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Abstract: An improved density-based spatial clustering of applications with noise (IDBSCAN)
analysis approach based on kurtosis and sample entropy (SE) is presented for the identification of
operational state in order to provide accurate monitoring of spindle operation condition. This is
because of the low strength of the shock signal created by bearing of precision spindle of misalignment
or imbalanced load, and the difficulties in extracting shock features. Wavelet noise reduction begins
by dividing the recorded vibration data into equal lengths. Features like kurtosis and entropy in
the frequency domain are used to generate feature vectors that indicate the bearing operation state.
IDBSCAN cluster analysis is then utilized to establish the ideal neighborhood radius (Eps) and the
minimum number of objects contained within the neighborhood radius (MinPts) of the vector set,
which are combined to identify the bearing operating condition features. Finally, utilizing data
from the University of Cincinnati, the approach was validated and assessed, attaining a condition
detection accuracy of 99.2%. As a follow-up, the spindle’s vibration characteristics were studied
utilizing an unbalanced bearing’s load bench. Bearing state recognition accuracy was 98.4%, 98.4%,
and 96.7%, respectively, under mild, medium, and overload circumstances, according to the results
of the experimental investigation. Moreover, it shows that conditions of bearings under various
unbalanced loads can be precisely monitored using the proposed method without picking up on
specific sorts of failures.

Keywords: spindle bearing; unbalanced load; frequency domain sample entropy; IDBSCAN; condi-
tion monitoring

1. Introduction

Rolling bearings are a critical component of a precision spindle, and their operational
condition directly impacts the spindle’s performance. Alternating loads, manufacturing
flaws, incorrect installation, and other reasons can cause rolling bearings to fail [1,2].
Spindle system downtime and poor machine quality can ensue. The non-linear motion
of the spindle system is affected by the bearing’s loading pattern [3–5]. Consequently, a
significant issue in spindle system condition monitoring is how to determine the operating
status of rolling bearings under various loading patterns.

Vibrations from a spindle bearing caused by a rolling bearing are not linear and
smooth; this makes it difficult to monitor the bearing’s working condition. Other causes
for this include the bearing material and friction coefficient, as well as the noise from
the spindle. Eccentricity and misalignment of bearings and system components, such as
spindles, can be caused by a misplaced installation or an imbalanced load. In general, these
phenomena shorten the service life of bearings, alter the stability of the working system,
and reduce the lubrication performance and precision of machined components [6–8].
However, the focus of current research has shifted away from signal processing in favor
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of studying the dynamic performance of bearings under misaligned or unbalanced load
conditions [9–12]. It is also difficult to monitor bearings running state under imbalanced
loads since the early bearings have a less significant shock effect on the vibration signal.
Condition monitoring can only be solved by figuring out how to properly extract spindle
system vibratory characteristics while it is operating under load with a misalignment or an
imbalanced load.

