motion. In addition, when the AGV is decelerating, the output
power of the driving motor generally drops sharply, even to zero. As such, the energy
consumption to maintain the deceleration movement is ignored in the energy consumption
analysis, but the deceleration movement time is one of the components of Ttotal , and still
needs to be considered in the time analysis. Correspondingly, the total AGV transport
energy consumption Etotal is mainly composed of three parts: Eslm, Eulm, and Ealm.

3.2.1. Standby Energy Consumption Analysis

During the production process of FMS, each loading point has its corresponding time
window. For this reason, time analysis of the entire driving process of the AGV is necessary.

Based on previous assumptions, tij is the sum of the acceleration time, deceleration
time and uniform motion time of the AGV driving time from loading point i to j. Consider-
ing that the acceleration and deceleration motion only occurs on the straight path that it is
about to turn. Furthermore, the AGV turns at uniform speed. Therefore, the tij for a single
AGV to perform its corresponding loading task can be expressed as:

tij =
p

∑
k=1

tk
acc +

q

∑
l=1

tl
dec +

Durm

vr
+

Dusm

vs
(1)

For given any transport path S, the number of acceleration phase, deceleration phase
and the distance of uniform straight motion Dusm can all be determined. Now suppose that
for path graph G contains total of p acceleration phases, q deceleration phases, the time
used in the kth acceleration phase and the deceleration time of the lth can be expressed
as below:

tk
acc =

vtk − v0k
aacc

, k = 1, 2, . . . , p (2)

tl
dec =

vtl − v0l
adec

, l = 1, 2, . . . , q (3)

Traverse all nodes distance D can be expressed as that:

D =
n

∑
i=1

n

∑
j=1

dijxij (4)

Considering the uniform motion will appear in the straight and turning phases, the
uniform straight motion distance Dusm can be calculated as:

Dusm = D− Dacc − Ddec (5)

Further, the total acceleration displacement Dacc and deceleration displacement Ddec
can be obtained as:

Dacc =
p

∑
k=1

[v0ktk
acc +

1
2

aacc

(
tk
acc

)2
] (6)

Ddec =
q

∑
l=1

[v0ltl
dec +

1
2

adec

(
tl
dec

)2
] (7)

The uniform turning motion distance Durm which determined by the number of AGV
turns can be formulated as follows:

Durm =
1
2

πRmnT (8)
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From the above path analysis, the energy consumption of AGV can be calculated by:

Eslm = Esm × [LTn − tij] (9)

3.2.2. Energy Consumption Analysis of Uniform Motion

Regarding uniform motion will occur both in the straight and turning sections of all
AGVs, i.e., uniform motion driving energy consumption Eulm consists of two parts: the
uniform straight motion consumption Eusm and the uniform turn motion consumption
Eurm. Therefore, it is necessary to analyze the AGV’s straight and turning transport distance
to determine the total path length of AGV in topological map. When a transport path is
given, the straight distance and the number of turn points will be determined, denote them
as Dusm and nT , respectively. Constrained by the car body structure, the turning radius of
the inner and outer wheels of the AGV is different during turning process. A schematic
diagram of a common four-wheel AGV turning radius is shown as Figure 3, which can be
calculated with the uniform turning motion distance Durm [5].
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The turning radius of each wheel in the AGV car body can be expressed as [5]: R1 = R2 =

√
(Rm + 1

2 Wm)
2
+ ( Lm

2 )
2

R3 = R4 =

√
(Rm − 1

2 Wm)
2
+ ( Lm

2 )
2

(10)

In this study, we assume that the AGV drive motors are evenly distributed among four
wheels, the total energy consumption during the turning phase Eurm can be represented by
the follow formula [5]:

Eurm =
[Fm × π

2 ×
(R1+R2+R3+R4)

4 ]

ηm
× nT (11)

Similarly, the sum of energy consumption in all straight phase Eusm can be obtained
as below:

Eusm =

n
∑

i,j=1
Fm × Dij

usm

ηm
(12)

Consequently, Eulm can be obtained by:

Eulm = Eurm + Eusm (13)
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3.2.3. Energy Consumption Analysis of Acceleration Motion

Because of the acceleration movement only occur to the straight line about to turn, at
this time, the energy consumption in the kth acceleration movement is:

Ek
acc =

Fk
m × [v0ktk

acc +
1
2 aacc(tk

acc)
2
]

ηm
(14)

Thus, Ealm can be calculated by:

Ealm =
p

∑
k=1

Ek
acc (15)

3.3. Optimization Objectives and Constraints

The combined optimization objective function of this study can be formulated as below:{
Minimize[D]
Minimize[Etotal ]

(16)

The constraints are as follows:

∑
i∈N

xi0om = ∑
j∈N

x0jom ≤ 1, ∀m ∈ M, ∀om ∈ Om (17)

∑
i∈{0}∪N

∑
j∈N

xijom qn ≤ Qm, ∀m ∈ M, ∀om ∈ Om, ∀n ∈ N (18)

∑
j∈N

∑
om∈Om

x0jom ≤ |Om|, ∀m ∈ M (19)


∑

j∈{0}∪N
∑

o∈O
∑

om∈Om

xijom = 1, ∀i ∈ N

∑
i∈{0}∪N

∑
o∈O

∑
om∈Om

xijom = 1, ∀j ∈ N
(20)

Tn + ∑
i∈{0}∪N

∑
j∈∪N

tijxijom + ∑
i∈{0}∪N

∑
j∈∪N

lnxijom ≤ RTn, ∀m ∈ M, ∀om ∈ Om (21)

∑
i∈S

∑
j∈S

xijom ≤ |S| − 1, S ⊆ N, ∀m ∈ M, ∀om ∈ Om (22)

In above model, objective (16) is to minimize total traverse distance as well as minimize
total AGV drive energy consumption. Constraint (17) represents each AGV has only
one distribution path and must start and end at the distribution center. Constraint (18)
represents the capacity limit of the AGV. Constraint (19) indicates that the number of
AGV leaving the distribution center does not exceed the total number of the AGVs that
it can be used to ensure that the planned feasible path meets the actual logistics needs
of FMS. Constraint (20) ensures that each loading point is traversed only once by one
AGV. Constraint (21) restricts the time when the AGV completes the loading task of one
loading point not to exceed the right time windows RTn. Constraint (22) is to eliminate the
sub-loop constraint.

4. Algorithm Design

Considering the complexity of HFGVRPTW, based on the large-scale neighborhood
search (LNS) and genetic algorithm (GA), we devise a metaheuristic algorithm to solve it.
The pseudocode of this algorithm is given as Algorithm 1.

The LNS was first proposed by Paul Shaw [25]. Its basic solution process is to start
with the initial solution continuously optimize the solution through removal and insertion
operators to generate new flexible solutions. GA is a heuristic algorithm which searches
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for optimization solutions by simulating the natural evolution process in biology. It has
the characteristics of better global search performance and strong robustness. GA is to
generate a new generation of population through repeatedly select, crossover, and mutate.
Nevertheless, the algorithm also has the disadvantages of slow convergence rate due to
insufficient local search ability and easy falling into local optimization. In recent years,
there have been many improvements in GA. The most common improvement directions
used are [24]:

• To combine with other algorithms to improve the neighbor structures of the feasible
solution of GA, and enhance the local search ability of GA while maintaining the
diversity of the population;

• To optimize the evolutionary steps in GA in order to reduce damage to good genes.

Combining the advantages of GA and LNS, GA-LNS is specialized to the HFGVRPTW
is developed to solve the proposed problem.

Algorithm 1: Pseudocode of GA-LNS.

