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Abstract: This paper studies operator and fractional order nonlinear robust control for a spiral
counter-flow heat exchanger with uncertainties and disturbances. First, preliminary concepts are
presented concerning fractional order derivative and calculus, fractional order operator theory. Then,
the problem statement about nonlinear fractional order derivative equation with uncertainties is de-
scribed. Third, the design of an operator fractional order controller and fractional order PID controller
and determination of several related parameters is described. Simulations were performed to verify
tracking and anti-disturbance performance by comparison to different control cases; verification is
described and concluding remarks provided.

Keywords: nonlinear robust control; fractional order PID control; a spiral-plate heat exchanger;
operator & fractional order based nonlinear robust control; heat transfer

1. Introduction

Heat exchangers which transfer heat energy from one fluid to another have been used
widely in industrial applications such as refineries, chemical and petrochemical plants,
and sewage treatment [1]. Heat exchangers help to minimize energy consumption and
reduce waste heat emission. In industry, there are many different application types for heat
exchangers. A spiral heat exchanger, for instance, is suitable for dirty fluids and viscous
fluids and has the additional advantages of small size, high heat transfer efficiency, and
ease of maintenance, among others. In industrial processes, the output temperature of the
heated or cooled fluid often has certain requirements due to industry safety or product
quality [2–5]. Thus, it is important to control output temperature on the heated or cooled
fluid side in real-world applications. However, because the flow rate and fluid temperature
often change, it is very difficult to control the output temperature.

Fractional order derivatives as an extension of integer order derivatives have been
widely used to describe practical application objects following their first being proposed
by Leibniz in 1695 [6]. Although the use of integer order derivatives to describe dynamic
systems applications using traditional methods has a clear physical geometric interpre-
tation, in certain real-world applications dynamic systems described by fractional order
derivatives can be more accurate than those described by integer order derivatives; ex-
amples include viscoelastic systems, liquids, heat diffusion and dielectric polarization,
electrode-electrolyte polarization, nonlinear thermoelastic system etc. [7–11]. Thus, a heat
exchanger is suitable for description by fractional order derivative [12,13]. In a feedback
control system, a proportion integral derivative (PID) control with only three parameters
to tune is widely used thanks to its simple structure and high robustness. For nonlinear
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control systems with large delay times and disturbances, it is difficult to achieve good
control performance. Fractional order PID (FOPID) control extends the conventional PID
controller, having five parameters to tune and being more flexible than the traditional PID
controller. FOPID control has better control performance in applications, as proven by
many studies in recent years [14–17].

Nonlinear robust control is a problem that has been considered by many researchers in
many different fields. In [18,19], the authors consider the right coprime factorization needed
to compensate for the nonlinearity of the system and provide robust control performance
in an improved system. The right coprime factorization suit is required for both linear
feedback control and nonlinear feedback control. This provides a convenient approach
to study the input–output stability of nonlinear feedback control systems. In [20–23], the
authors studied robustness using right coprime factorization of a nonlinear system with
perturbations. Operator-based nonlinear robust control is a simple method to improve
stability and anti-disturbance using only the output signal of the plant.

A spiral heat exchanger (See Appendix A) is a nonlinear system with several uncertain-
ties and many disturbances in the changes in the flow rate, fluid temperature, fluid density,
fluid pressure on the two fluids side, etc., as well as a large delay time. It is very difficult
to control under complex operating conditions. In application, the spiral heat exchanger
mathematical model described via fractional order differential equation is more accurate
than other methods [24–27]. Therefore, motivated by the above references, this paper
presents a mathematical model of a spiral heat exchanger using a fractional order deriva-
tive system. Operator-based fractional order control is employed to improve robustness in
a nonlinear system with uncertainties, disturbances, and a high delay time. A fractional
order operator controller and fractional order PID controller are designed to account for
uncertainties and disturbance, and the different control cases in tracking performance and
stability are analyzed. Finally, the proposed control schemes are simulated and analyzed.
This paper focuses on verifying operator and fractional order nonlinear robust control for
a spiral counter-flow heat exchanger with uncertainties and disturbances by simulation
(See Appendix A). In the future, we intend to study operator and fractional order nonlinear
robust control for a spiral counter-flow heat exchanger with uncertainties and disturbances
using experimental equipment (See Appendix A), to determine the optimal parameters for
fractional order PID control, and to study MIMO control problems using fractional order
derivatives [28,29].