The extraction of early faint fault characteristics from rolling bearings has progressed
significantly over the last few years [13–16]. Scholars have made improvements on tradi-
tional feature extraction algorithms. Castellani et al. first extracted the RMS, skewness,
kurtosis, crest factor, and peak value of the preprocessed acceleration signal, analyzed the
damage detection ability of a single feature using ANOVA, and realized the data visualiza-
tion using PCA. Finally, the target is distinguished from the reference wind turbine using a
novelty metric based on Mahalanobis distance [17]. Kurtosis, a statistical measure of the
distribution of random variables, is increasingly being employed in the detection of bearing
cracks. Time domain kurtosis of the wheel bearing vibration signal and the fault frequency
were used as feature vectors for spectral kurtosis analysis by Chen Bin et al. [18]. Rohani
Bastami and Bashari proposed a wavelet-based impulse response method for damped
single-degree-of-freedom systems, and then found the optimal damping ratio by maxi-
mizing the ratio of the peak of spectral kurtosis (SK) to the mean value of SK. Finally, the
method is applied to the simulated vibration signal of the defective REB and the experimen-
tal vibration signal of the defective REB. The results show that the method outperforms
the SK calculation based on STFT and Morlet wavelet in detecting the resonance band
of the vibration signal [19]. Bearing fracture classification under varied flaws was then
completed using a support vector machine (SVM). Bearing degradation can be detected
by analyzing SK and correlation coefficients, which can detect early faults in the presence
of concealed noise and pinpoint their location by Tian Jing et al. [20]. Zhong et al. im-
proved the calculation method of kurtosis and negative entropy, and proposed an index
based on weighted residual regression, thereby reducing the sensitivity of kurtosis and
entropy to impulse noise. Finally, it is verified in gear and bearing degradation evaluation,
and the results show that the improved state index has better early fault detection ability
and monotonic trend ability [21]. It is worth noting that entropy algorithms quantify the
complexity of data, making them useful for a wide range of structural health monitoring
and defect identification tasks [22,23]. Sandoval et al. used multiple entropy indexes to
represent bearing vibration signals under different health conditions and compared them
with conventional indexes. The results show that entropy indexes (EIs) can more accurately
distinguish damaged bearings of low-speed bearings. Furthermore, the results show that
the combination of conventional metrics and entropy-based metrics also contributes to
more reliable diagnosis [24]. Without knowing where the data for the target series came
from, sample entropy (SE) is applied in order to assess its randomness [25]. In the realm
of bearing condition monitoring and problem diagnostics, certain applications have thus
been found [26,27]. Support vector machines were used to classify the LMD, sample en-
tropy, and energy ratio values that Han provided as a diagnostic technique [26]. Wang
used generalized refined combined multiscale sample entropy to extract fault features and
supervised isometric mapping to reduce dimensionality before employing support vector
machines (GOS-SVM) and grasshopper optimization algorithms to finish the diagnosis of
rolling bearing faults [27]. Researchers, on the other hand, found that the most obvious
types of bearing cracks, such as inner ring, outer ring, and rolling element faults, could
be extracted using feature extraction. This method may not be able to accurately detect a
bearing’s operating state when the bearings do not have problems but are an unbalanced
load because of improper assembly and other issues. When dividing raw data at different
scales, scale factors must be considered, and the division effect tends to be unpredictable
as the data length grows. As a result, the kurtosis and entropy values of the vibration
signal are studied in this work as state characteristics of the bearing under imbalanced
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loading conditions. As a result, determining the condition of the bearings at various levels
of misalignment is a problem.

In the field of early fault diagnosis of rolling bearings, machine learning-based fault
diagnosis methods have garnered considerable attention [28–32]. Cluster analysis, as
one of the unsupervised learning modules in machine learning, is gaining traction in
practical applications such as bearing crack diagnosis. Du [33] proposed a density-peak
clustering (PCA) method based on k-nearest neighbor and major component analysis,
which was performed on high-level data for dimension reduction and combined with k-
nearest neighbor and density-peak clustering algorithms, and finally the proposed method’s
validity was verified using synthetic data. The limitation of this method, however, is that
it was not validated against actual engineering data, and the method’s weakness is that
it has not been validated against real-world engineering data. DBSCAN is widely used
as a density-based spatial clustering algorithm in the field of condition monitoring and
fault diagnosis. S. Kerroumi [34] came up with a density-based dynamic clustering of
noise application space (D-DBSCAN) dynamic classification method that automatically
recognizes families under new patterns and creates new families based on anomalies for
monitoring nodes caused by bearing cracks. However, the method does not automatically
pick the Eps and MinPts parameters. Hai Li [35] came up with a way to classify faults
that used adaptive symmetry point patterns and density-based spatial clustering for noise
applications (ASDP-DBSCAN). Using an improved genetic algorithm, the symmetry dots
pattern (SDP) parameters were found out. Then, the vibration signal was reconstructed by
using the SDP pattern. Finally, the difficult problem of automatically selecting parameters
for DBSCAN was solved by using the single-degree-of-freedom parameter selection method.
This method is good for fault detection, but it also makes the computer work harder
because of the complexity of the SDP pattern conversion. The KANN-DBSCAN algorithm
proposed by Li [36] generates candidate Eps and MinPts parameters based on the dataset’s
distribution characteristics. It can find a stable interval for the cluster number variation
of the clustering results automatically and use the minimum density threshold in the
interval as a criterion for discriminating the optimal Eps and MinPts parameters. Although
the accuracy of this method is relatively high, as the volume of data grows, so does the
computational complexity and cost. If the density is not uniform, there will be no solution.
Therefore, the clustering algorithm can be improved in order to increase the efficiency of its
practical application.