Parameters:
pop_size : population size;
MAX_gen : maximum number of iterations
Nk = {N1, N2, . . . , Nl}: neighborhood solution Nl is the lth feasible neighborhood solution;
FNl : fitness function of the constructed feasible neighborhood solution;
max_N : maximum number of neighborhood cycles;
1: Initialize In: % using a genetic algorithm to generate an initial feasible solution
2: gen: = 0;
3: while gen < MAX_gen do
4: evaluate In;
5: Select In+1 from In; % elitist preservation & roulette wheel selection
6: Crossover;
7: Mutation;
8: for i← 1 to pop_size do
9: for j← 1 to MAX_gen do
10: Individual In+1 disturbed from the first neighborhood solution N1;
11: if FIn+1 ≥ FIn then
12: Break
13: else
14: iter = iter + 1;
15: end if
16: until (iter = max_N);
17 The individual In+1 continues to be disturbed by the next neighborhood solution Nl
18: Repeat
19: until (iter = max_N);
20: end for
21: end for
22: gen = gen + 1
23: end while
24: Best solution

4.1. Large Neighborhood Search

For the path construction with consideration AGV type, the loading point of the least
increase in cost is added to the relevant path while satisfying all constraints. If removal and
insertion operators violate the constraint of time windows or capacities, LNS will evaluate
the relatedness weight value of the insertion point. The removal and insertion processes
will continue until no more loading points can be added into the path. The AGV type of
the least cost is selected. Then the algorithm performs the next iteration process until all
loading points are traversed.



Machines 2022, 10, 197 12 of 25

While in the removal and insertion method, some parts of the flexible solution sets
are entirely ruined and recreated to search a new feasible solution. This process may be to
provide a better mechanism for escaping from local optima solution created by GA.

4.1.1. Removal Operators

The removal method in this study refers to Shaw removal (SR). The general mind
behind the SR operator is to remove a set of points, as it can be expected that it is reasonably
easy to change similar loading points and create better solutions. The similarity between
two points i and j is defined by the relatedness weight ω(i, j). This includes two terms: a
distance term R′ij, a relation term N′ij. We use the distance dij between the point i and j to
define the relatedness R′ij between the two points. The lower R′ij is, the greater relationship
between these two points. Same reason as N′ij, the relation between two points i and j on
the same transport (delivery) path is greater than in different paths. Then ω(i, j) is defined
as follows:

ω(i, j) =
1

R′ij + N′ij
(23)

where R′ij is calculated by R′ij =
dij

maxdij
, R′ij is range from the interval [0, 1]. The value is 1

when i and j are on the same path, otherwise the value is 0.

4.1.2. Farthest Insertion Heuristic Algorithm

Suppose that ∆ir is the cost function value incurred by inserting loading point i into
path r to the position that the increases of cost function value is least. Additionally, delimit
cos ti be the cost of inserting point i at the minimum cost position. In each iteration, the
farthest insertion heuristic algorithm selects point i having the minimum global cost, then
inserts it into the minimum global cost (i.e., cos ti = mini∈V{∆ir}), and inserts it into its
minimum cost position. After one point has been inserted into its best position, cos ti is
calculated again until all removed points are inserted into the partial solution [24].

4.2. Chromosome Representation and the Method of Encoding

Considering the uncertainty of HFGVRPTW, including the distribution center in the
coding will complicate crossover and mutation operations. In this research, sequential cod-
ing is used to generate an initial feasible solution. Besides that, the arrangement of loading
points can be directly used as a chromosome, and the gene length is the number of the
loading point. In the decoding process, based on the time window and capacity constraint,
the loading points are assigned to the vehicles of different types. The single-vehicle loading
rate is calculated, and the highest loading rate is selected for this path transportation.

The sequence coding of chromosome is shown in Figure 4.
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4.3. Population Selection

The appropriate population size is important for the convergence of the genetic
algorithm. If the population scale is too small, it is easy to converge the genetic algorithm on
the local optimal solution. On the contrary, if the population size is too large, the computing
speed of the genetic algorithm will be reduced. The size of the population is related to the
total number of loading points N, and the appropriate population size should be controlled
between 4N and 6N [34].
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Proportionate selection is still regarded as the best selection scheme for evolutionary
algorithm implementations. Using the selection scheme, the probability of an individual
solution to be selected depends on its fitness value. The probability ps

j of selecting an
individual solution j with a fitness value f j in a population of k individuals is given in the
following relation in Equation (24).

ps
j =

f j
k
∑

n=1
fn

(24)

Furthermore, considering that the traditional roulette wheel method of selecting
operators cannot guarantee the uniform distribution of the next generation’s solutions.
In this case, we proposed a selection method called all over roulette wheel selection, to
avoid the impact on the subsequent calculations of the algorithm. We set generation gap
(GGAP) as the proportion of purchasing agents for the population size difference between
offspring and parent. At the same time, the number of sample needles equals to the number
of individuals required by the offspring. With each all over roulette wheel selection, the
entire offspring can be flittered according to the fitness value, and the selection efficiency of
offspring can be improved on the premise of ensuring the uniform distribution of selection
results. This selection pattern is shown as in Figure 5.
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4.4. Crossover Operation

Traditionally, crossover refers to the process in which two chromosomes exchange
some genes with each other in a certain way to form new individuals. After crossover
operation, a new generation is produced, and it inherits the father’s basic characteristics.
The traditional two-point crossover method is that the selected gene sequences in the two
chromosomes are exchanged but their positions remain unchanged. This method may
cause the failure of crossover operations or increase redundant paths, eventually cause the
AGV transport path to increase and affect the final optimization effective.

In this study, an improved two-pointed crossover method is selected as the operator
crossover method. The steps are to randomly generate two points and swap the gene
sequences at the crossover point of the two chromosomes and put them at the front of
the other chromosome. Finally, in the original individual genes, the genes with the same
sequence as the cross-interchangeable gene sequence are deleted sequentially. Figure 6
shows the process of crossover operation.

4.5. Mutation Operation

Mutation is to exchange genes within the same chromosome, resulting in a new
individual. Mutation can determine the local search ability of the genetic algorithm,
maintain the diversity of the population, prevent premature convergence of GA.



Machines 2022, 10, 197 14 of 25

Machines 2022, 10, x FOR PEER REVIEW 15 of 27 
 

 

other chromosome. Finally, in the original individual genes, the genes with the same se-
quence as the cross-interchangeable gene sequence are deleted sequentially. Figure 6 
shows the process of crossover operation. 

 
Figure 6. Schematic diagram of the improved two-point crossover operation process. 

4.5. Mutation Operation 
Mutation is to exchange genes within the same chromosome, resulting in a new in-

dividual. Mutation can determine the local search ability of the genetic algorithm, main-
tain the diversity of the population, prevent premature convergence of GA. 

This paper adopts the exchanging mutation method. The idea is using the strategy of 
dynamic mutation, the formula for solving the mutation probability in Equation (25) 

max min
max

( )
_m

p p
p p gen

Max gen
−

= − ×  (25)

Among them, mp  represents the current mutation probability. It adaptively changes 
the value according to the iteration number of the algorithm. The maximum and mini-
mum values of the mutation operation during the iteration are represented by maxp  and 

minp , respectively. Variable gen  and _Max gen  indicate iterations of the algorithm cur-
rently and initially set the algorithm maximum number of iterations, respectively. The 
flow chart of GA-LNS algorithm structure can be seen in Figure 7. 

The characteristics of the GA-LNS in this study are summarized as follows: 
• The mutation rate is adaptively adjusted through iterative process of GA-LNS; 
• The GA-LNS algorithm can not only maintain the optimization ability of large-scale 

neighborhood searches when solving VRP and variant problems, but also overcome 
the weakness of inefficiency and calculation time-consuming of traditional GA. 
Thus GA-LNS is an algorithm with an excellent ability of global optimization. It can 

maintain the population diversity and prevent a fall into a local optimum in the calcula-
tion process. 