The rest of this paper is constructed as follows. In Section 2, preliminaries regarding
fractional order calculus and derivative and fractional order operator theory are described,
and a problem statement concerning fractional order equations for a spiral-plate heat
exchanger is presented. In Section 3, a fractional order operator controller is designed
and the different control cases are analyzed in terms of tracking performance and stability.
Simulations verifying operator and fractional order-based robust nonlinear control for a
spiral counter-flow heat exchanger with uncertainties and disturbances are reviewed in
Section 4. Finally, conclusions are provided in the final section.

2. Preliminaries and Problem Statement

A basic overview of fractional order integral and operator theory are presented in
this section.

Definition 1 (The definition of Caputo’s fractional order calculus [6]).

D−β f (t) =
1

Γ(β)

∫ t

a
(t− τ)β−1 f (τ)d(τ), β > 0 (1)

where Γ()̇ is Gamma function, Γ(ε) =
∫ ∞

0 e−ttε−1.
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Definition 2 (The definition of Caputo’s fractional order derivative [6]).

C
a Dq

t f (t) =
1

Γ(n− q)

∫ t

a

f (n)(t)
(t− τ)n−q−1 dτ, n− 1 < q < n (2)

where n is a integer that is equal to or greater than q. If n = 1, then 0 < q < 1.

C
a Dq

t f (t) =
1

Γ(1− q)

∫ t

a

f ′(t)
(t− τ)−q dτ (3)

2.1. Lipschitz Operators Theory

Definition 3 ([30]). Let Xe and Ye be two extended linear spaces which are associated, respectively,
with two Banch spaces, X and Y, of measurable functions defined on the time domain [0, ∞), and let
D be a subset of Xe. A nonlinear operator A : D → Ye is called a generalized Lipschitz operator on
D if there exists a constant L such that

‖[A(x)]T − [A(x̃)]T‖Y ≤ L‖xT − x̃T‖X

for all x, x̃ ∈ D and for all T ∈ [0, ∞).
Note that the least such constant L is provided by

‖A‖ := sup
T∈[0,∞)

sup
x,x̃∈D
xT 6=x̃T

‖[A(x)]T − [A(x̃)]T‖Y
‖xT − x̃T‖X

(4)

which is a semi-norm for general nonlinear operators and is the actual norm for linear operator A.
The actual norm for a nonlinear operator A is provided by

‖A‖Lip = ‖A(x0)‖Y + ‖A‖

= ‖A(x0)‖Y + sup
T∈[0,∞)

sup
x,x̃∈D
xT 6=x̃T

‖[A(x)]T − [A(x̃)]T‖Y
‖xT − x̃T‖X

(5)

for any fixed x0 ∈ D.

Theorem 1. Let Xe and Ye be two extended linear spaces which are associated, respectively, with
two Banch spaces, X and Y, of measurable functions defined on the time domain [0, ∞), and let D be
a subset of Xe. A nonlinear operator Ad fractional order operation, defined in [30], is a generalized
Lipschitz operator on D.

Proof. Let Ad(x), meaning mapping from x → Ad, where Ad is a fractional order operation.
For any x1, x2 ∈ Xe; however, x1 6= x2 extended linear space.

