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Abstract: Recently, even though 3D bioprinting has made it possible to fabricate 3D artificial tis-
sues/organs, it still faces several significant challenges such as cell sedimentation and aggregation.
As the essential element of 3D bioprinting, bioink is usually composed of biological materials and
living cells. Guided by the initially dominant gravitational force, cells sediment, resulting in the
non-uniformity of the bioink and the decrease in the printing reliability. This study primarily focuses
on the quantification of cell sedimentation-induced cell concentration change and cell aggregation
within the bioink reservoir during inkjet-based bioprinting. The major conclusions are summarized
as follows: (1) with 0.5% (w/v) sodium alginate, after around 40-min printing time, almost all the cells
have sedimented from the top region. The cell concentration at the bottom is measured to be more
than doubled after 60-min printing time. On the contrary, due to the slow cell sedimentation velocity
with 1.5% and 3% (w/v) sodium alginate, the uniformity of the bioink is still highly maintained after
60-min printing; and (2) more cell aggregates are observed at the bottom with the printing time,
and severe cell aggregation phenomenon has been observed at the bottom using 0.5% (w/v) sodium
alginate starting from 40-min printing time. With the highest cell concentration 2 × 106 cells/mL,
60.9% of the cells have formed cell aggregates at 40-min printing time. However, cell aggregation is
dramatically suppressed by increasing the polymer concentration.

Keywords: inkjet-based bioprinting; cell sedimentation; cell aggregation; cell concentration; polymer
concentration; printing reliability

1. Introduction

Additive manufacturing, also known as three-dimensional (3D) printing, has ex-
perienced significant development since 1986 [1]. Later, originating from 3D printing
technologies, the concept of 3D bioprinting–the aim of which is to simultaneously deposit
biological materials and living cells–was presented [2]. The appearance of 3D bioprinting
has made it possible to fabricate 3D-engineered tissues/organs using a layer-by-layer de-
position mechanism. Bioink, which is a mixture of biological materials and living cells, is
the key element of 3D bioprinting [3]. Ideally, biological materials mimicking extracellular
matrix (ECM) should hold several attributes such as suitable printability, biodegradability,
biocompatibility, mechanical properties, and crosslinking mechanism, to name a few [4].
Due to the similarity to a natural tissue environment, hydrogels with the desired properties
have been preferred for 3D bioprinting [5]. Currently, the existing hydrogels can be mainly
divided into two categories including natural hydrogels such as fibrin [6] and collagen [7],
and synthetic hydrogels such as poly (ethylene glycol) (PEG) [8] and poly (lactic acid)
(PLA) [9]. As the other key component of the bioink, several cell sources, including but not
limited to human pluripotent stem cells (hPSCs) [10] and human vascular endothelial cells
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(HUVECs) [11], have become involved in the fabrication of 3D functional tissues/organs
such as skin [12] and heart valves [13].

The typical 3D bioprinting techniques for depositing the bioink into the 3D desired
structures can be classified into inkjet-based bioprinting, microextrusion-based bioprinting,
laser-assisted bioprinting, and stereolithography-based bioprinting [14]. Relying on thermal
or piezoelectric expansion, inkjet-based bioprinting accurately delivers a small size and
volume of cell-laden droplets at predefined locations onto a substrate [15]. As the other
type of nozzle-based bioprinting, microextrusion-based bioprinting extrudes continuous
filament out of the micro-sized nozzle, relying on pneumatic or mechanical force, which
is used as the building block for the fabrication of the 3D structures [16]. During laser-
assisted bioprinting, a laser beam is exposed onto the energy-absorbing layer to generate
enough pressure to eject cell-laden droplets, which are later deposited onto the substrate
to form the desired constructs [17]. In stereolithography-based bioprinting–a recently
maturing technique–the crosslinking of photosensitive materials is controlled by digital
micromirror arrays to form the targeted constructs upon ultraviolet (UV)/visible light
exposure [18]. Among the four bioprinting techniques, inkjet-based bioprinting has been
favored for various applications due to its high printing resolution and cell viability,
precise control of the deposition of the cell-laden droplets, and unique noncontact delivery
mechanism [19,20].