6 13 7

4

5 9 4 8 2Parent chromosome 1

9 8 2 6 3 5 7 1Parent chromosome 2

    

    
Cross-swap gene sequence

Parent chromosome 1' 8 2 6 3

8

6 5 9 3 4 1 7 8 2
    

        

    

Parent chromosome 2' 9 3 4 1 4 9 8 2 6 3 5 7 1
    

    

    

    

Offspring1

Offspring2

2 6 3 5 9 4 1 7

9 3 4 1 8 2 6 5 7

Delete the same gene

Figure 6. Schematic diagram of the improved two-point crossover operation process.

This paper adopts the exchanging mutation method. The idea is using the strategy of
dynamic mutation, the formula for solving the mutation probability in Equation (25)

pm = pmax −
(pmax − pmin)

Max_gen
× gen (25)

Among them, pm represents the current mutation probability. It adaptively changes
the value according to the iteration number of the algorithm. The maximum and minimum
values of the mutation operation during the iteration are represented by pmax and pmin,
respectively. Variable gen and Max_gen indicate iterations of the algorithm currently and
initially set the algorithm maximum number of iterations, respectively. The flow chart of
GA-LNS algorithm structure can be seen in Figure 7.
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The characteristics of the GA-LNS in this study are summarized as follows:

• The mutation rate is adaptively adjusted through iterative process of GA-LNS;
• The GA-LNS algorithm can not only maintain the optimization ability of large-scale

neighborhood searches when solving VRP and variant problems, but also overcome
the weakness of inefficiency and calculation time-consuming of traditional GA.

Thus GA-LNS is an algorithm with an excellent ability of global optimization. It
can maintain the population diversity and prevent a fall into a local optimum in the
calculation process.

5. Experimental Studies

The presented algorithm is coded in MATLAB language and was tested on a PC
with Intel Core (TM) i7-8700 3.20 GHz CPU, 16 GB RAM, and Windows 10 OS. Since
the HFGVRPTW is a relatively new problem and does not have a publicly standard in-
stance [14], this type of problem can be regarded as an important extension of the classic
VRPTW but divided into various categories by vehicle capacities. Thus, the widely used
Solomon instance for classic VRPTW development is also applied to test the performance
of GA-LNS algorithm [37]. This computational experiment is divided into two phases
of performance analysis, both in terms of effectiveness and energy-saving effect. In the
effectiveness analysis, we use GA-LNS to solve the benchmark instances of different cus-
tomers’ scales to investigate the efficiency and performance of our proposed algorithm. In
the energy-saving effect, we use an experiment on real FMS to measure the energy-saving
performance of the proposed loading method.

5.1. Instances and Results Comparison

The Solomon’s benchmark instance was proposed in 1987. It composed of three
different distribution pattern of customers locations which is divided into six categories [37],
with clustered (C1, C2), randomly located (R1, R2), or semi-clustered (RC1, RC2). According
to reference [38], a selected Solomon’s benchmark instance set can be used to test the
performance of an algorithm.

In Solomon’s benchmark instances, the customer geographical coordinates, demands
and service times are the same. The difference between the groups of instances indexed
by 1 and those indexed by 2 stand the intervals density of time windows. Time window
density refers to the percentage of customers with time windows. Furthermore, in the
instance sets of Solomon, 01/05/09, 02/06/10, 03/07/11, and 04/08/12 respond to the
instances with 100%, 75%, 50%, and 25% time windows, respectively [7]. According to
the scale of the test instances, Solomon’s benchmark instances can be divided into three
problem scales, namely, the small-scale instances with 25 customers, the medium-scale
with 50 customers, and the large-scale instances with 100 customers [39].

In this study, in order to illustrate the effectiveness of GA-LNS in solving VRPTW, we
selected six sets of instances with different time window densities under three different
customers scales. For each instance, we have run the program for 10 times, then a statistics
analysis is undertaken for the computing results.

Tables 3–5 present the results of three different customer scales. To illustrate the
advantages and disadvantages of the GA-LNS, we analyze the experimental mathematical
results obtained by GA-LNS by comparing with the best results published and other
intelligent algorithms for the large-scale of customers is shown in Tables 6 and 7.

As shown in Tables 3 and 4, the following observations can be obtained. The solutions
obtained by GA-LNS are very similar with the published best results, considering either the
total of traveled distance or vehicle fleet size. As we can be seen, in Table 3, the proposed
algorithm performs extremely well on the Solomon instance. Besides that, improves or
achieves the best-known solution of the hybrid GA to 17 of 24 instances. Moreover, it is
about 29.2% better than the hybrid GA. For these medium-scale instances, the gap between
the best-known solution and the optimal solution varies from 0.03% to 1.93% while the
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average gap is 0.32%. To conclude, the proposed algorithm can achieve a competitive
solution and the effectiveness is proven through small and medium-scale instances.

Table 3. The experimental results for the small-scale Solomon’s instances with VRPTW model.

NO.
Best-Known Solution [37] Hybrid GA [39] GA-LNS

NV/TD avg. NV/best.
TD

avg.
NV

avg.
TD

best.
TD

worst.
TD

TD.
gap%

best. NV/best.
TD

C101 3/191.3 3.0/191.81 3.0 191.40 191.40 191.40 0.05 3/191.40
C102 3/190.3 3.0/190.74 3.0 190.33 190.33 190.33 0.02 3/190.33
C103 3/190.3 3.0/190.74 3.0 189.71 189.71 189.71 −0.31 3/189.71
C104 3/186.9 3.0/187.45 3.0 189.71 189.71 189.71 1.50 3/189.71
C205 2/214.7 2.0/215.54 2.0 215.54 215.54 215.54 0.39 2/215.54
C206 3/214.7 2.0/215.54 2.0 215.54 215.54 215.54 0.39 2/215.54
C207 2/214.5 2.0/215.34 2.0 215.34 215.34 215.34 0.39 2/215.34
C208 2/214.5 - 2.0 215.37 215.37 215.37 0.41 2/215.37
R105 6/530.5 6.0/531.54 6.0 538.25 542.26 537.25 1.27 6/537.25
R106 3/465.4 5.0/466.48 5.0 466.48 466.48 466.48 0.23 5/466.48
R107 4/424.3 4.6/425.27 4.0 425.27 425.27 425.27 0.23 4/425.27
R108 4/397.3 4.0/398.29 4.0 411.12 409.20 413.23 3.00 4/409.20
R205 3/393.0 2.8/395.82 3.0 394.06 394.06 394.06 0.27 3/394.06
R206 3/374.4 1.8/379.85 3.0 375.48 375.48 375.48 0.29 3/375.48
R207 3/361.6 1.8/369.21 3.0 362.63 362.63 362.63 0.28 3/362.63
R208 1/328.2 - 1.0 329.33 329.33 329.33 0.34 1/329.33

RC101 4/461.1 4.0/462.61 4.0 463.60 463.60 463.60 0.54 4/463.60
RC102 3/351.8 3.0/352.74 3.0 352.74 352.74 352.74 0.27 3/352.74
RC103 3/332.8 3.0/333.92 3.0 333.92 333.92 333.92 0.34 3/333.92
RC104 3/306.6 3.0/308.39 3.0 308.39 308.39 308.39 0.58 3/308.39
RC205 3/338.0 3.0/338.93 3.0 338.93 338.93 338.93 0.28 3/338.93
RC206 3/324.0 2.4/326.14 3.0 325.10 325.10 325.10 0.34 3/325.10
RC207 3/298.3 2.6/298.95 3.0 298.95 298.95 298.95 0.22 3/298.95
RC208 2/269.1 - 2.0 269.57 269.57 269.57 0.17 2/269.57

NO.: the ID of the instance; NV: the number of the used vehicle; TD: total travelling distance; avg. NV: the
average number of the used vehicle in the 10 running times; best. TD: the smallest objective value obtained in
the 10 running times; avg. TD: the average smallest objective value obtained in the 10 running times; worst. TD:
the biggest objective value obtained in the 10 running times; TD. gap%: (best. TD − the distance of best-known
solution)/the distance of best-known solution × 100%.

