The Existence of Autonomous Chaos in EDM Process
Abstract
:1. Introduction
2. Autonomous Chaotic Analysis
2.1. Equivalent Model of Autonomous EDM Process
2.2. Theoretical Analysis Based on Shilnikov Theory
- There should be two distinct equilibrium points, denoted by and , respectively, which of Equation (4) are saddle foci, whose characteristic values are ,, (i = 1,2);
- There must be a heteroclinic orbit joining and ;
- The system should satisfy the following Shilnikov inequality:
3. Time Series Analysis of Autonomous Chaos
3.1. Data Source of Autonomous EDM Process
3.2. Autonomous Chaotic Analysis Based on Qualitative Method
3.3. Autonomous Chaotic Analysis Based on Quantitative Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balanou, M.; Karmiris-Obratański, P.; Leszczyńska-Madej, B.; Papazoglou, E.L.; Markopoulos, A.P. Investigation of surface modification of 60CrMoV18-5 steel by EDM with Cu-ZrO2 powder metallurgy green compact electrode. Machines 2021, 9, 268. [Google Scholar] [CrossRef]
- Pachaury, Y.; Tandon, P. An overview of electric discharge machining of ceramics and ceramic based composites. J. Manuf. Process. 2017, 25, 369–390. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Cabanes, I.; Lopez de Lacalle, L.; Iamikiz, A. Development of optimum electrodischarge machining technology for advanced ceramics. Int. J. Adv. Manuf. Technol. 2001, 18, 897–905. [Google Scholar] [CrossRef]
- DiBitonto, D.D.; Eubank, P.T.; Patel, M.R.; Barrufet, M.A. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J. Appl. Phys. 1989, 66, 4095. [Google Scholar] [CrossRef]
- Patel, M.R.; Barrufet, M.A.; Eubank, P.T.; DiBitonto, D.D. Theoretical models of the electrical discharge machining process. II. The anode erosion model. J. Appl. Phys. 1989, 66, 4104. [Google Scholar] [CrossRef]
- Eubank, P.T.; Patel, M.R.; Barrufet, M.A. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. J. Appl. Phys. 1993, 73, 7900. [Google Scholar] [CrossRef]
- Teitsworth, S.W.; Westervelt, R.M.; Haller, E.E. Nonlinear oscillations and chaos in electrical breakdown in Ge. Phys. Rev. Lett. 1983, 51, 825–828. [Google Scholar] [CrossRef]
- Alisultanov, Z.Z.; Ragimkhanov, G.B. Fractional-differential approach to the study of instability in a gas discharge. ChaosSolitons Fractals 2018, 107, 39–42. [Google Scholar] [CrossRef]
- Allagui, A.; Rojas, A.E.; Bonny, T.; Elwakil, A.S.; Abdelkareem, M.A. Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis. J. Appl. Phys. 2016, 119, 203303. [Google Scholar] [CrossRef]
- Braun, T.; Lisboa, J.A.; Gallas, J.A.C. Evidence of homoclinic chaos in the plasma of a glow discharge. Phys. Rev. Lett. 1992, 68, 2770–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, T.; Lisboa, J.A.; Francke, R.E.; Gallas, J.A. Observation of deterministic chaos in electrical discharges in gases. Phys. Rev. Lett. 1987, 59, 613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Z.; Wang, Y.H.; Wang, D.Z.H. Numerical study on the discharge characteristics and nonlinear behaviors of atmospheric pressure coaxial electrode dielectric barrier discharges. Chin. Phys. B 2017, 6, 263–269. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Pécseli, H.L.; Rasmussen, J.J. Turbulent transport in low-β plasmas. Phys. Plasmas 1996, 3, 1530–1544. [Google Scholar] [CrossRef]
- Carreras, B.A.; Milligen, V.; Pedrosa, M.A.; Balbín, R.; Hidalgo, C.; Newman, D.E.; Sánchez, E.; Frances, M.; García-Cortés, I.; Bleuel, J.; et al. Self-similarity of the plasma edge fluctuations. Phys. Plasmas 1998, 5, 3632–3643. [Google Scholar] [CrossRef]