The uniformity of the cell distribution is of great importance to the functionality of the
3D bioprinted constructs. Cells are expected to be uniformly distributed both within the
cell-laden droplets during printing and the post-printing microspheres [21]. However, due
to the density difference between the living cells and the polymer solution, especially within
the polymer solution with low density and viscosity, the gravitational force is not fully
balanced by the buoyant force, resulting in cell sedimentation and the non-uniformity of the
cell distribution within the bioink. Cell sedimentation, which breaks the uniformity of cell
distribution and thus affects the printing performance, has been recognized as a significant
factor affecting printing performance. Indeed, several studies have reported the negative
effect of cell sedimentation on printing performance. For example, Saunders et al. have
observed an unstable printing process caused by cell sedimentation [22]. Later, Saunders
and Derby reported an uneven cell output and pointed out the importance of addressing
the cell sedimentation problem to improve the printing performance [23]. Recently, there
have been several studies focusing on the characterization of the cellular sedimentation
behaviors. For instance, Xu et al. have recently presented a comprehensive study on cell
sedimentation behaviors during inkjet-based bioprinting of cell-laden droplets [24]. Cell
sedimentation velocity was found to be inversely correlated with polymer concentration,
the local cell concentration at the bottom of the bioink reservoir was consistently increased
due to the accumulation of cells, and the cell aggregation phenomenon was observed after
long-time printing.

Due to cell sedimentation, the local cell concentration at the bottom of the bioink
reservoir is increased, resulting in the decrease in the distance between adjacent cells and the
increase in the probability of enhancing cell aggregation [25]. Similar to cell sedimentation,
the cell aggregation phenomenon–which is more frequently observed within the bioink
with low viscosity–has been widely documented to have a negative effect on printing
performance [26]. For example, Parsa et al. observed cell aggregates with the largest size of
more than 200 µm [27]. Zhang et al. reported that cell aggregation may cause an anomaly in
the jetting behaviors by changing the viscosity of the bioink [28]. Similarly, cell aggregates
have also been proved to result in the non-straight jetting trajectories during laser-induced
forward transfer (LIFT) [29]. Peppers et al. reported an uneven cell output especially due
to cell aggregation [30]. Furthermore, for nozzle-based bioprinting such as inkjet-based
bioprinting, the nozzle would be clogged by a large size of cell aggregates and continuous
jetting would then be prohibited [31]. Therefore, cell sedimentation and the resulting cell
aggregation are two critical factors significantly affecting printing performance [32].
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Although several studies have studied cell sedimentation behaviors such as cell sed-
imentation velocity and emphasized the adverse effects of cell sedimentation and cell
aggregation on the printing performance, a detailed study primarily focusing on the char-
acterization of cell concentration change and aggregation induced by cell sedimentation is
still missing. This study is one of the first studies primarily focusing on the characterization
of cell concentration change and cell aggregation that are mainly due to cell sedimentation.
In this study, cell concentrations at the top, middle, and bottom regions of the bioink
reservoir are measured after different printing times. In addition, the percentage of cells
forming cell aggregates or remaining as individual cells at the bottom of the bioink reservoir
are characterized after different printing times, respectively. Different cell concentrations
at different regions of the bioink reservoir and the formation of cell aggregates with the
printing time demonstrate the non-uniformity of the cells. The remaining sections of this
paper are listed as follows: Section 2 clearly lists the experimental conditions and presents
the approach for characterizing cell concentration and cell aggregation; Section 3 presents
the major findings from this study; and Section 4 draws the major conclusions for this study
and presents the future work.