Table 4. The experimental results for the medium-scale of Solomon’s instances with VRPTW model.

NO.

Best-Known Solution [37] GA-LNS

NV/TD avg. NV avg. TD best. TD worst. TD TD. gap% best.
NV/best. TD

C101 5/362.4 5.0 362.81 362.81 362.81 0.11 5/362.81
C102 5/361.4 5.0 361.74 361.74 361.74 0.09 5/361.74
C103 5/361.4 5.0 366.33 361.64 385.10 0.07 5/361.64
C104 5/358.0 5.0 362.60 358.17 378.43 0.05 5/358.17
C205 3/359.8 3.0 359.50 356.14 360.14 0.09 3/360.14
C206 3/359.8 3.0 359.92 359.92 359.92 0.03 3/359.92
C207 3/359.6 3.0 360.21 360.21 360.21 0.17 3/360.21
C208 2/350.5 2.0 351.71 351.71 351.71 0.35 2/351.71
R105 9/899.3 9.0 910.10 900.85 915.35 0.28 9/900.85
R106 5/793 5.0 799.39 795.23 809.90 0.11 5/795.23
R107 7/711.1 7.0 711.85 711.85 711.85 1.01 7/711.85
R108 6/617.7 6.0 628.90 623.85 634.94 0.34 6/623.94
R205 4/690.1 4.2 694.97 692.46 694.98 0.33 4/692.46
R210 4/645.6 3.4 647.71 647.71 647.71 0.52 3/647.71
R211 3/535.5 3.0 538.44 538.29 538.71 0.19 3/538.30
R204 2/506.4 2.0 507.34 507.34 507.34 0.54 2/507.34

RC101 8/944 8.2 957.31 949.10 967.16 0.37 8/949.10
RC102 7/822.5 7.0 831.77 825.58 834.80 0.17 7/825.58
RC103 6/710.9 6.4 706.25 693.05 724.60 1.93 6/724.60
RC104 5/545.8 5.0 546.57 546.25 547.87 0.08 5/546.25
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Table 4. Cont.

NO.

Best-Known Solution [37] GA-LNS

NV/TD avg. NV avg. TD best. TD worst. TD TD. gap% best.
NV/best. TD

RC205 5/630.2 5.0 631.38 631.07 632.63 0.39 5/632.63
RC206 5/610.0 5.0 610.95 610.77 611.68 0.13 5/610.77
RC207 4/558.6 4.2 559.30 559.00 560.51 0.07 4/559.00
RC204 3/444.2 3.0 444.97 444.97 444.97 0.17 3/444.97

Table 5. The experimental results for the large-scale of Solomon’s instances with VRPTW model.

NO.

Best-Known Solution [37] GA-LNS

NV/TD avg. NV avg. TD best. TD worst. TD TD. gap% best.
NV/best. TD

C101 10/828.94 10.0 829.62 829.62 829.62 0.08 10/829.62
C102 10/828.94 10.2 871.98 829.44 901.15 0.06 10/829.44
C103 10/828.06 10.4 843.50 829.32 864.77 0.15 10/829.32
C104 10/824.78 10.0 856.39 827.42 899.85 0.32 10/827.42
C205 3/588.88 3.0 588.95 588.95 588.95 0.01 3/588.95
C206 3/588.49 3.0 588.56 588.56 588.56 0.01 3/588.56
C207 3/588.29 3.0 589.96 589.96 589.96 0.28 3/589.96
C208 3/588.32 3.0 588.34 588.34 588.34 0.00 3/588.34
R105 14/1377.11 15.0 1446.88 1379.02 1494.06 0.14 14/1379.02
R106 12/1252.03 12.4 1257.85 1256.73 1259.53 0.38 12/1256.73
R107 10/1104.66 10.2 1111.25 1105.43 1127.03 0.07 10/1105.43
R108 9/960.88 9.6 969.60 966.61 974.08 1.37 9/974.08
R205 3/994.43 3.4 997.76 997.20 999.14 0.28 3/997.20
R206 3/906.14 3.8 914.05 913.15 914.97 0.87 3/914.02
R207 2/890.61 3.3 829.25 808.00 846.40 −9.3 3/808.00
R208 2/726.82 3.0 734.58 729.31 758.2956 −0.07 2/726.32

RC101 14/1696.95 16.4 1766.89 1728.57 1774.19 3.41 16/1754.85
RC102 12/1554.75 14.8 1569.32 1556.70 1570.22 0.13 14/1556.70
RC103 11/1261.67 10.0 1401.54 1378.23 1416.99 9.24 12/1378.23
RC104 10/1135.48 11.0 1255.43 1210.58 1302.60 6.61 11/1210.58
RC205 4/1297.65 5.6 1193.14 1173.71 1221.3216 −9.55 5/1173.71
RC206 3/1146.32 4.4 1097.70 1081.84 1115.87 −5.62 4/1081.84
RC207 3/1061.41 4.7 1008.31 1003.09 1018.44 −5.49 5/1003.09
RC208 3/828.14 4.2 818.44 807.94 834.89 −2.44 4/807.94

Table 6. The other intelligent algorithms experimental results for the large-scale Solomon’s instances.

NO.
Saving Algorithm [40] LNS [40] p-SA [41] GA [42] ACO [43] SA-LNS [44] HACO [43]

NV/TD NV/TD NV/TD NV/TD NV/TD NV/TD NV/TD

C101 12/930.12 10/828.94 11/992.88 10/827.3 13/1299.02 10/828.94 13/1262.53
C102 13/1048.17 10/828.94 10/955.31 10/827.3 13/1538.73 10/828.94 13/1693.11
C103 12/997.49 10/875.25 10/958.66 10/826.3 11/1669.38 10/828.07 11/1530.39
C104 12/964.77 10/883.67 10/944.73 10/822.9 10/1278.60 10/824.78 10/1307.09
C205 5/729.12 3/588.88 3/588.88 3/586.4 4/674.47 3/588.88 4/669.25
C206 5/727.62 3/588.49 3/588.49 3/586.0 4/776.75 3/588.49 4/753.34
C207 5/745.11 3/588.29 3/588.29 3/585.8 4/756.17 3/588.29 4/715.13
C208 5/711.55 3/592.30 3/588.32 3/585.8 4/773.63 4/588.32 4/720.31
R105 22/1628.90 14/1409.68 14/1399.81 13/1355.3 19/1966.78 14/1377.11 19/1870.37
R106 20/1497.98 12/1286.92 12/1275.69 13/1234.6 16/1859.20 12/1252.03 16/1843.72
R107 19/1398.83 11/1171.87 11/1082.92 11/1067.3 13/1647.18 10/1104.66 13/1630.95
R108 13/1094.07 9/1019.33 10/962.48 10/946.2 12/1317.30 9/960.88 12/1285.82
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Table 6. Cont.