An improved DBSCAN method based on kurtosis and sample entropy is suggested
in this paper to monitor and categorize spindle bearings’ unbalanced load operating con-
ditions. The following is the general layout of this manuscript: Following the extraction
of kurtosis and frequency domain sample entropy values, the improved DBSCAN algo-
rithm’s parameters Eps and MinPts are analyzed in Section 2 to determine the improved
DBSCAN algorithm’s parameters. An IMS (Intelligent Maintenance System) bearing test
stand created by University of Cincinnati is used to validate the proposed technique in
Section 3, which extracts feature information for each failure mode and passes it along as
an input vector to the clustering algorithm. Finally, the method’s accuracy in identifying
states is reported to be 99.2%. Construction of an unbalanced bearing’s load test bench
was the focus of Section 4. Vibration data was collected at three points on the outer ring
of the bearing. The condition monitoring mechanism described in this work was then
used to process the signals. Experiments showed that under light, medium, and heavy
load circumstances, the accuracy of condition recognition was 96.7% to 99.4% accordingly.
These results, in conjunction with those found in Sections 3 and 4, show that the condition
monitoring method is useful not only for identifying certain types of operating problems,
but also for detecting minor changes in the operation of unbalanced loads in bearings.



Machines 2022, 10, 363 4 of 19

2. Algorithm Design
2.1. Feature Extraction Method Based on Kurtosis and Sample Entropy
2.1.1. Kurtosis

An important concept in probability theory and statistics known as kurtosis is used
to compute the kurtosis of a probability distribution and to reflect the convexity of a
signal probability density function’s top. Since the probability of big values increases
with increasing kurtosis, it is a useful tool for detecting impulse information in non-
stationary signals.

According to Equation (1), the so-called kurtosis indicator is generally defined as the
fourth-order center moment divided by squared variance.

Ku =

1
n

n
∑

i=1
(xi − µ)4

( 1
n

n
∑

i=1
(xi − µ)2)

2 (1)

where, Ku is the kurtosis, which indicates a dimensionless indicator; xi represents the ith
value of the samples, n represents the length; µ is the mean of the samples. With a kurtosis
of 3, this is a normal distribution. The kurtosis reflects the sharpness of the peaks, the
kurtosis Ku = 3 is called the normal distribution, The kurtosis Ku > 3 is called the thick
tail, the kurtosis Ku < 3 is called the fine tail. The impulse response generated by the
vibration signal is small, because the bearing itself has small defects in the rolling bearing
misplaced installation or unbalanced load operation. The kurtosis value is generally less
than 3 or slightly greater than 3, and the vibration signal will produce a weak shock due to
the different degrees of unbalanced load, so kurtosis in the time domain waveform can be
used as a typical quantity of state monitoring.