2. Materials and Methods
2.1. Bioink Preparation

Bioink is usually composed of two major components including hydrogel solutions
and living cells [33]. Specifically, in this study, high-water content sodium alginate was
selected to imitate natural ECM–providing the suitable environment to favor cell attach-
ment, proliferation, and differentiation [34]–and 3T3 fibroblasts were selected as the model
cells. Briefly, the bioink is prepared by dispersing the living cells into the prepared
hydrogel solution following the protocol: (1) prepare the sodium alginate solution by
fully mixing sodium alginate powder (Sigma-Aldrich, St. Louis, MO, USA) within Dul-
becco’s Modified Eagles Medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA); (2) collect
the cells from the culturing flask; and (3) re-suspend the collected cells within the pre-
pared sodium alginate solution to prepare the bioink with the desired cell concentration.
More detailed information can be found in our previous paper [35]. Since cell sedimen-
tation velocity is reported to be inversely correlated with polymer concentration, 0.5%,
1.5%, and 3% (w/v) sodium alginate were specifically selected in this study to represent
high, medium, and low cell sedimentation velocity, respectively [24], while 1, 1.5, and
2 × 106 cells/mL cell concentration were selected to represent low, medium, and high
chance of cell aggregation, respectively.

2.2. Experimental Setup

Inkjet-based bioprinting is selected for this study, and its schematic diagram is repre-
sentatively shown in Figure 1. Briefly, the inkjet-based bioprinting system mainly contains
several components including a piezoactuator-attached inkjet nozzle, a waveform generator,
a pneumatic controller, a bioink reservoir connected to the inkjet nozzle, a high-resolution
horizontal imaging system, and a substrate collecting the cell-laden droplets. The detailed
function of each component has been provided in our previous studies [36,37]. During
inkjet-based bioprinting, cells tend to sediment due to the insufficient buoyant force pro-
vided by the solution, and the sedimentation velocity is dependent on several factors such
as the cell mass density and the polymer concentration. Due to consistent cell sedimen-
tation, cell concentration at the bottom is supposed to consistently increase, while that at
the top is supposed to consistently decrease. Regarding the middle region, it is a more
complicated case since it is both receiving the cells sedimenting from the higher positions
and losing cells sedimenting to the lower positions. Therefore, the cell concentration at
the middle region of the bioink reservoir becomes dependent on the net gain/loss of the
cells. The cell concentration at the top, middle, and bottom regions was characterized after
20-, 40-, and 60-min printing time, respectively. The cell concentration was measured by
injecting small volume of bioink into a hemocytometer. For each experimental condition,
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the counting of cell concentration and was repeated three times to take the average and
reduce random error.
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2.3. Cell Aggregation Characterization

With cell sedimentation, more and more cells accumulate at the bottom of the bioink
reservoir resulting in a significant increase in the cell concentration. Once the number
of cells at the bottom increases significantly, the distance between adjacent cells will be
shortened, increasing the probability of cell aggregation [38]. After cell aggregates are
formed, cells will exist as one of the three following modes: individual cells, small cell
aggregates containing 2–4 individual cells, or large cell aggregates containing at least five
individual cells. The percentage of the cells still existing as individual cells (ic%), the
percentage of cells forming small aggregates (sa%), and the percentage of cells forming
large aggregates (la%) was characterized using the formula as follows, respectively:

ic% =
∑a=1 ab
∑c

a=1 ab
× 100% (1)

sa% =
∑4

a=2 ab
∑c

a=1 ab
× 100% (2)

la% =
∑c

a=5 ab
∑c

a=1 ab
× 100% (3)

where a denotes the number of the cells existing as individual cells or constituting cell
aggregates, b denotes the associated counting frequency of individual cells or cell aggre-
gates, and c denotes the number of cells constituting the largest cell aggregate. In this
study, the percentages of cells remaining as individual cells and becoming partial of the
cell aggregates were characterized at the bottom region of the bioink reservoir after 20-, 40-,
and 60-min printing time, respectively. For each condition, the experiment was repeated
three times to take the average and calculate the standard deviation, where a higher stan-
dard deviation demonstrates a wider range out of the mean value and a smaller standard
deviation demonstrates the experimental values are close to the mean value.