NO.
Saving Algorithm [40] LNS [40] p-SA [41] GA [42] ACO [43] SA-LNS [44] HACO [43]

NV/TD NV/TD NV/TD NV/TD NV/TD NV/TD NV/TD

R205 12/1146.62 3/1002.62 3/1046.06 5/972.5 4/1495.27 3/994.42 4/1470.54
R206 12/1103.85 3/950.32 3/959.94 5/934.4 3/1470.71 3/914.63 3/1455.13
R207 8/943.53 2/926.12 2/899.82 4/860.1 3/1339.77 2/726.82 3/1333.29
R208 6/822.44 2/726.82 2/739.06 4/744.1 3/1088.24 3/1088.24 3/1044.05

RC101 25/2117.08 14/1782.30 15/1659.59 15/1623.5 21/2444.21 14/1696.95 21/2350.94
RC102 21/1830.68 12/1592.62 13/1522.76 14/1458.2 16/2142.05 12/1554.75 16/2132.71
RC103 16/1549.89 12/1275.43 11/1344.62 12/272.5 13/1802.48 11/1261.67 13/1791.28
RC104 13/1272.40 10/1196.30 10/1268.30 10/1137.6 12/1655.40 10/1135.48 12/1643.07
RC205 16/1572.14 4/1348.73 4/1371.08 7/1154.0 5/2138.76 4/1297.65 5/2096.55
RC206 13/1444.01 3/1197.63 3/1166.88 6/1080.4 4/1729.86 3/1146.32 4/1748.73
RC207 11/1256.69 3/1112.49 3/1089.85 7/1005.6 4/1656.32 3/1061.14 4/1618.84
RC208 5/828.849 3/829.69 3/862.89 5/820.5 3/1357.87 3/828.14 3/1306.25

Table 7. Comparison between the mean numbers of vehicle number and total travelling distance.

Algorithm C1 C2 R1 R2 RC1 RC2

Published Best [37]
NV 10.00 3.00 11.25 2.50 11.75 3.25
TD 827.68 588.50 1173.67 879.50 1412.21 1083.38

GA-LNS
NV 10.00 3.00 11.25 2.75 13.25 4.50
TD 828.95 588.95 1178.82 861.39 1475.09 1016.64

TD% 0.15 0.08 0.44 −2.06 4.45 −6.16

Saving Algorithm [40]
NV 12.25 5.00 18.50 9.50 18.75 12.00
TD 985.14 728.35 1404.95 1004.11 1692.51 1275.42

TD% 19.02 23.76 19.70 14.17 19.85 17.73

LNS [40]
NV 10.00 3.00 11.50 2.50 12.00 3.25
TD 854.20 589.49 1221.95 901.47 1461.66 1122.14

TD% 3.20 0.17 4.11 2.50 3.50 3.58

p-SA [41]
NV 10.25 3.00 11.75 2.50 12.25 3.25
TD 962.90 588.50 1180.23 911.22 1448.82 1122.68

TD% 16.33 0.00 0.44 3.46 3.50 3.58

GA [42]
NV 10.00 3.00 11.75 4.50 12.75 6.25
TD 825.95 586.00 1150.85 877.78 1122.95 1015.13

TD% −0.21 −0.42 −1.94 −0.196 −20.48 −6.30

ACO [43]
NV 11.75 4.00 15.00 3.25 15.50 4.00
TD 1446.43 745.26 1697.62 1348.50 2011.04 1720.70

TD% 74.76 26.64 44.64 53.33 42.40 58.83

SA-LNS [44]
NV 10.00 3.25 11.25 2.75 11.75 3.25
TD 827.68 588.50 1173.67 931.03 1412.21 1083.31

TD% 0.00 0.00 0.00 5.86 0.00 −0.01

HACO [43]
NV 11.75 4.00 15.00 3.25 15.50 4.00
TD 1448.28 714.51 1657.72 1325.75 1979.50 1692.59

TD% 74.98 21.41 41.24 50.74 40.17 56.23

In most large-scale Solomon instances, GA-LNS can maintain a competitive optimal
solution as shown in Table 5. For the categories of C and R instances, the gap between the
best-known solution and the computational solution to the proposed algorithm varies from
0.00% to 9.55% while the average gap is 2.33%. Another phenomenon should be mentioned
is that in large-scale RC instances, GA-LNS show more fluctuation performances than
other categories of instances. The reason may be that in RC type instances, the original
problem instances have conflict solution objectives. Since customer points are relatively
discrete and some customers have relatively long service time windows, which means the
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reducing fleet of vehicle size will increase travelling distance, and the performance of the
algorithm becomes unstable. We can further the optimization performance of the algorithm
by increasing the population size and evolution algebra.

In Table 6, the saving algorithm, LNS, simulated annealing algorithm (SA), GA, ant
colony optimization (ACO) as well as simulated annealing algorithm based on large
neighborhood search (SA-LNS) and improved ant colony algorithm (HACO) that can
represent hybrid optimization algorithms were adopted, respectively. References [40–44]
use the same as numerical instances this study which can used for an indirect comparison
with the algorithm performance. The details of these proposed algorithms can be found in
the relevant references, and the results of a comparison of these algorithms are given in
Table 6 together.

Table 7 summarizes the average results from each of the Solomon data sets of the large-
scale problems. Three numbers are associated with the average number of traveled vehicle
(NV), average total traveled distance (TD) and the increased percentages from the published
best results (TD%) for each paper. It can be seen from Table 7 that ACO algorithm has the
worst solving quality among the 24 groups of instances, with a maximum gap is 74.76%
and the average gap is 50.10%. The solution quality of p-SA and GA are general, with a
maximum gap of 16.33% and 20.48% and average gap of 4.55% and 4.92%, respectively.
The solution quality of GA-LNS is better, with a maximum gap of 6.16% and an average
gap of 2.22%. In this paper, the SA-LNS solution quality is the best: the maximum gap is
5.86% and the average gap is 0.98%. Although it is worth clarifying that works [40,44] have
considered the minimum number of vehicles as the first optimization objective, the other
works have considered the total traveled distance as the first objective. The vehicle fleet size
is fitness in terms of references [40,44]. GA-LNS reduced the vehicle number effectively, an
average of five fewer vehicles compared with the saving algorithm, it is basically the same
as the fleet size solved by [44]. The performance of GA-LNS is slightly lower than that
in [44] in terms of traveling distance, but higher than that in [40–43]. However, the solution
results of most instances confirm the viability of GA-LNS approaches for traveled distance
minimization in the VRPTW and reduction of distribution cost. Figure 8 shows the GAP
curve for these Solomon instances. The horizontal axis represents the number of instances
in Tables 6 and 7, the vertical axis is the optimal solution result of proposed algorithm. From
the Figure 8, it is easy to conclude that GA-LNS can achieve an acceptable optimization
effect. Furthermore, it performs better than most of other algorithms which are used for
comparison in this article. Therefore, it can be concluded that the proposed algorithms has
a relatively strong robustness and optimization ability, it can provide high-quality solutions
to the HFGVRPTW.
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5.2. Instance Verification

To verify the benefits of the proposed energy-saving model, explore the factors affect-
ing optimization objectives of AGV in the process of performing production tasks, this
experiment was carried out the simulation of heterogeneous multitype fleet AGVs in an
actual FMS.

5.2.1. Real Case Application

The FMS was mainly composed of automated workstations, automated flexible mate-
rial handling system (conveyors and AGVs), dedicated dispatch control system and a buffer
for storing materials, which can realize the automatic production of some high-precision
parts. The workshop layout of this FMS is shown in Figure 9.
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AGV is a flexible material handling device that is automatically steered to accomplish
its assigned task inside the system. The corresponding production task is to move the
materials that have been produced from the workstation to the buffer for storing materials
area for storage. After the dedicated dispatch control system assigns tasks and the path
planning for one AGV, the AGV sets out from the starting point, travels along the assigned
path, completes the corresponding transportation task and returns to the starting point to
wait for next schedule.

The FMS uses two types of AGVs to providing materials transportation. The main
technical parameters of the heterogeneous fleet AGVs are listed in Table 8.

Table 8. The main technical parameters of the heterogeneous fleet AGVs.