2.1.2. Sample Entropy

The Sample Entropy (SE) of a time series is a statistical measure of its complexity that is
used to describe the probability of a sequence generating new patterns when the dimension
is altered. SE is an upgraded version of the Approximate Entropy (AE) algorithm. Unlike
AE, SE is not dependent on the length of the data and has a higher level of consistency.
According to the definition of sample entropy, the larger the likelihood of generating a new
pattern, the greater the sample entropy value. For example, given a time series of vibration
signals u = u(1), u(2) . . . u(N), reconstruct the sequence to obtain an m-dimensional
sequence B = X(1), X(2) . . . X(N − m + 1), when the dimension of the reconstructed
sequence is m + 1, then the sequence at this time is A = X(2), X(3) . . . X(N −m + 2), and
the self-similar probability P = A/B is obtained, so the approximate entropy of the average
value of log P. Moreover, the calculation result of the approximate entropy includes the
comparison between the reconstruction vectors, so there is a certain deviation. The SE is
derived by first summing the self-similar probabilities P and then computing the logarithm
of P, avoiding the comparison of reconstruction vectors. The advantage of SE is that it is
independent of the sample length and has a higher degree of consistency, making it more
sensitive to detecting minor signal variations. As a result, this article processes the recorded
bearing eccentric load vibration data for noise reduction and then extracts the sample
entropy from the corrected data. The sample entropy is calculated in the following manner:

Suppose a time series containing N data points: {x(i)}, 1 ≤ i ≤ N

(1) Given a sequence of m-dimensional vectors

x(i) = x_1(i), x_1(i + 1), . . . , x_1(i + m− 1) (2)

where i = 1, 2, . . . , N−m + 1.



Machines 2022, 10, 363 5 of 19

(2) As indicated in Equation (3), we can define the maximum difference between the
elements corresponding to the vector X(i) and vector X(j) as the distance z between
them, that is:

d[X(i), X(j)] = max
k=0∼m−1

[x(i + k)− x(j + k)] (3)

where, d[X(i), X(j)] is the distance between vector X(j) and vector X(i).

Given a similar tolerance threshold r, where r is assumed to be between 0.2 and
0.25 times the series’ standard deviation. Calculate the number of distances between each
corresponding element of X(i) and X(j) that exceeds r, recorded as: Numd[X(i)−X(j)]<r, and
calculate its ratio to the total number of vectors N −m, recorded as Svm

i (r), as shown in
Equation (4):

Svm
i (r) =

Numd[X(i)−X(j)]<r

N −m
(4)

Record the average of the N −m + 1 equations in Equation (4) as Svm(r), as shown in
Equation (5):

Svm(r) =
1

N −m

N−m

∑
i=1

Svm
i (r) (5)

where Svm(r) is the probability of obtaining m points for two sequences at distance r.

(3) Expand the value of m, and repeat steps: (1)~(3), the result is shown in Equation (6):

Svm+1(r) =
1

N −m

N−m

∑
i=1

Svm+1
i (r) (6)

(4) Therefore, the sample entropy of the sequence {x(i)} is calculated as shown in
Equation (7):

SampEn(m, n) = lim
N→∞

{
− ln

Svm+1(r)
Svm(r)

}
(7)

However, the data length N given in the paper is a finite value, so Equation (7) is
rewritten as:

SampEn(m, n) = − ln
Svm+1(r)

Svm(r)
(8)

The frequency domain sample entropy is proposed in this paper based on the compu-
tation of sample entropy. In order to determine the sample entropy value, the frequency
domain amplitude of each group is combined with Equations (2)–(8) and the sample entropy
value is derived using Equations (2)–(8) and the original vibration signal, as illustrated in
Figure 1.

2.2. IDBSCAN Clustering Algorithm

The conventional density-based spatial clustering algorithm needs the identification
of two parameters, MinPts and Eps, which characterize how tightly the data points are
distributed and separate dense regions into clusters to generate the greatest collection
of points that fulfill the linked density. As a result, the MinPts and Eps parameters are
extremely sensitive to the DBSCAN algorithm, which might result in poor or erroneous
clustering. Therefore, the DBSCAN algorithm is improved for the distribution of intelligent
spindle vibration characteristics as shown in Figure 2.



Machines 2022, 10, 363 6 of 19

Figure 1. Frequency domain sample entropy calculation flow diagram.

Figure 2. Improved DBSCAN clustering algorithm flow diagram.