3. Results and Discussion

During inkjet-based bioprinting, bioink with low polymer concentration and cell
concentration is commonly selected to avoid nozzle clogging and ensure the printing per-
formance. Thus, driven by the dominant gravitational force, cells firstly accelerate to obtain
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a cell sedimentation velocity, and then sediment with the achieved velocity after reaching
a force equilibrium state. Therefore, cells consistently sediment and accumulate at the
bottom of the reservoir. In addition, cells accumulating at the bottom of the bioink reservoir
causes the distance between adjacent cells to reduce, resulting in the enhancement of cell–
cell interaction and increasing the probability of cell aggregation. Specifically, Section 3.1
will primarily focus on cell sedimentation-induced local cell concentration change at the
top, middle, and bottom region after 20-, 40-, and 60-min, using the bioink composed of
different polymer and cell concentrations. Section 3.2 will present the experimental results
on the characterization of the existing forms of cells (either still existing as individual cells
or becoming a component of cell aggregates) at the bottom of the bioink reservoir using
different combinations of the bioink after different printing times.

3.1. Cell Concentration Change Due to Cell Sedimentation

During inkjet-based bioprinting of the bioink with low polymer concentration, the
buoyant force provided by the fluid is not sufficient to counteract the gravitational force.
Hence, cells are accelerating and achieving a cell sedimentation velocity until the gravita-
tional force is balanced. Generally, cell sedimentation causes the cells to leave the higher
positions and accumulate at the lower positions, resulting in the non-uniformity of the cell
distribution within the bioink reservoir. With the printing time, the top region will have
a lower cell concentration due to cell loss, and the bottom region will have a higher cell
concentration due to cell accumulation. The cell concentration at the middle region will be
determined by the net gain/loss of cells since there will be both cells receiving from the
higher regions and cells leaving to the lower regions. If there are more receiving cells, then
the cell concentration at the middle region will be increased. On the contrary, if there are
more leaving cells, then the cell concentration at the middle region will be decreased. In
this section, cell concentrations at different regions of the bioink reservoir after different
printing time are characterized using different bioinks, respectively. Specifically, three
levels of polymer concentrations including 0.5%, 1.5%, and 3% (w/v) sodium alginate and
three levels of cell concentration including 1, 1.5, and 2 × 106 cells/mL are selected to mix
the bioink.

The cell concentrations measured at different regions after different printing time
using the bioink with 0.5%, 1.5%, and 3% (w/v) sodium alginate are reflected in
Figures 2–4, respectively. Among the three selected polymer concentrations including
0.5%, 1.5%, and 3% (w/v) sodium alginate, the lowest polymer concentration 0.5% (w/v)
sodium alginate provides the highest cell sedimentation velocity regardless of the cell
concentration. Therefore, within the same printing time, the difference between the number
of cells at the bottom and top region using 0.5% (w/v) shown in Figure 2 is the largest,
while the difference between the number of cells at the bottom and top region representing
3% (w/v) sodium alginate shown in Figure 4 is the least, and that of 1.5% (w/v) sodium
alginate is at the intermediate level. For example, as shown in Figure 2a, for the bioink
composed of 0.5% (w/v) sodium alginate with an initial cell concentration of
1 × 106 cells/mL, the initial cell concentration at every region of the bioink reservoir
is measured to be close enough to 1 × 106 cells/mL due to the well stirring during the
bioink preparation process. The cell concentration at the top, middle, and bottom region
of the bioink reservoir after 20-min sedimentation is measured to be 0.72 × 106 cells/mL,
1.07 × 106 cells/mL, and 1.45 × 106 cells/mL, respectively. On the contrary, as shown
in Figure 3a, the cell concentration of those regions using 1.5% (w/v) is measured to be
0.81 × 106 cells/mL, 0.96 × 106 cells/mL, and 1.24 × 106 cells/mL, respectively; and the
cells are still distributed quite evenly with 3% (w/v) sodium alginate shown in Figure 4a,
with a cell concentration of 0.95 × 106 cells/mL, 0.98 × 106 cells/mL, and
1.03 × 106 cells/mL, respectively.
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As printing proceeds, the majority of the cells using the bioink composed of 0.5%
(w/v) sodium alginate have been observed to leave the top region, leaving few cells re-
maining at the top region after around 40-min printing time. For example, as shown in
Figure 2a, after 40-min printing, the cell concentration measured at the top region is only
0.11 × 106 cells/mL, which is only 11% of the initial cell concentration of 1 × 106 cells/mL.
With more cells leaving the top region and accumulating at the bottom region, the difference
in the cell concentration between the top and bottom region becomes more pronounced.
For the initial cell concentration of 1 × 106 cells/mL, as shown in Figure 2a, the cell con-
centration at the top, middle, and bottom region is measured to be 0.05 × 106 cells/mL,
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1.03 × 106 cells/mL, and 2.06 × 106 cells/mL after 60-min printing, respectively, demon-
strating a large difference between the cell concentration at the top and bottom region due
to cell sedimentation. It is obvious that the cell concentration using 0.5% (w/v) sodium
alginate at the bottom of the bioink reservoir is more than doubled after 60-min print-
ing. Similarly, the local cell concentration at the bottom has increased significantly from
1.5 × 106 cells/mL to 3.05 × 106 cells/mL shown in Figure 2b, and from 2 × 106 cells/mL to
4.53 × 106 cells/mL shown in Figure 2c, for the initial cell concentration of
1.5 × 106 cells/mL and 2 × 106 cells/mL, respectively. It is obvious that the local cell
concentration shown in Figure 2c has the largest increase for 2 × 106 cells/mL cell concen-
tration and 0.5% (w/v) cell concentration. One reasonable explanation is cell aggregation,
since a larger cell concentration generally reduces the distance between adjacent cells,
resulting in the increase in the probability of cell aggregation and cell aggregates with a
larger size sediment with a higher rate, compared to individual cells resulting in more cells
accumulating at the bottom within the same printing time.