‖Ad(x1)− Ad(x2)‖ = ‖D
q
x(x1)− Dq

x(x2)‖

= ‖ 1
Γ(n− q)

∫ t

a

x(n)1 (τ)

(t− τ)n−q−1 dτ − 1
Γ(n− q)

∫ t

a

x(n)2 (τ)

(t− τ)n−q−1 dτ‖ (6)

Because n ≥ q, x1, x2 > τ, then Γ(n− q)
∫ t

a
1

(t−τ)n−q−1 > 0
Therefore,



Machines 2022, 10, 335 4 of 18

‖Ad(x1)− Ad(x2)‖ =
1

Γ(n− q)
‖
∫ t

a

x(n)1 (τ)

(t− τ)n−q−1 dτ −
∫ t

a

x(n)2 (τ)

(t− τ)n−q−1 dτ‖

≤ 1
Γ(n− q)

∫ t

a

1
t− τn−q−1 dτ‖

∫ t

a
x(n)1 (t)dτ −

∫ t

a
x(n)2 (t)dτ‖

≤ 1
Γ(n− q)

L‖x1 − x2‖

= H‖x1 − x2‖ (7)

Obviously there exists Ad which is the least constant of H.
Proof completed.

Right Coprime Factorization

Operator P + ∆ P : V→ Y denotes a nonlinear system with uncertainties. Where P is
the nominal object, ∆P means the uncertainties of object V and Y stands for the input and
output space of the object.

Right factorization:

By appling an intermediate variable w ∈W, W is called a quasi-state space of P and
the input and output of the operator P are described as y = N(w) and v = D(w), respectively.
If D is invertible, w(t) = D−1(v)(t), then P(v(t)) = N(w(t)) = ND−1(v)(t) ; if, furthermore,
N and D are two stable operators, the operator P is said to have a right factorization, as
shown in Figure 1.

Figure 1. Right factorization of a nonlinear object.

Right coprime factorization:

After right factorization of a object P into (N, D), if two operators R and S satisfy the
following Bezout identity, the factorization is said to be right coprime factorization:

RN + SD = M (8)

where R is invertible and M is a unimodular operator. The block diagram of the right
coprime factorization of a nonlinear system P is shown in Figure 2. Figure 2 shows an
operator-based feedback controller for a nonlinear plant P, with the operators R and S
serving as the controller.

Figure 2. Right coprime factorization of a nonlinear system.
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For a nonlinear real object P̃, it can be represented as a nominal object P with bounded
uncertainty ∆P and P̃ = P + ∆. The right factorization of the nominal object P and the
overall object P̃ are

P = ND−1 (9)

and

P + ∆P = (N + ∆N)D−1 (10)

where N, ∆N, and D are stable operators, D is invertible, and ∆N is unknown while the
upper and lower bounds are known. If the following Bezout identity is satisfied and
if M̃ is a unimodular operator, then the nonlinear feedback control system is said to be
BIBO stable.

R(N + ∆N) + SD = M̃ (11)

With the operators S and R determined, if they further satisfy the following condition
then the robustness of the uncertain system is guaranteed:

‖R((N + ∆N)− RN)M−1‖Lip < 1 (12)

where ‖ • ‖Lip is a Lipschitz operator norm. The robust operator-based feedback control
system with uncertainty is shown in Figure 3.

Figure 3. Nonlinear operator-based feedback control system with uncertainty.

Theorem 2 ([30]). Let De be a linear subspace of the extended linear space Ue associated with a
given Banach space UB, and let (R(N + ∆N) + RN)M−1 ∈ Lip(De). Let the Bezout identity of
the nominal plant and the exact plant be RN + SD = M ∈ U (W, U), R(N + ∆N) + SD = M̃,
respectively. If

‖(R(N + ∆N)− RN)M−1‖ < 1 (13)

then the system shown in Figure 3 is robust stable for ∆N.

Theorem 3 ([30]). Let De be a linear subspace of the extended linear space Ue associated with
a given Banach space UB, and let (R(N + ∆N)− RN + S(D + ∆D)− SD)M−1 ∈ Lip(De).
Let the Bezout identity of the nominal plant and the exact plant be RN + SD = M ∈ U (W, U),
R(N + ∆N) + S(D + ∆D) = M̃, respectively. If

‖(R(N + ∆N)− RN + S(D + ∆D)− SD)M−1‖ < 1 (14)

then the system shown in Figure 4 is robust stable for ∆N, ∆D.
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Figure 4. Nonlinear operator-based feedback control system with uncertainties.

