Numerical Investigation of Effect of Drum Barrel on Coal-Loading Performance of Thin-Coal-Seam Shearer Machines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Discrete Element Method (DEM)
2.1.1. Hertz–Mindlin (HM) Model
2.1.2. Bonding-Particle (BP) Model
2.2. Parameter Calibration
2.2.1. Particle Shape
2.2.2. Restitution Coefficient Test
2.2.3. Sliding Test
2.2.4. Angle of Repose (AoR) Test
2.3. Establishment of Numerical Model
2.3.1. Establishment of Geometry Model and Coal Wall
2.3.2. Division of Statistical Zone
2.4. Numerical Model Verification
3. Results
3.1. The Effect of Barrel on Coal-Loading Process under Ejection Conditions
3.1.1. The Distribution of Particles in Different Areas
3.1.2. The Effect of Barrel on Loading Rate and Particles’ Axial Velocity
3.1.3. The Effect of the Barrel on the Loading Rate of Particles with Different Web Depths
3.2. The Effect of Barrel on Coal-Loading Process under Pushing Conditions
3.2.1. The Distribution of Particles in Different Areas
3.2.2. The Effect of Barrel Diameter on Particles’ Loading Rate and Axial Velocities
3.2.3. The Effect of Barrel Diameter on Particles with Different Web Depths
3.3. Comparison of Conveying Process under Ejection and Pushing Conditions
3.3.1. Comparison of Loading Rate under Ejection and Pushing Conditions
3.3.2. Comparison of Particles’ Axial Velocities under Ejection and Pushing Conditions
3.3.3. Comparison of Conveying Performance for Particles with Different Web Depths under Ejection and Pushing Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Song, X.; Liu, Y. China’s coal consumption in a globalizing world: Insights from Multi-Regional Input-Output and structural decomposition analysis. Sci. Total Environ. 2020, 711, 134790. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Jiang, K.; Gao, K.; Zeng, Q.; Zhang, X. Research of response difference on coal cutting load under different cutting parameters. Stroj. Vestn. J. Mech. Eng. 2019, 65, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Eshaghian, O.; Hoseinie, S.H.; Maleki, A. Multi-attribute failure analysis of coal cutting picks on longwall shearer machine. Eng. Fail. Anal. 2021, 120, 105069. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Ge, S.; Malekian, R.; Li, Z.; Li, Y. A study on drum cutting properties with full-scale experiments and numerical simulations. Meas. J. Int. Meas. Confed. 2018, 114, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Zhang, X.; Wan, L.; Zeng, Q.; Ge, H. Dynamic analysis of shearer traction unit considering the longitudinal swing. Energies 2020, 13, 5293. [Google Scholar] [CrossRef]
- Wan, L.; Ma, D.; Zhang, X. Research on Meshing Characteristics of Shearer Walking Wheel Based on Rigid-Flexible Coupling. Math. Probl. Eng. 2020, 2020, 8301086. [Google Scholar] [CrossRef]
- Kotwica, K.; Stopka, G.; Gospodarczyk, P. Simulation tests of new solution of the longwall shearer haulage system. IOP Conf. Ser. Mater. Sci. Eng. 2019, 679, 012002. [Google Scholar] [CrossRef]
- Gospodarczyk, P. Modeling and Simulation of Coal Loading by Cutting Drum in Flat Seams. Arch. Min. Sci. 2016, 61, 365–379. [Google Scholar] [CrossRef]
- Tian, Z.; Jing, S.; Zhao, L.; Liu, W.; Gao, S. Numerical simulation on coal loading process of shearer drum based on discrete element method. Energy Explor. Exploit. 2021, 36, 1919–1938. [Google Scholar] [CrossRef]
- Gao, K. Study on Coal Loading Performance of Thin Coal Seam Shearer; China University of Mining & Technology: Xuzhou, China, 2014. [Google Scholar]