For 1.5% and 3% (w/v) sodium alginate, the cell concentration decrease at the top
of the bioink reservoir and the cell concentration increase at the bottom of the bioink
reservoir are both far less compared to 0.5% (w/v) sodium alginate due to the smaller cell
sedimentation velocity as reported in Xu’s study [24]. For example, using the bioink
with 1.5% (w/v) sodium alginate and a cell concentration of 1.5 × 106 cells/mL, as
shown in Figure 3b, the maximum increase in the cell concentration at the bottom is
only 28% with an increase from 1.5 × 106 cells/mL to 1.92 × 106 cells/mL, and the
maximum decrease at the top is only 16.7% with a decrease from 1.5 × 106 cells/mL to
1.25 × 106 cells/mL within 60-min printing time. For the highest polymer concentration in
this study, 3% (w/v) sodium alginate provides the largest buoyant force attempting to bal-
ance the dominant gravitational force, and thus maximally suppresses cell sedimentation.
Therefore, the cell distribution remains the most uniform within the three selected polymer
concentrations. For instance, using the bioink containing 3% (w/v) sodium alginate and a
cell concentration of 2 × 106 cells/mL, shown in Figure 4c, within 60-min printing, there
is only a 13% decrease in the cell concentration at the top region, demonstrating that only
13% of the cells have left the top region and sedimented to lower positions. Meanwhile,
there is only a 17% increase in the cell concentration at the bottom, resulting in the cell
concentration increase from 2 × 106 cells/mL to 2.34 × 106 cells/mL. Therefore, despite the
effect of cell sedimentation, the cell distribution within the bioink reservoir using 1.5% and
3% (w/v) sodium alginate is still maintained at a relatively high level, while the uniformity
of the cell distribution within the bioink composed of 0.5% (w/v) sodium alginate is sig-
nificantly reduced. In addition, from the comparison of the standard deviation shown in
Figures 2–4, it is obvious that the standard deviation in Figure 2 is far larger than that in
Figures 3 and 4, indicating a larger discrepancy using 0.5% (w/v) sodium alginate, es-
pecially after long-time printing. However, the cell concentration at the middle region
remains relatively constant due to the consistent receiving cells from the upper regions
despite its loss of cells. To conclude, when using the bioink composed of low polymer
concentrations such as 0.5% (w/v), there is a huge non-uniformity of the cell distribution
within the bioink reservoir, which is mainly due to cell sedimentation. However, for the
bioink composed of higher polymer concentrations such as 3% (w/v) sodium alginate, a
much more uniform cell distribution is maintained since higher polymer concentration
provides stronger resistance against cell sedimentation.