Theorem 4. Let De be a linear subspace of the extended linear space Ue associated with a given
Banach space UB, and let (R(N + ∆N)− RN + SD)M−1 ∈ Lip(De). Let the Bezout identity of
the nominal plant and the exact plant be RN + SD = M ∈ U (W, U), R(N + ∆N) + SD = M̃,
respectively. If

‖R(N + ∆N)− RN‖ < 1
‖M−1‖ (15)

then the system shown in Figure 3 is robust stable for ∆N.

Proof.

‖(R(N + ∆N)− RN)M−1‖ < ‖R(N + ∆N)− RN‖‖M−1‖ (16)

If

‖R(N + ∆N)− RN‖ < 1
‖M−1‖ (17)

then

‖(R(N + ∆N)− RN)M−1‖ < 1 (18)

According to Theorem 2, the system shown in Figure 3 is robust stable for ∆N.
Proof completed.

Theorem 5. Let De be a linear subspace of the extended linear space Ue associated with a given
Banach space UB, and let (R(N + ∆N) − RN + S(D + ∆D) − SD)M−1 ∈ Lip(De). Let
the Bezout identity of the nominal plant and the exact plant be RN + SD = M ∈ U (W, U),
R(N + ∆N) + S(D + ∆D) = M̃, respectively. If the condition

‖R(N + ∆N)− RN + S(D + ∆D)− SD‖ < 1
‖M−1‖ (19)

is satisfied, then the system shown in Figure 4 is robustly stable for ∆N, ∆D.

Proof. In the same method with Theorem 4, this theorem was proved.

2.2. Problem Statement

According to the law of heat-energy balance of two fluids, the fractional order deriva-
tive model for a spiral-plate parallel flow heat exchanger is derived as follows [13]:
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Dq1

θ Th(θ, t) =
(k + ∆k)FAZ

QL1chρh
(Tc(θ, t)− Th(θ, t))

Dq2
θ Tc(θ, t) =

(k + ∆k)FAZ
QL2ccρc

(Th(θ, t)− Tc(θ, t))

θ ∈ [0, 11π]

(20)

Let q1 = q, q2 = q + ∆q, then,

Dq2
θ Tc(θ, t) = Dq

θ Tc(θ, t)− ∆Dq

=
kFAZ

QL2ccρc
(Th(θ, t)− Tc(θ, t))

(21)

Thus,

Dq
θ Th(θ, t) =

(k + ∆k)FAZ
QL1kh

(Tc(θ, t)− Th(θ, t)) (22)

Dq
θ Tc(θ, t) + ∆Dq =

(k + ∆k)FAZ
QL2kc

(Th(θ, t)− Tc(θ, t)) (23)

θ ∈ [0, 11π]

Dq
θ(∆T(θ, t)) + ∆Dq = FAZ(

1
kcQL2

+
1

khQL1
)∆T(θ, t) (24)

where k = δs
λ , k + ∆k = 1

hh
+ δs

λ + 1
hc

, kc = ccρc, kh = chρh, and ∆T(θ, t) = Tc(θ, t)− Th(θ, t).

A =
√

a2 + b2 and A + ∆A=
√

a2 + (b + a ∗ 11π)2 F ∈ [1, 2], which is related to the plant
of the spiral-plate heat exchanger; ρc and ρh are the densities of the cold fluid and the
heat fluid, respectively; cc and ch are the specific heat capacities of the cold fluid and the
heat fluid, respectively; Tc,in and Th,in are the input temperatures of the cold fluid and the
heat fluid, respectively; Tc,out and Th,out are the output temperatures of the cold fluid and
the heat fluid, respectively; q1 and q2 are fractional orders of the hot fluid and the cold
fluid, respectively; and QL1 and QL2 are the volume flow rate of the hot fluid and the cold
fluid, respectively.