- Ayhan, M. Investigation into the Cutting and Loading Performance of Drum Sheaerer in OAL Mine; The University of Hacettepe: Ankara, Turkey, 1994. [Google Scholar]
- Bołoz, Ł. Unique project of single-cutting head longwall shearer used for thin coal seams exploitation. Arch. Min. Sci. 2013, 58, 1057–1070. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Zhang, X.; Jiang, K.; Yang, Y.; Yin, G.; Liu, B. An Applied Model of Minimum Rotating Speed for Drum Shearer to Avoid Drum Clogging. J. Eng. Res. 2019, 7, 1–19. [Google Scholar] [CrossRef]
- Wydro, T. Influence of the plow filling and thread angle onto the plow head efficiency. Arch. Min. Sci. 2015, 60, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- López, A.; Vivacqua, V.; Hammond, R.; Ghadiri, M. Analysis of screw feeding of faceted particles by discrete element method. Powder Technol. 2020, 367, 474–486. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Tian, R.; Wang, R.; Wang, X.; Sun, Q.; Fan, J. Numerical simulation of particle flow behavior in a screw conveyor using the discrete element method. Particuology 2019, 43, 137–148. [Google Scholar] [CrossRef]
- Wang, S.; Ji, Y.; Wang, S.; Chen, Y.; Tian, R.; Ma, Y.; Sun, Q. Comparison of computational fluid dynamics–discrete element method and discrete element method simulations for a screw conveyor. Asia-Pac. J. Chem. Eng. 2020, 15, e2394. [Google Scholar] [CrossRef]
- Han, Y.; Jia, F.; Zeng, Y.; Jiang, L.; Zhang, Y.; Cao, B. DEM study of particle conveying in a feed screw section of vertical rice mill. Powder Technol. 2017, 311, 213–225. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Li, J.; Wang, Q.; Wang, Y.; Yu, Y. Simulation study on interaction coefficient of DEM in non–spherical large size (5–30 mm) coal particles. Particuology 2020, 53, 142–153. [Google Scholar] [CrossRef]
- Yang, D.; Li, G.; Wang, Y.; Wang, Q.; Li, J.; Huang, Q.; Xia, Y.; Li, Q. Prediction of Horizontal Pneumatic Conveying of Large Coal Particles Using Discrete Phase Model. Adv. Mater. Sci. Eng. 2020, 2020, 1967052. [Google Scholar] [CrossRef]
- Yang, D.; Xing, B.; Li, J.; Wang, Y.; Hu, N.; Jiang, S. Experiment and simulation analysis of the suspension behavior of large (5–30 mm) nonspherical particles in vertical pneumatic conveying. Powder Technol. 2019, 354, 442–455. [Google Scholar] [CrossRef]
- Li, K.; Kuang, S.B.; Pan, R.H.; Yu, A.B. Numerical study of horizontal pneumatic conveying: Effect of material properties. Powder Technol. 2014, 251, 15–24. [Google Scholar] [CrossRef]
- Zhou, M.; Kuang, S.; Luo, K.; Zou, R.; Wang, S.; Yu, A. Modeling and analysis of flow regimes in hydraulic conveying of coarse particles. Powder Technol. 2020, 373, 543–554. [Google Scholar] [CrossRef]
- Kuang, S.; Zhou, M.; Yu, A. CFD-DEM modelling and simulation of pneumatic conveying: A review. Powder Technol. 2020, 365, 186–207. [Google Scholar] [CrossRef]
- Takabatake, K.; Mori, Y.; Khinast, J.G.; Sakai, M. Numerical investigation of a coarse-grain discrete element method in solid mixing in a spouted bed. Chem. Eng. J. 2018, 346, 416–426. [Google Scholar] [CrossRef]
- Van Wyk, G.; Els, D.N.J.; Akdogan, G.; Bradshaw, S.M.; Sacks, N. Discrete element simulation of tribological interactions in rock cutting. Int. J. Rock Mech. Min. Sci. 2014, 65, 8–19. [Google Scholar] [CrossRef]