3.2. Cell Aggregation Due to Cell Sedimentation

As printing proceeds, cells are accumulating at the bottom of the bioink reservoir due
to cell sedimentation. Similar to the change in cell concentration, due to the loss of cells at
the top region, the difficulty of forming cell aggregates is increased. However, due to the
accumulation of cells at the bottom, the probability of cell aggregation is increased. During
the printing process, the bioink at the bottom of the bioink reservoir is firstly provided to
the inkjet nozzle for the formation of cell-laden droplets. Therefore, the cell aggregation at
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the bottom where cell concentration consistently increases due to the cell sedimentation is
the most critical. These formed cell aggregates, especially the large sized cell aggregates,
may fully change the overall printing performance (e.g., by changing the droplet formation
and the post-printing cell distribution). In this section, cell aggregation at the bottom of the
bioink reservoir after different printing time is characterized using the bioink composed of
three levels of polymer concentration and cell concentration, respectively.

Figures 5–7 representatively shows the cell aggregation percentage at the bottom and
different printing time using the bioink composed of 0.5%, 1%, and 1.5% (w/v) sodium
alginate, respectively. The cell sedimentation velocity is inversely correlated with poly-
mer concentration. Therefore, with the same initial cell concentration, the cell number at
the bottom is also inversely correlated with polymer concentration at the same printing
time, and thus cell aggregation is facilitated by a lower polymer concentration and sup-
pressed by a higher polymer concentration. For example, with an initial cell concentration of
1.5 × 106 cells/mL, 70% of the cells at the bottom region remain individual using
0.5% (w/v) sodium alginate at 40-min printing, however, this value increases to 76.4%
and 81.3% for 1.5% and 3% (w/v) sodium alginate, respectively. In addition to the facilita-
tion on cell aggregation using small polymer concentrations, cell aggregation phenomenon
becomes more severe for a higher cell concentration. For example, using the bioink com-
posed of 0.5% (w/v) sodium alginate and a cell concentration of 2 × 106 cells/mL, there are
only 37.1% of the cells at the bottom region still existing as individual cells after 60-min
printing compared to 42.7% for a cell concentration of 1.5 × 106 cells/mL and 49.3% for a
cell concentration of 1 × 106 cells/mL. In addition, 18.4% of the cells have already become
large cell aggregates for 2 × 106 cells/mL, while this value is only 11.8% and 9.2% for a cell
concentration of 1.5 × 106 cells/mL and 1 × 106 cells/mL, respectively. Cell aggregates
gradually form with the printing time using 1.5% and 3% (w/v) sodium alginate. However,
most of the cell aggregates are small cell aggregates composed of 2–4 individual cells with
rare large cell aggregates observed. Within a printing time of 60 min, only 1.45% and 1.2%
of the cells at the bottom are forming large cell aggregates for 1.5% and 3% (w/v) sodium
alginate using the bioink with 2 × 106 cells/mL cell concentration, respectively. Clearly,
within a 60-min printing time, polymer concentration has a more significant effect on cell
aggregation within the selected parameters. However, if higher cell concentrations are
selected (such as ~107 cells/mL) for 3D bioprinting, cell concentration may have a higher
impact on cell aggregation due to the significant reduction in cell–cell distance.
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Generally, the cell sedimentation and cell aggregation phenomenon become more
severe with longer printing time, and the effect of cell aggregation on the printing perfor-
mance becomes more significant when the bioink with a low viscosity is selected for 3D
bioprinting. Specifically, with more cells accumulating at the bottom and adhering together
to form cell aggregates with larger sizes, the printing reliability (e.g., the droplet formation
process during inkjet-based bioprinting) may become highly unstable, and the printing
quality (e.g., the post-printing cell distribution) may be dramatically decreased. Meanwhile,
when the size of the cell aggregates becomes comparable to that of the inkjet-dispenser
(e.g., 120 µm), the inkjet nozzle is blocked, and jetting is discontinued. Recently, researchers
have commenced studies focusing on the mitigation of cell sedimentation and aggregation.
Generally, there have been two main directions, including the addition of biocompatible
materials and consistently stirring the bioink during the printing process [38]. For example,
Chahal et al. attempted to mitigate cell sedimentation and maintain the stability of cell
suspensions by adding Ficoll PM400 [26]. It was reported that by adding a percentage of
10% to 15% Ficoll PM400, cells reached a neutral buoyancy state and cell sedimentation
was greatly suppressed. Parsa et al. continuously stirred the bioink within the bioink
reservoir during the printing process and successfully maintained the uniformity of the
cell distribution [27]. Even though both approaches have been reported to be effective
on the mitigation of cell sedimentation and aggregation, they also have their limitations.
For example, for the first approach attempting to mitigate cell sedimentation by adding
biocompatible materials may only work well for one specific cell type. When heteroge-
neous cell types are suspended within the bioink for the bioprinting of a construct with
complexities, this approach may not be effective on the mitigation of cell sedimentation and
aggregation of other cell types [38]. Meanwhile, for the second approach of consistently
stirring the bioink reservoir during the printing process, the cell viability has been reported
to reduce [27]. To conclude, existing approaches have limitations on the mitigation of cell
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sedimentation and the resulting cell aggregation. Therefore, a more effective approach
to better mitigate cell sedimentation and improve the printing performance is necessary.
For the future potential approaches, they should hold attributes such as the ability to
accommodate multiple cell types and maintain the cellular activities such as cell viability
and proliferation and differentiation ability.