Tc,out(t) = Th,in(t) + FZAD−q
11π [

1
kcQL2

+
1

khQL1
∆T(θ, t)] + ∆Dq (25)

where Tc,out(t) = T(11π, t), Tc,in(t) = Th(0, t), Th,in(t) = Th(11π, t), Th,out(t) = Th(0, t). Tc,in−
Th,out is the initial condition of the fractional order integral.

3. Fractional Order Operator Controller Design and Tracking Controller Design
3.1. Operator-Based Fractional Order Controller Design

As shown in Figure 4, provided a nonlinear operator control system, operators V and
Y are the input and output space of this plant. Let (N, D) be the right factorization of P.
The feedback nonlinear control system shown in Figure 4 is BIBO stable if there exist two
stable operators R: Y → V, S: V → V (S being invertible as well) that satisfy the Bezout
identity equation:

RN + SD = M (26)
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where M is a unimodular operator to consider the uncertain term in the nonlinear system.
With the designed operators S and R in Figure 4, the following equation can be satisfied:

‖R(N + ∆N)− RN + S(D + ∆D)− SD‖ < 1
‖M−1‖ (27)

where ‖ • ‖ is a Lipschitz norm. Then, the nonlinear feedback control system is robustly
stable where M is an unimodular operator. The mathematical modeling of P considering
the uncertain term ∆P can be provided for the the spiral heat exchanger system as follows:

P + ∆P :

Tc,out(t) = Th,in(t) + FZ(k + ∆k)D−q
11π(

1
QL2kc

+
1

QL1kh
)∆T(θ, t)) + ∆Dq (28)

where Tc,out(t) = T(11π, t), Tc,in(t) = Th(0, t), Th,in(t) = Th(11π, t), Th,out(t) = Th(0, t). The
plant can be right coprime factorized as follows:

(D + ∆D)−1 : V →W

w = (A + ∆A)
1

QL2kc
+

1
QL1kh

(29)

(D + ∆D) : W → V

QL1 =
(A + ∆A)QL2kc

[QL2kcw− (A + ∆A)]kh
(30)

D : W → V

QL1 =
AQL2kc

(QL2kcw− A)kh
(31)

N + ∆N : W → Y

Tc,out(t) = Th,in(t) + FZ(k + ∆k)D−q
11π(w∆T(θ, t)) + ∆Dq (32)

N : W → Y

Tc,out(t) = Th,in(t) + FZkD−q
11π(w∆T(θ, t)) (33)

The operator-based feedback control system is shown in Figure 2. The operators R
and S are designed as follows:

R : Y → V

b = kp
1

FZk
Dq

11π(∆T(θ, t)) (34)

where ∆T(θ, t) = Tc,out(t)− Th,in(t).

S−1 : V → V

QL1 = (KM − Kp)
AQL2kc

(QL2kce− A)Kh
(35)

S : V → V

e = A(
1

QL2kc
+

1
QL1kh

) (36)
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Operators R and S−1 are designed to satisfy the Bezout identity:

RN + SD = M (37)

thus, if

‖(R(N + ∆N)− RN + S(D + ∆D)− SD))‖ < 1/‖M−1‖ (38)

is satisfied according to Therom 5, then the system is BIBO stable.

3.2. Fractional Order Operator-Based Control Stability Analysis

In this section, the stability of the fractional order operator-based control system for a
spiral-plate exchanger with uncertainties is presented.