- Su, O.; Ali Akcin, N. Numerical simulation of rock cutting using the discrete element method. Int. J. Rock Mech. Min. Sci. 2011, 48, 434–442. [Google Scholar] [CrossRef]
- Xuefeng, L.; Shibo, W.; Shirong, G.; Malekian, R.; Zhixiong, L. Investigation on the influence mechanism of rock brittleness on rock fragmentation and cutting performance by discrete element method. Meas. J. Int. Meas. Confed. 2018, 113, 120–130. [Google Scholar] [CrossRef]
- Gao, K.; Wang, L.; Du, C.; Li, J.; Dong, J. Research on the effect of dip angle in mining direction on drum loading performance: A discrete element method. Int. J. Adv. Manuf. Technol. 2017, 89, 2323–2334. [Google Scholar] [CrossRef]
- Gao, K. Feasibility of drum coal loading process simulation using three-dimension discrete element method. Eletron. J. Geotech. Eng. 2015, 20, 5999–6007. [Google Scholar]
- Gao, K.; Zhang, X.; Sun, L.; Zeng, Q.; Jiang, K. Complex Effects of Drum Hub Forms and Structural Parameters on Coal Loading Performance. Complexity 2020, 2020, 7036087. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Zeng, Q.; Gao, K.; Jiang, K.; Zhou, J. Application of a screw conveyor with axial tilt blades on a shearer drum and investigation of conveying performance based on DEM. Particuology 2021, 61, 91–102. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Coetzee, C. Calibration of the discrete element method: Strategies for spherical and non-spherical particles. Powder Technol. 2020, 364, 851–878. [Google Scholar] [CrossRef]
- Coetzee, C.J. Review: Calibration of the discrete element method. Powder Technol. 2017, 310, 104–142. [Google Scholar] [CrossRef]
- Fu, L.; Wang, K.; Hu, B.; van Xo, N. Conveying performance of drilling tool of auger miner at different strike angles based on discrete element method. Powder Technol. 2021, 378, 202–215. [Google Scholar] [CrossRef]
- Fu, L. Study on Cutting and Conveying Performance of Novel Auger Miner Drilling Tool. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2016. [Google Scholar]
Material | Density/kg/m3 | Poisson’s Ratio | Young’s Modulus/GPa |
---|---|---|---|
Coal | 1.28 × 103 | 0.28 | 4.25 |
Steel | 7.85 × 103 | 0.30 | 2.06 × 102 |
Interaction | Restitution coefficient | Sliding friction | Rolling friction |
Coal–Coal | 0.5 | 0.80 | 0.10 |
Coal–Steel | 0.5 | 0.51 | 0.05 |
Web Depth/mm | 0–150 | 150–300 | 300–450 | 450–600 | 600–750 | 750–900 |
Difference of loading rate/% | 1.952 | 3.558 | 4.044 | 4.150 | 3.458 | 2.449 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gao, K.; Zeng, Q.; Lin, L.; Wu, T.; Sun, L. Numerical Investigation of Effect of Drum Barrel on Coal-Loading Performance of Thin-Coal-Seam Shearer Machines. Machines 2022, 10, 253. https://doi.org/10.3390/machines10040253
Zhang X, Gao K, Zeng Q, Lin L, Wu T, Sun L. Numerical Investigation of Effect of Drum Barrel on Coal-Loading Performance of Thin-Coal-Seam Shearer Machines. Machines. 2022; 10(4):253. https://doi.org/10.3390/machines10040253
Chicago/Turabian StyleZhang, Xiaodi, Kuidong Gao, Qingliang Zeng, Lisong Lin, Tianjiao Wu, and Liqing Sun. 2022. "Numerical Investigation of Effect of Drum Barrel on Coal-Loading Performance of Thin-Coal-Seam Shearer Machines" Machines 10, no. 4: 253. https://doi.org/10.3390/machines10040253
APA StyleZhang, X., Gao, K., Zeng, Q., Lin, L., Wu, T., & Sun, L. (2022). Numerical Investigation of Effect of Drum Barrel on Coal-Loading Performance of Thin-Coal-Seam Shearer Machines. Machines, 10(4), 253. https://doi.org/10.3390/machines10040253