- Carreras, B.A.; van Milligen, B.; Hidalgo, C.; Balbin, R.; Sanchez, E.; Garcia-Cortes, I.; Pedrosa, M.A.; Bleuel, J.; Endler, M. Self-similarity properties of the probability distribution function of turbulence-induced particle fluxes at the plasma edge. Phys. Rev. Lett. 1999, 83, 3653. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.Y.; Wong, A.Y. Chaotic behavior and period doubling in plasmas. Phys. Rev. Lett. 1987, 59, 551–554. [Google Scholar] [CrossRef]
- Cheung, P.Y.; Donovan, S.; Wong, A.Y. Observations of intermittent chaos in plasmas. Phys. Rev. Lett. 1988, 61, 1360–1363. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.B.; Podder, N.K. Observation of period multiplication and instability in a dc glow discharge. Phys. Rev. E 2007, 76, 046405. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, S.; Roychowdhury, D.; SekarIyengar, A.N. Long range temporal correlation in the chaotic oscillations of a dc glow discharge plasma. Phys. Plasmas 2012, 19, 082313. [Google Scholar] [CrossRef]
- Nurujjaman, M.; Narayanan, R.; SekarIyengar, A.N. Parametric investigation of nonlinear fluctuations in a dc glow discharge plasma. Chaos 2007, 17, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, N.; Tanaka, M.; Komori, A.; Kawai, Y. Chaotic behavior of current-carrying plasmas in external periodic oscillations. J. Phys. Soc. Jpn. 1989, 58, 28–31. [Google Scholar] [CrossRef]
- Han, F.; Kunieda, M. Chaos found in distribution of EDM spark. In Proceedings of the 13th International Symposium for Electromachining ISEM XIII, Bilbao, Spain, 9–11 May 2001; pp. 185–192. [Google Scholar]
- Aich, U.; Banerjee, S. Evaluation for chaos in EDM generated surface topography. KEM 2018, 765, 227–231. [Google Scholar]
- Gatto, A.; Sofroniou, M.; Spaletta, G.; Bassoli, E. On the chaotic nature of electro-discharge machining. Int. J. Adv. Manuf. Technol. 2015, 79, 985–996. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Han, F.Z.H.; Wang, Y.X.; Soichiro, I. Assessment of the dynamical properties in EDM process-detecting deterministic nonlinearity of EDM process. Int. J. Adv. Manuf. Technol. 2009, 44, 91–99. [Google Scholar] [CrossRef]
- Wang, P.; Li, B.; Shi, G.; Lin, T.; Wang, B.X. Non-linear mechanism in electrical dischargemachining process. Int. J. Adv. Manuf. Technol. 2018, 97, 1687–1696. [Google Scholar] [CrossRef]
- Fonseca, J.; Marafona, J.D. The effect of deionisation time on the electrical discharge machining performance. Int. J. Adv. Manuf. Technol. 2014, 71, 471–481. [Google Scholar] [CrossRef]
- Hayakawa, S.; Sasaki, S.; Itoigawa, F.; Nakamura, T. Relationship between occurrence of material removal and bubble expansion in electrical discharge machining. Procedia CIRP 2013, 6, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, S.; Kusafuka, Y.; Itoigawa, F.; Nakamura, T. Observation of material removal from discharge spot in electrical discharge machining. Procedia CIRP 2016, 42, 12–17. [Google Scholar] [CrossRef]
- Colpo, P. Determination of the equivalent circuit of inductively coupled plasma sources. J. Appl. Phys. 1999, 85, 1366. [Google Scholar] [CrossRef]
- Valery, A.; Godyak, R.B.P.B. Electrical characteristics of parallel-plate RF discharges in Argon. IEEE Transac. Plasma Sci. 1991, 19, 4. [Google Scholar]
- Arneodo, A.; Coullet, P.; Tresser, C. Oscillators with chaotic behavior: An illustration of a theorem by shil’nikov. J. Stat. Phys. 1982, 27, 171–182. [Google Scholar] [CrossRef]
- Sun, F.Y. Shil’nikovheteroclinic orbits in a chaotic system. Int. J. Mod. Phys. B 2007, 21, 4429–4436. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, H.; Zuo, X.; Yang, J. Chaotic characteristics of measured temperatures during sliding friction. Wear 2014, 317, 17–25. [Google Scholar] [CrossRef]