R(N + ∆N)− RN =
1

FZk
Dq

11π(∆T)FZ(k + ∆k)D−q
11π(w∆T)− 1

FZk
Dq

11π(∆T)FZkD−q
11π(w∆T)

=
k + ∆k

k
− 1

=
∆k
k

(39)

S(D + ∆D)− SD = A{ [QL2kc − (A + ∆A)]kh
kh(A + ∆A)QL2kc

+
1

QL2kc
} − A{ [QL2kc − A]kh

kh AQL2kc
+

1
QL2kc

}

= A{QL2kc − (A + ∆A)

(A + ∆A)QL2kc
+

1
QL2kc

} − A{QL2kc − A
AQL2kc

+
1

QL2kc
}

= A{ 1
A + ∆A

− 1
QL2kc

+
1

QL2kc
} − A{ 1

A
− 1

QL2kc
+

1
QL2kc

}

=
A

A + ∆A
− 1

= − ∆A
A + ∆A

(40)

thus,

‖R(N + ∆N)− RN + S(D + ∆D)− SD‖ = ‖∆k
k
− ∆A

A + ∆A
‖

< ‖∆k
k
‖+ ‖ ∆A

A + ∆A
‖

(41)

According to the stability conditions of the fractional order operator-based control
system, if

‖∆k
k
‖+ ‖ ∆A

A + ∆A
‖ < 1/‖M−1‖ (42)

that is,

‖M−1‖ < 1

‖∆k
k
‖+ ‖ ∆A

A + ∆A
‖ (43)

Here, kM =
1

‖M−1‖
thus,

kM > ‖∆k
k
‖+ ‖ ∆A

A + ∆A
‖ (44)
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is a BIBO stable condition.
From Table A1,

∆k
k

=
732

9278
= 0.07.

∆A
A + ∆A

=
0.135
0.215

= 0.627. Let, kM > 0.627, then,

the nonlinear control system is BIBO stable.
The fractional order operator-based control system is stable under condition (44),

however, the track precision is bad because of model error and disturbances. Therefore,
it is rarely used alone. In order to improve the robustness, anti-interference, and tracking
performance of the control system, we designed a feedback control system for the tracking
controller.

3.3. Tracking Controller Design

The differential equation of fractional order controller PIλDδ is described by

u(t) = Kp1e(t) + KiD−λ
t e(t) + KdDδ

t e(t) (45)

If λ, δ = 1, it is a conventional PID control. It is obvious that the fractional order
controller needs to design the three parameters Kp1, Ki, and Kd as well as the orders λ, δ of
the integral and derivative controllers. The orders λ, δ need not necessarily be integers, and
can be any real numbers. As shown in Figure 5, the FOPID (fractional order PID) controller
generalizes the conventional integer order PID controller and expands it from point to
plane. This expansion can provide a great deal more flexibility in PID control design.

Figure 5. FOPID controller.

3.4. Operator-Based Fractional Order Robust Control for Spiral-Plate Heat Exchanger with
Uncertainties and Disturbances

As a spiral heat exchanger is a nonlinear system with uncertainties, disturbances,
and a long delay time, it is difficult to improve the tracking performance of the output
temperature. While operator-based control is a nonlinear control method to improve
stability, tracking performance remains poor. PID feedback control is widely used in
application due to its simple form and because it only required three parameters to be
adjusted. FOPID, with its five parameters, is an extension of conventional PID. Thus, FOPID
is more flexible than the conventional PID. The five cases for output temperature control of
the presented spiral heat exchanger were designed to compare tracking performance and
stablity for uncertanities and disturbance, as shown Figures 6–10.
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Figure 6. Operator-based fractional order robust control.

Figure 7. Operator-based fractional order robust control with FOPID.

Figure 8. Fractional order robust control with FOPID.

Figure 9. Operator-based fractional order robust control with PID.
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Figure 10. Fractional order robust control with PID.

4. Simulation and Analysis

In this section, the five different cases are simulated and analysed in Matlab with the
same uncertainties and disturbances.