Parameter Meaning
Value

Type 1 Type 2

L×W× H External dimension 0.8 m× 0.6 m× 0.4 m 1.2 m× 0.6 m× 0.5 m
Cm Maximal load weight 100 kg 200 kg
Fm Motor rated power output 130 N 200 N
Esm Standby power 65 J 130 J
Rm Turning radius 0.60 m 0.85 m
vr Turning speed 0.5 m/s
vs Uniform straight motion speed 1 m/s

aacc Acceleration of accelerated motion 1 m/s2

adec Acceleration of decelerated motion 1 m/s2

η Driving motor efficiency 0.95 0.90

The docking stations for loading and path intersections were abstracted as nodes, and
each edge presents a transportation path laid by the magnetic stripe. The path attribute is
defined as a bidirectional path with a single unit capacity. Therefore, there will not be any
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deadlocks and conflicts between AGVs. Twenty instances were generated to validate the
energy effectiveness and optimization of the proposed model and mathematical algorithm.
Instances are represented in the following Table 9. The distance between two nodes i
and j is equal to the Manhattan distance between them. In this actual system, there is no
production priority between workstations and each AGV corresponds to one assigned
transportation path.

Table 9. Time window and goods weight for each loading point.

Loading Point ID Coordinates (m) LTn RTn Materials (kg) Loading Time (min)

0 (0, 0) 0 +∞ - -
1 (6.5, 4.5) 9:10 9:45 25 2.0
2 (6.5, 10.5) 9:15 9:40 20 1.5
3 (6.5, 16.5) 10:10 10:30 15 1.0
4 (6.5, 22.5) 9:30 10:20 60 4.0
5 (6.5, 28.5) 10:25 11:00 25 1.5
6 (16.5, 4.5) 9:40 10:20 30 1.5
7 (16.5, 10.5) 10:25 11:40 70 4.0
8 (16.5, 16.5) 10:40 12:10 80 3.0
9 (16.5, 22.5) 10:30 11:15 30 2.0

10 (16.5, 28.5) 10:40 12:00 60 2.5
11 (26.5, 4.5) 9:20 10:00 45 3.0
12 (26.5, 10.5) 11:10 11:50 35 1.5
13 (26.5, 16.5) 11:30 11:50 20 1.0
14 (26.5, 22.5) 9:40 10:30 55 3.0
15 (26.5, 28.5) 9:45 10:40 70 4.0
16 (36.5, 4.5) 10:25 10:50 15 0.5
17 (36.5, 10.5) 11:00 12:00 55 2.0
18 (36.5, 16.5) 11:10 11:40 20 1.0
19 (36.5, 22.5) 10:00 10:30 20 1.5
20 (36.5, 28.5) 10:20 11:00 35 2.0

During a representative production time period, we compared the energy consumption
traveled by the single type AGVs with the heterogeneous multitype AGVs solutions
produced by our algorithm. For this instance, we ran the program for 10 times, then a
statistics analysis was undertaken to compute results.

5.2.2. Numerical Analysis of Experimental Results

Tables 10 and 11 correspond to the result of the homogeneous multitype fleet using
GA-LNS algorithm to solve the actual instance and Table 12 represents the path information
loaded by heterogeneous multitype AGVs fleet.

Table 10. Feasible paths for using type 1 AGV fleet transportation.

No. Path
Optimization Objective

nT Loading Rate/%
D [m] E [kJ]

1 0-1-13-18-19-0 118.80 17.40 6 85.00
2 0-4-0 54.40 7.83 2 60.00
3 0-6-16-17-0 95.80 13.88 4 100.00
4 0-7-0 62.40 8.93 2 70.00
5 0-8-0 171.90 24.49 2 80.00
6 0-11-12-0 70.40 10.02 2 80.00
7 0-14-0 94.40 13.31 2 55.00
8 0-15-0 106.40 14.95 2 70.00
9 0-20-10-0 133.60 19.05 4 95.00

10 0-2-3-5-9-0 90.60 13.16 4 90.00
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Table 11. Feasible paths for using type 2 AGV fleet transportation.

No. Path
Optimization Objective

nT Loading Rate/%
D [m] E [kJ]

1 0-4-3-5-0 80.35 18.59 2 50.00
2 0-11-16-17-7-0 93.85 25.16 6 92.50
3 0-14-9-8-0 98.60 23.38 4 82.50
4 0-15-10-0 110.60 26.05 4 65.00
5 0-20-19-18-13-12-0 132.30 30.86 4 65.00
6 0-2-6-1-0 55.10 14.47 6 37.50

Table 12. Feasible paths for using heterogeneous multitype AGV fleet transportation.

No. AGV Type Path
Optimization Objective

nT Loading Rate/%
D [m] E [kJ]

1 2 0-4-5-10-0 83.10 19.94 4 72.50
2 1 0-6-9-12-0 100.20 14.48 4 95.00
3 2 0-11-16-17-7-0 100.25 24.49 6 92.50
4 2 0-14-20-15-0 129.40 30.69 6 80.00
5 1 0-1-13-18-19-0 115.90 17.00 6 85.00
6 2 0-2-3-8-0 66.60 16.28 4 57.50

Tables 10 and 11 show that the distribution center sends 10 type 1 AGVs or six type
2 AGVs to serve all loading points. For a homogeneous vehicle fleet which is using the
type 1 AGVs, the total traverse distance and energy consumption are 998.7 m and 143.02 kJ.
Besides, for the homogeneous vehicle fleet, which is composed of type 2 AGVs, the total
traverse distance and energy consumption are 570.80 m and 138.51 kJ, respectively.

In Table 12, the different types of AGVs are compared. We compared the heterogeneous
AGVs fleet with the type 1 and type 2. Table 13 shows the results that the benefit of using
the heterogeneous vehicle fleet. As shown as Table 13, compared with single use type 1, the
heterogeneous fleet AGVs in terms of Dtotal can be reduced by 40.38% from 998.7 to 595.45,
Etotal reduced by 13.89%, average fleet loading rate increased from 78.50% to 80.42%.

Table 13. Comparison of objective corresponding to the optimal paths under three conditions.

Path Information
Transport AGV Type

Type 1 Type 2 Heterogeneous Fleet

Dtotal (m) 998.70 570.80 595.45
Etotal (kJ) 143.02 138.51 123.15
Fleet size 10 6 6

Avg. Loading rate/% 78.50 65.42 80.42

This comparison clearly shows that, at least for the actual instance considered in this
paper, heterogeneous fleet distribution strategy can significantly reduce Etotal and Dtotal
under the premise of ensuring average loading rate.

In addition, it is worth noting that the fleet size of using type 1 transportation is 10,
the fleet size of using heterogeneous fleet transportation is 6. Inside the workshop of FMS,
in the case of excessive traffic volume, it will undoubtedly cause frequent conflicts and
deadlocks between AGVs. While causing a decrease in production efficiency, it will have
negative impact on the production plan. Therefore, the use of heterogeneous multitype
AGV fleets in FMS has a positive effect on reducing the traffic flow inside the workshop.

When using type 2 AGVs to execute the loading tasks, the Etotal of heterogeneous fleets
reduced from 138.51 to 123.15, the average loading rate of the fleet increased significantly,
whereas the traveled distance increased by only 4.32% from 570.8 to 595.45. In general,
the experiments results demonstrate that it is necessary to investigate the features and the
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benefits of HFGVRPTW in more details and to analyze carefully the tradeoff between the
solution of heterogeneous fleet of AGVs. Additionally, for the homogeneous fleet consisting
of type 2, the decreased number of AGVs leading to single AGV task chain is too long. As
a result, it is difficult to respond to loading tasks in FMS in a timely manner, and the AGV
loading rate is also maintained at a low level while affecting the punctual rate of tasks in
the entire workshop. In the heterogeneous multitype AGV fleet which are not full load in
the instances of same time windows. For example, the first AGV in Table 11 has a loading
rate of only 50% when returning to the starting point. After loading and transporting with
a heterogeneous fleet, loading point 3 is replaced with point 10 of the large load. This
method can increase the average load rate of the vehicle fleet.