Machines 2022, 10, 363 7 of 19

2.2.1. The List about Parameter Eps and MinPts

The parameters MinPts and Eps in the DBSCAN algorithm can be used to indicate the
closeness of the sample points to each other. In a neighborhood with Eps as the radius, the
more points contained in the neighborhood, the higher the density, which means that the
sample points in the neighborhood are more closely related to each other, and the greater the
degree of similarity between these sample points. When Eps increases to a certain level, the
area of the neighborhood increases and the number of points in the neighborhood decreases,
thus leading to a decrease in the neighborhood density and the MinPts corresponding to
Eps. The density of sample points containing MinPts in the neighborhood area is calculated,
as shown in Equation (9):

ρ =
MinPts

S
(9)

where, S is the area of the circle with radius Eps, recorded as: S = π × Eps2. Therefore,
the connection between the two parameters Eps and MinPts needs to be considered. In
this regard, this paper generates Eps tables by the K-average proximity method, and then
generates MinPts tables on the basis of the Eps tables, which are implemented in the
following steps:

(1) Create a list of Eps files

• For dataset Y, calculate the Euler distance distribution matrix Yn×n, as shown in
Equation (10):

Yn×n = {Dist(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ n} (10)

where Yn×n is a real symmetric matrix, n is the number of sampling points,
Dist(i, j) is the distance between the i-th sample point and the j-th sample point
in the data set Y.

• Based on the matrix Yn×n, n column vectors can be obtained by arranging the
elements of each row in ascending order, recorded as: YK = (Y1, Y2, . . . , Yn).
According to the closeness of the relationship between the sample points, the
first column Y1 is the Euclidean distance from the sample point to itself, which
is all zero. The Y of the elements of the Kth column constitutes the K-nearest
neighbor distance vector DK for all data points.

• Calculate the average value DK of each column element of the matrix Yn×n. A
vector DEsp of K-averaged nearest-neighbor distances is obtained, which is then
noted as the candidate set of Eps. The calculation for the vector is shown in
Equation (11):

DEsp =
{

DK
∣∣2 ≤ K ≤ n, D1 = 0

}
(11)

(2) Create a list of MinPts files

According to any value DK in the Eps list obtained. First, calculate the number of data
in each row of matrix Yn×n that is less than DK, which is expressed as the number of sample
points included in the nearest neighbor distance a, denoted as EDK , M = 1, 2, . . . n. Then,
find all EDK in the Kth column and average. Finally, the MinPts list corresponding to each
DK value can be obtained, as shown in Equation (12):

DMinPts =
{

EDK

∣∣1 ≤ K ≤ n
}

(12)

(3) Parametric analysis

As K increases, it is obvious that the greater the Eps, the more sample points it contains,
and once it reaches a critical number, MinPts begins to converge. Increasing the K value
further has no discernible influence on neighborhood density and may result in clusters
that are far apart from the target value; hence, increasing the K value further is not useful
for studying its properties, but will increase computing effort and time cost. Assuming
that when K = a, the number of clusters is N, the goal number of clusters, then all Eps and
MinPts parameters with the same number of clusters as N appearing after an are optimum
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parameter candidates, and so only K is the optimal list of Eps and MinPts parameters
corresponding to a~N.

2.2.2. The Procedure for Identifying Parameters

The DBSCAN clustering algorithm and the Eps and MinPts lists from Section 2,
Section 2.1.1, were used to identify the best parameters.

(1) The DBSCAN clustering analysis is performed sequentially on the already obtained
Eps and MinPts parameter values, and the obtained clustering results are analyzed to
obtain the corresponding number of clusters, noted as CNK (K = 1,2 . . . ,n). If the CNK
does not reach the target number of clusters N, continue the clustering analysis by
changing the parameter values.

(2) The clustering result is optimal when the number of clusters generated converges
continuously to the target number of clusters, and therefore the corresponding optimal
Eps and MinPts parameters can be obtained.

(3) The outliers of each cluster shape are recognized, the form of the cluster corresponding
to each state is determined, and the classification effect error is validated in the cluster
analysis findings of the optimum Eps and MinPts parameters.

Using the state detection approach proposed in this paper, a flow chart for feature
extraction and classification is shown in Figure 3.