4.1. Simulation Conditions

Here, Table 1 shows the simulation parameters for the spiral-plate heat exchanger.
Table 2 denotes the simulation condition for the spiral-plate heat exchanger. The reference
output temperature is the output temperature of the cold fluid. The volume flow rate QL2
on the cold fluid side is the disturbance signal; QL2 is changed from 1 L/Min to 7 L/Min

in time 8 s,
∆A
A

and
∆k
k

are the uncertainties of the spiral heat exchanger’s shape and the
heat transfer coefficient, respectively. The volume flow rate QL1 on the hot fluid side is the
control signal. Considering the actual condition, the maximum input volume flow rate is
10 L/Min.

Table 1. Simulation parameters of the spiral-plate heat exchanger.

Meaning (Symbol) Value

The densities of the two fluids (ρc, ρh) 1000 Kg/m3

The specific heat capacities of two fluids (cc, ch ) 4.2 KJ/(Kg·◦C)
The input temperature of cold fluid (Tc,in ) 20 ◦C
The input temperature of hot fluid (Th,in) 50 ◦C

Thermal conductivity of SUS304 (λ ) 16.7 W/(m ◦C)
Heat transfer coefficients of two fluids (hh, hc) 366 W/m2· K

Uncertainty of the spiral heat exchanger’s shape (∆A ) 0.135
Uncertainty of the heat transfer coefficient ( ∆k) 732

Table 2. Simulation condition of the spiral-plate heat exchanger.

Meaning (Symbol) Value

Simulation time (t) [0, 15] s
Reference output temperature (Tc,r ) 40 ◦C

The orders for fractional order derivative (q) 0.97
The input temperature of cold fluid (Tc,in ) 20 ◦C
The input temperature of hot fluid (Th,in) 50 ◦C

Uncertainty of the spiral heat exchanger’s shape (
∆A
A

) 0.627

Uncertainty of the heat transfer coefficient (
∆k
k

) 0.07

4.2. Simulation and Analysis

The spiral counter-flow heat exchanger with uncertainties and disturbances described
by the special fractional order equation is both a first order or norm fractional order system
and a nonlinear system. Thus, the parameters of fractional order PID control cannot be
tuned using the conventional tuning method. The parameters of both the conventional and
fractional order PID control are tuned using a trial-and-error method. The first proportion
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is adjusted, then derivative integrals are adjusted in turn until the best parameters are
derived. In the future, the parameters of fractional order PID is optimized by particle
swarm optimum algorithm. Tables 3–7 are the best controller parameters to tune and the
parameters of the operator controller.

Table 3. Tuning parameters for operator controller.

Meaning Symbol Value

Reference input temperature Tc,r 40 ◦C
The orders for fractional order derivative q 0.97

Gain of operator Kp1 10
Gain KM 4.0

Table 4. Tuning parameters for FOPID Controller with operator controller.

Meaning Symbol Value

Reference input temperature Tc,r 40 ◦C
The orders for fractional order derivative q 0.97

Gain of operator Kp1 10
Gain KM 4.0

Proportional gain Kp1 50
Integeral order λ 0.9
Integeral gain Ki 1.0

Differential order δ 0.95
Differential gain Kd 3.0

Table 5. Tuning parameters for FOPID Controller without operator controller.

Meaning Symbol Value

Reference input temperature Tc,r 40 ◦C
Proportional gain Kp1 50

Integeral order λ 0.9
Integeral gain Ki 1.0

Differential order δ 0.95
Differential gain Kd 3.0

Table 6. Tuning parameters for PID Controller with operator controller.

Meaning Symbol Value

Reference input temperature Tc,r 40 ◦C
The orders for fractional order derivative q 0.97

Gain of operator Kp1 10
Gain KM 4.0

Proportional gain Kp1 10
Integeral gain Ki 0.6

Differential gain Kd 0.05

Table 7. Tuning parameters for PID Controller without operator controller.

Meaning Symbol Value

Reference input temperature Tc,r 40 ◦C
The orders for fractional order derivative q 0.97

Proportional gain Kp1 10
Integeral gain Ki 0.6

Differential gain Kd 0.05

It is obvious that the fractional order PID control with operator controller has the best
tracking performance compared to the others, as shown in Figure 11. The overshoot and
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settle times for the fractional order PID control with operator controller are shorter than
for the fractional order PID control without operator controller. The overshoot and settle
times for the conventional PID control with operator controller are smaller than for the
conventional PID control without operator controller.