To sum up, through the application and analysis of instances, it can be shown that the
proposed GA-LNS effective and robustness is well. In FMS, introducing heterogeneous
fleet of AGVs with different capacities and energy consumption opening a tremendous
potential for energy-saving.

6. Conclusions and Future Research Work

In this paper, the following conclusions can be drawn from the research on the
HFGVERPTW.

• In order to minimize the total traverse distance and total energy consumption, an opti-
mization model is established that comprehensively considers the AGV structure and
motion state, which can more accurately and objectively reflect the actual phenomenon
of the workshop intralogistics.

• The GA-LNS considering the farthest insertion heuristic is designed. The improved
algorithm by increasing the neighborhood search ability can improve the quality of
the initial solution.

• Regarding evolutionary operation, GA-LNS adopts the strategy of the new roulette
wheel selection and adaptive mutation operation to ensure the effective convergence
and robustness. The effectiveness of algorithm is verified by testing Solomon bench-
mark instances of different customers scales and comparing with other algorithms.

• The mathematical model established can verify the multitype heterogeneous AGV
routing problem with changing motion state and various capacities in reality. This is
novel and an expansion of the research on classical VRPTW.

• The results of this study demonstrate that for the current manufacturing context, a
heterogeneous AGV fleet transportation method is superior to a homogeneous fleet.
Undoubtedly, as the main material transportation equipment inside the FMS, AGV
has great energy saving potential.

Consequently, this paper provides a potential basis for future research (1) on inte-
grating the collaborative scheduling of AGV and production machinery into the proposed
model; (2) on HFGVRPTW with multiple depots of simultaneous pickup and delivery
problems; (3) on how to improve and optimize the performance of GA-LNS; (4) on taking
customer satisfaction with the service as an optimization goal; and (5) on considering the
coordinated scheduling of multiple distribution centers in FMS.

Author Contributions: Conceptualization, X.Z. and J.G.; methodology, X.Z. and J.G.; investigation,
X.Z. and J.G.; writing-original draft preparation, X.Z. and J.G.; writing-review and editing, J.G.;
supervision, F.G. and Q.H.; and funding acquisition, X.Z. and X.T. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the research grant from the Education Department Foun-
dation of Liaoning Province (JDL2019016) and Natural Science Foundation of Liaoning Province
(2021-KF-15-02).

Institutional Review Board Statement: Excluding this statement.

Informed Consent Statement: Excluding this statement.



Machines 2022, 10, 197 24 of 25

Data Availability Statement: Excluding this statement.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bashir, S.; Ali, M.A.; Sajjad, K.; Mohammed, R. Designing and Developing a Smart Yogurt Filling Machine in the Industry 4.0 Era.

Machines 2021, 9, 300.
2. Sun, X.; Liu, S.; Bao, J.; Li, J.; Liu, Z. A Performance Prediction Method for a High-Precision Servo Valve Supported by Digital

Twin Assembly-Commissioning. Machines 2021, 10, 11. [CrossRef]
3. Wu, M.; Yang, D.; Zhou, B.; Yang, Z.; Liu, T.; Li, L.; Wang, Z.; Hu, K. Adaptive Population NSGA-III with Dual Control Strategy

for Flexible Job Shop Scheduling Problem with the Consideration of Energy Consumption and Weight. Machines 2021, 9, 344.
[CrossRef]

4. Baruwa, O.T.; Piera, M.A. A coloured Petri net-based hybrid heuristic search approach to simultaneous scheduling of machines
and automated guided vehicles. Int. J. Prod. Res. 2017, 54, 4773–4792. [CrossRef]

5. Zhang, Z.; Wu, L.; Zhang, W.; Peng, T.; Zheng, J. Energy-efficient path planning for a single-load automated guided vehicle in
a manufacturing workshop. Comput. Ind. Eng. 2021, 158, 107397. [CrossRef]

6. Wang, L.; Liu, Q.; Zang, C.; Zhu, S.; Gan, C.; Liu, Y. Formation Control of Dual Auto Guided Vehicles Based on Compensation
Method in 5G Networks. Machines 2021, 9, 318. [CrossRef]

7. Tamás, B. Optimization of Material Supply in Smart Manufacturing Envrionment: A Metaheuristic Approach for Matrix
Production. Machines 2021, 9, 220.

8. Xiao, Y.; Konak, A. The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transp.
Res. Part E Logist. Transp. Rev. 2016, 88, 146–166. [CrossRef]

9. Roberto, D.; Mauceri, S.; Carroll, P.; Pallonetto, F. A Genetic Algorithm for a Green Vehicle Routing Problem. Electron. Notes
Discret. Math. 2018, 64, 65–74.

10. Matos, M.; Frota, Y.; Ochi, L.S. Green Vehicle Routing and Scheduling Problem with Split Delivery. Electron. Notes Discret. Math.
2018, 69, 13–20. [CrossRef]

11. Meiner, M.; Massalski, L. Modeling the electrical power and energy consumption of automated guided vehicles to improve the
energy efficiency of production systems. Int. J. Adv. Manuf. Technol. 2020, 110, 481–498. [CrossRef]

12. Park, Y.; Chae, J. A review of the solution approaches used in recent G-VRP (Green Vehicle Routing Problem). Int. J. Adv. Logist.
2014, 3, 27–37. [CrossRef]

13. Heiko, K.; Schönberger, J.; Herbert, K. Reducing greenhouse gas emissions of a heterogeneous vehicle fleet. Flex. Serv. Manuf. J.
2014, 26, 221–248.

14. Wang, Z.; Li, Y.; Hu, X. A heuristic approach and a tabu search for the heterogeneous multi-type fleet vehicle routing problem
with time windows and an incompatible loading constraint. Comput. Ind. Eng. 2015, 89, 162–176. [CrossRef]

15. Moghdani, R.; Salimifard, K.; Demir, E.; Benyettou, A. The Green Vehicle Routing Problem: A Systematic Literature Review.
J. Clean. Prod. 2020, 279, 123691. [CrossRef]

16. Zhou, X.; Zhou, K.; Wang, L.; Liu, C.; Huang, X. Review of green vehicle routing model and its algorithm in logistics distribution.
Syst. Eng. Theory Pract. 2021, 41, 213–230.

17. Zhang, S.; Gajpal, Y.; Appadoo, S.S.; Abdulkader, M.M.S. Electric vehicle routing problem with recharging stations for minimizing
energy consumption. Int. J. Prod. Econ. 2018, 203, 404–413. [CrossRef]

18. Turkensteen, M. The accuracy of carbon emission and fuel consumption computations in green vehicle routing. Eur. J. Oper. Res.
2017, 262, 647–659. [CrossRef]

19. Fukasawa, R.; He, Q.; Song, Y. A disjunctive convex programming approach to the pollution-routing problem. Transp. Res. Part B
2016, 94, 61–79. [CrossRef]

20. Xiao, Y.; Zuo, X.; Kaku, I.; Zhou, S.; Pan, X. Development of energy consumption optimization model for the electric vehicle
routing problem with time windows. J. Clean. Prod. 2019, 225, 647–663. [CrossRef]

21. Farid, G.S.; Abdolhadi, Z. Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing. Swarm
Evol. Comput. 2018, 44, 728–747.

22. Bac, U.; Erdem, M. Society. Optimization of electric vehicle recharge schedule and routing problem with time windows and
partial recharge: A comparative study for an urban logistics fleet. Sustain. Cities Soc. 2021, 70, 102883. [CrossRef]

23. Qazi, S.K.; Suzuki, Y. Comparative analysis of different routing heuristics for the battery management of automated guided
vehicles. Int. J. Prod. Res. 2019, 57, 624–641.