4. Conclusions

This study primarily quantifies cell sedimentation-induced cell concentration change
and cell aggregation during inkjet-based bioprinting. Three concentrations of sodium
alginate including 0.5%, 1.5%, and 3% (w/v) are mixed with 3T3 fibroblasts to prepare
the bioink with three levels of cell concentrations: 1, 1.5, and 2 × 106 cells/mL. The cell
concentration at the top, middle, and bottom region of the bioink reservoir is measured
after 20-, 40-, and 60-min printing time, respectively; and the percentage of cells forming
cell aggregates at the bottom is characterized after 20-, 40-, and 60-min printing time, re-
spectively. The major conclusions are summarized as follows: (1) with 0.5% (w/v) sodium
alginate, after around 40-min printing time, almost all the cells have sedimented from the
top region. In addition, due to the cell accumulation at the bottom of the bioink reservoir,
the cell concentration is more than doubled after 60-min printing time. On the contrary,
due to the slow cell sedimentation velocity with 1.5% and 3% (w/v) sodium alginate,
the uniformity of the bioink is still highly maintained after 60-min printing, where the
least difference is between the cell concentration of 0.91 × 106 cells/mL at the top and
1.11 × 106 cells/mL at the bottom using 3% (w/v) sodium alginate; (2) more cell aggregates
are observed at the bottom as printing time increases, and severe cell aggregation phe-
nomenon has been observed at the bottom using 0.5% (w/v) sodium alginate starting from
40-min printing time. With the highest cell concentration 2 × 106 cells/mL, 60.9% of the
cells have formed cell aggregates at 40-min printing time compared to 4.3% at 0-min print-
ing time. However, cell aggregation is dramatically suppressed by increasing the polymer
concentration. With 3% (w/v) sodium alginate, only 31.4% of the cells at the bottom form
cell aggregates at 60-min printing time. Cell sedimentation and aggregation have been
broadly recognized as critical challenges significantly affecting the printing performance
during 3D bioprinting. The investigation of the consequences of cell sedimentation (e.g.,
cell concentration change and cell aggregation) are critical to better understand the cell
sedimentation and aggregation mechanism. Future work may include a more detailed
study on the effect of cell sedimentation and the resulting aggregation on the printing per-
formance by investigating their effects on the droplet formation process and post-printing
cell distribution.
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