Figure 11. Comparison of different control schemes.

Figure 12 shows that fractional order operator control can improve the stability when
uncertainties and disturbances are present, although the tracking performance and anti-
disturbance are bad. Figures 13–16 show the control performance, control signals, and
tracking performance in the control process for the five different control schemes with
uncertainties and disturbances; Tc, r, d, u, and Tc, out are the reference output temperature of
the cold fluid side, disturbance signal of the volume flow rate in the cold fluid side, control
signal of the volume flow rate on the hot fluid side, and output temperature on the cold
fluid side, respectively. The performance with operator-based fractional order PID control
is the best in terms of anti-disturbance and stability compared to the other control schemes.

Figure 12. Simulation of operator control.

Figure 13. Simulation of FOPID with operator.
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Figure 14. Simulation of FOPID without operator.

Figure 15. Simulation of PID with operator.

Figure 16. Simulation of PID without operator.

5. Conclusions

In this paper, we have proposed operator-based fractional order PID nonlinear robust
control with uncertainties and disturbance. First, we introduced the concepts of fractional
order and the preliminaries of operator theory as extended to fractional order and nonlinear
fractional order equations. Then, operator-based nonlinear fractional order controller
design and fractional order PID tracking controller design were covered and the parameters
of the operator controller and fractional order PID controller were determined. Finally,
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the robust stability and tracking performance of the operator-based nonlinear robust
control system with uncertainties and disturbance were analyzed via simulation in Matlab.
However, the tuning parameters of the fractional order controller continue to require
adjustment offline or by hand, and robust control performance requires continued research
as well.
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Appendix A. A Spiral Heat Exchanger Plant

A spiral heat exchanger is shown in Figure A1. This design has many merits, such
as a highly efficient heat transfer, small size in comparison to other heat exchangers, and
self-cleaning capability thanks to the unique spiral structure.

Figure A1. A spiral heat exchanger plant.

The spiral heat exchanger is an piece of excellent heat transfer equipment; however,
its complex inner structure makes it difficult to built an accurate mathematical model.
Generally, the logarithmic mean temperature difference method is used, however, control
performance is bad. We considered using a fractional order derivative equation to describe
a spiral heat exchanger. Figure A2 shows a cross-section of the inner structure of the
spiral-plate heat exchanger, where δh , δc, and δs represent the width of hot fluid, the width
of cold fluid and the width of solid wall, respectively. In this paper, the inner cold fluid, as
shown in Figure A2, is divided into a micro-volume. A fractional order derivative equation
is constructed by considering the heat balance of the two fluids.

r = b + a · θ, θ ∈ [0, 11π] (A1)

The geometric parameters of the spiral-plate heat exchanger are denoted in Table A1.
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Table A1. Parameters of the spiral-plate heat exchanger.

Meaning Symbol Value

Geometric parameter of a spiral function a 0.005
π m/rad

Initial radius of hot fluid side b 0.08 m
Spiral function angle of the spiral-plate heat exchanger θ [0, 11π]
The width of hot flow channel δh 0.005 m
The width of cold flow channel δc 0.005 m
The width of solid wall δs 0.0018 m
The height of the spiral-plate heat exchanger Z 0.011 m

Figure A2. Cross-section of the inner structure of the spiral-plate heat exchanger.

Heat exchangers are typically classified into parallel-flow and count-flow types based
on their arrangement. In the parallel-flow type, both the input and the output of the two
directional fluids (one a hot fluid, the other a cold fluid) flow in the same direction. In a
counter-flow heat exchanger, the hot fluid and cold fluid flow in opposite directions. In
this paper, we study a fractional order derivative model of a spiral counter-flow type heat
exchanger.
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