- Modica, F.; Guadagno, G.; Marrocco, V.; Fassi, I. Evaluation of micro-EDM milling performance using pulse discrimination. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, NY, USA, 17–20 August 2014. [Google Scholar]
- Dauw, D.F.; Snoeys, R.; Dekeyser, W. Advanced pulse discriminating system for EDM process analysis and control. CIRP Annals 1983, 32, 541–549. [Google Scholar] [CrossRef]
- Gollub, J.P.; Swinney, H.L. Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 1975, 35, 927. [Google Scholar] [CrossRef]
- Vojnović, B.; Michieli, I. Detecting noise in chaotic signals through principal component matrix transformation. J. Comput. Inf. Tech. 2003, 11, 55–66. [Google Scholar]
- Marrocco, V.; Modica, F.; Fassi, I. Analysis of discharge pulses in micro-EDM milling of Si3N4-TiN composite workpiece by means of power spectral density (PSD). J. Manuf. Process. 2019, 43, 112–118. [Google Scholar] [CrossRef]
- Li, T.Y.; Yorke, J.A. Period three implies chaos. Am. Math. Mon. 1975, 82, 985–992. [Google Scholar] [CrossRef]
- Fan, X.; Li, S.; Tian, L. Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model. Expert. Syst. Appl. 2015, 42, 3945–3952. [Google Scholar] [CrossRef]
- Silva, R.; Araújo, A. The Deterministic nature of sensor-based information for condition monitoring of the cutting process. Machines 2021, 9, 270. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Physica D 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Hayakawa, S.; Minoura, K.; Itoigawa, F.; Nakamura, T. Study on material removal mechanism in EDM process through observation of resolidification of molten metal. Procedia CIRP 2018, 68, 266–271. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Workpiece | No. 45 steel |
Thickness | 30 mm |
Electrode tool (wire) | Mo (diameter 0.18 mm) |
Wire Speed | 11.8 ms−1 |
Voltage | 100 V |
Dielectric medium | Water-based EDM oil |
Pulse on time | 48 μs |
P-ratio | 6 |
Power amplifier | 3 (tool number) |
Data Length | StableSpark Discharge | Unstable Spark Discharge | Transient Arc Discharge | Stable Arc Discharge |
---|---|---|---|---|
500 | 0.0011 | 0.0022 | 0.0016 | 0.0020 |
800 | 0.0011 | 0.0026 | 0.0016 | 0.0021 |
1100 | 0.0027 | 0.0025 | 0.0019 | 0.0022 |
1500 | 0.0023 | 0.0025 | 0.0021 | 0.0020 |
2000 | 0.0027 | 0.0026 | 0.0019 | 0.0022 |
Set | Stable Spark Discharge | Unstable Spark Discharge | Transient Arc Discharge | Stable Arc Discharge | ||||
---|---|---|---|---|---|---|---|---|
NA | A | NA | A | NA | A | NA | A | |
1 | 0.0066 | 0.0025 | 0.0026 | 0.0026 | 0.0053 | 0.0023 | 0.0039 | 0.0025 |
2 | 0.0075 | 0.0027 | 0.0032 | 0.0021 | 0.0060 | 0.0021 | 0.0047 | 0.0024 |
3 | 0.0066 | 0.0030 | 0.0026 | 0.0029 | 0.0053 | 0.0023 | 0.0039 | 0.0027 |
4 | 0.0062 | 0.0031 | 0.0029 | 0.0020 | 0.0058 | 0.0020 | 0.0040 | 0.0021 |
5 | 0.0063 | 0.0027 | 0.0031 | 0.0026 | 0.0057 | 0.0021 | 0.0043 | 0.0022 |
6 | 0.0071 | 0.0019 | 0.0031 | 0.0030 | 0.0055 | 0.0024 | 0.0040 | 0.0025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wang, Z.; Wang, L.; Li, B.-H.; Wang, B. The Existence of Autonomous Chaos in EDM Process. Machines 2022, 10, 252. https://doi.org/10.3390/machines10040252
Wang P, Wang Z, Wang L, Li B-H, Wang B. The Existence of Autonomous Chaos in EDM Process. Machines. 2022; 10(4):252. https://doi.org/10.3390/machines10040252
Chicago/Turabian StyleWang, Peng, Zhuo Wang, Lihui Wang, Bo-Hu Li, and Binxiu Wang. 2022. "The Existence of Autonomous Chaos in EDM Process" Machines 10, no. 4: 252. https://doi.org/10.3390/machines10040252
APA StyleWang, P., Wang, Z., Wang, L., Li, B. -H., & Wang, B. (2022). The Existence of Autonomous Chaos in EDM Process. Machines, 10(4), 252. https://doi.org/10.3390/machines10040252