24. Zhao, M.; Lu, Y. A Heuristic Approach for a Real-World Electric Vehicle Routing Problem. Algorithms 2019, 12, 45. [CrossRef]
25. Liu, Y.; Ji, S.; Su, Z.; Guo, D. Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent)

warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm. PLoS ONE 2019, 14, e0226161.
[CrossRef]

26. Macrina, G.; Pugliese, L.D.P.; Guerriero, F.; Laporte, G. The green mixed fleet vehicle routing problem with partial battery
recharging and time windows. Comput. Oper. Res. 2018, 101, 183–199. [CrossRef]

http://doi.org/10.3390/machines10010011
http://doi.org/10.3390/machines9120344
http://doi.org/10.1080/00207543.2015.1087656
http://doi.org/10.1016/j.cie.2021.107397
http://doi.org/10.3390/machines9120318
http://doi.org/10.1016/j.tre.2016.01.011
http://doi.org/10.1016/j.endm.2018.07.003
http://doi.org/10.1007/s00170-020-05796-8
http://doi.org/10.1080/2287108X.2014.956976
http://doi.org/10.1016/j.cie.2014.11.004
http://doi.org/10.1016/j.jclepro.2020.123691
http://doi.org/10.1016/j.ijpe.2018.07.016
http://doi.org/10.1016/j.ejor.2017.04.005
http://doi.org/10.1016/j.trb.2016.09.006
http://doi.org/10.1016/j.jclepro.2019.03.323
http://doi.org/10.1016/j.scs.2021.102883
http://doi.org/10.3390/a12020045
http://doi.org/10.1371/journal.pone.0226161
http://doi.org/10.1016/j.cor.2018.07.012


Machines 2022, 10, 197 25 of 25

27. Çağrı, K.; Tolga, B.; Ola, J.; Gilbert, L. The impact of depot location, fleet composition and routing on emissions in city logistics.
Transp. Res. Part B 2016, 84, 81–102.

28. Yamur, E.; Kesen, S.E. Multi-trip heterogeneous vehicle routing problem coordinated with production scheduling: Memetic
algorithm and simulated annealing approaches. Comput. Ind. Eng. 2021, 161, 107649. [CrossRef]

29. Qin, W.; Zhuang, Z.; Huang, Z.; Huang, H. A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle
routing problem. Comput. Oper. Res. 2021, 156, 107252. [CrossRef]

30. Sabar, N.R.; Bhaskar, A.; Chung, E.; Turky, A.; Song, A. An Adaptive Memetic Approach for Heterogeneous Vehicle Routing
Problems with Two-Dimensional Loading Constraints. Swarm Evol. Comput. 2020, 58, 100730. [CrossRef]

31. Nepomuceno, N.; Saboia, R.B.; Pinheiro, P.R. A Fast Randomized Algorithm for the Heterogeneous Vehicle Routing Problem with
Simultaneous Pickup and Delivery. Algorithms 2019, 12, 158. [CrossRef]

32. Baradaran, V.; Shafaei, A.; Hosseinian, A.H. Stochastic Vehicle Routing Problem with Heterogeneous Vehicles and Multiple
Prioritized Time Windows: Mathematical modeling and Solution Approach. Comput. Oper. Res. 2019, 131, 187–199. [CrossRef]

33. Zhong, M.; Yang, Y.; Dessouky, Y.; Postolache, O. Multi-AGV scheduling for conflict-free path planning in automated container
terminals. Comput. Ind. Eng. 2020, 142, 106371. [CrossRef]

34. Han, Z.; Wang, D.; Liu, F.; Zhao, Z. Multi-AGV path planning with double-path constraints by using an improved genetic
algorithm. PLoS ONE 2017, 12, e0181747. [CrossRef] [PubMed]

35. Hou, D.; Fan, H.; Ren, X.; Tian, P.; Lv, Y.J.S. Time-Dependent Multi-Depot Heterogeneous Vehicle Routing Problem Considering
Temporal-Spatial Distance. Sustainability 2021, 13, 4674. [CrossRef]

36. Penna, P.; Subramanian, A.; Ochi, L.S.; Vidal, T.; Prins, C. A hybrid heuristic for a broad class of vehicle routing problems with
heterogeneous fleet. Ann. Oper. Res. 2019, 273, 5–74. [CrossRef]

37. Solomon, M.M. Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints. Oper. Res. 1987, 35,
254–265. [CrossRef]

38. Banos, R.; Ortega, J.; Gil, C.; Marquez, A.L.; Toro, F.D. A hybrid meta-heuristic for multi-objective vehicle routing problems with
time windows. Comput. Ind. Eng. 2013, 65, 286–296. [CrossRef]

39. Shi, Y.; Boudouh, T.; Grunder, O. A hybrid genetic algorithm for a home health care routing problem with time window and
fuzzy demand. Expert Syst. Appl. 2017, 72, 160–176. [CrossRef]

40. Liu, X.; Hao, Z.; Wang, G. Research on Approximation Algorithm for Vehicle Routing Problem with Time Windows. Comput.
Integr. Manuf. Syst. 2004, 10, 825–831.

41. Wang, C.; Mu, D.; Zhao, F.; Sutherland, J.W. A parallel simulated annealing method for the vehicle routing problem with
simultaneous pickup–delivery and time windows. Comput. Ind. Eng. 2015, 83, 111–122. [CrossRef]

42. Alvarenga, G.B.; Mateus, G.R.; Tomi, G. A genetic and set partitioning two-phase approach for the vehicle routing problem with
time windows. Comput. Oper. Res. 2007, 34, 1561–1584. [CrossRef]

43. Wu, H.; Gao, Y.; Wang, W.; Zhang, Z.J.C.; Systems, I. A hybrid ant colony algorithm based on multiple strategies for the vehicle
routing problem with time windows. Complex Intell. Syst. 2020, 2020, 8839526. [CrossRef]

44. Bent, R.; van Hentenryck, P.V. A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows.
Comput. Oper. Res. 2006, 33, 875–893. [CrossRef]

http://doi.org/10.1016/j.cie.2021.107649
http://doi.org/10.1016/j.cie.2021.107252
http://doi.org/10.1016/j.swevo.2020.100730
http://doi.org/10.3390/a12080158
http://doi.org/10.1016/j.cie.2019.03.047
http://doi.org/10.1016/j.cie.2020.106371
http://doi.org/10.1371/journal.pone.0181747
http://www.ncbi.nlm.nih.gov/pubmed/28746355
http://doi.org/10.3390/su13094674
http://doi.org/10.1007/s10479-017-2642-9
http://doi.org/10.1287/opre.35.2.254
http://doi.org/10.1016/j.cie.2013.01.007
http://doi.org/10.1016/j.eswa.2016.12.013
http://doi.org/10.1016/j.cie.2015.02.005
http://doi.org/10.1016/j.cor.2005.07.025
http://doi.org/10.1007/s40747-021-00401-1
http://doi.org/10.1016/j.cor.2004.08.001

	Introduction 
	Literature Review 
	Green Vehicle Route Problem 
	Heterogeneous Multitype Fleet Vehicle Routing Problems with Time Windows 

	Mathematical Model 
	Problem Description 
	Energy Consumption Analysis 
	Standby Energy Consumption Analysis 
	Energy Consumption Analysis of Uniform Motion 
	Energy Consumption Analysis of Acceleration Motion 

	Optimization Objectives and Constraints 

	Algorithm Design 
	Large Neighborhood Search 
	Removal Operators 
	Farthest Insertion Heuristic Algorithm 

	Chromosome Representation and the Method of Encoding 
	Population Selection 
	Crossover Operation 
	Mutation Operation 

	Experimental Studies 
	Instances and Results Comparison 
	Instance Verification 
	Real Case Application 
	Numerical Analysis of Experimental Results 


	Conclusions and Future Research Work 
	References