Figure 3. Feature extraction and state classification flow chart.

1. It was built to collect vibration signals from rolling bearings under various deflection
conditions.

2. Wavelet noise reduction is used to preprocess the original vibration signal before
extracting kurtosis and sample entropy eigenvalues and building the Eigenvector
dataset from the original vibration signal.

3. IDBSCAN clustering analyses are parameter-seeking, with the optimal parameters
MinPts and Eps selected to utilize in the clustering analysis in the final monitoring
results.

3. Algorithm Verification Based on IMS Bearing Test Bench
3.1. Data Collection

To validate the approach described in this paper’s practicality and accuracy, exper-
imental validation of the bearing’s vibration state for each failure mode was performed.
Using a double row bearing as an example, failure data was gathered from the University



Machines 2022, 10, 363 9 of 19

of Cincinnati’s Intelligent Maintenance System (IMS) bearing testing bench; the test bench’s
exact structural components are depicted in Figure 4. A motor, four bearings, accelerome-
ters, and other components comprise the bench. The bearing is a Rexnord ZA−2115 double
row bearing with a sampling rate of 20 kHz, a sampling period of 1 s per sample, and a
speed of 2000 r/min. Three data sets were obtained throughout the operating process, with
bearing 3 in data set 1 exhibiting an inner ring crack, bearing 4 exhibiting a ball crack, and
bearing 1 exhibiting a normal bearing; bearing 3 in data set 3 exhibiting an outer ring crack.
The data collected in this article is representative of four distinct operating conditions:
normal bearing operation, inner ring failure, rolling element failure, and outer ring failure.
The sorts of defects that can occur during bearing operation are listed in Table 1.

Figure 4. Bearing test bench and structure diagram.

Table 1. Bearing failure category table.

Data Set Number Fault Type Sampling Length

Data set 1-bearing 1 Normal 81,920
Data set 1-bearing 3 Inner ring crack 81,920
Data set 1-bearing 4 Boll crack 81,920
Data set 3-bearing 3 Outer ring crack 81,920

3.2. Feature Extraction

For each condition, the vibration data is retrieved within 1 s and examined in the
temporal and frequency domains. In order to improve discrimination, the time domain
signal was first subjected to the wavelet transform for noise reduction, and the result of the
third layer wavelet transform was used to represent the vibration signal (Figures 5 and 6).
When a bearing has a ball crack, an inner ring crack and an outer ring break can be seen in
these waveforms in time and frequency. Because the bearing rotates at a specific frequency,
the amplitude difference seen in the graph in the low frequency region is less pronounced.
However, the amplitude difference in the high frequency band appears to be larger, and the
distribution is extremely intense due to the different types of faults. This paper uses a feature
extraction method based on kurtosis and sample entropy to process the vibration signal after
noise reduction in order to better distinguish the bearing crack type because it is difficult to
distinguish the rolling bearing working state from time and frequency domain waveforms.

As a starting point, 163,800 data points were collected on the operational status of each
bearing and averaged by 5120 data points per group to form 32 sets of sample data. Under
the four operating circumstances, the 128 sets of sample data were then retrieved in the time
domain for the kurtosis value and in the frequency domain for the entropy value. Finally, a
two-dimensional feature vector with a length of 128 was generated. In order to illustrate
that the feature calculation method of kurtosis and sample entropy is more suitable for the
research content of this paper, the calculation methods of margin index, impulse index, and
approximate entropy mentioned in the literature [37] were selected to compare with the
feature calculation method of this paper. Figure 7 shows the characteristic distribution of
each operating state of the bearing in five ways: Figure 7a shows the kurtosis distribution,
Figure 7b shows the sample entropy distribution in the frequency domain, Figure 7c
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shows the margin index distribution, Figure 7d shows the impulse index distribution, and
Figure 7e shows the approximate entropy distribution in the frequency domain. It can be
seen that the margin index, impulse index, and approximate entropy in the four states all
have poor coincidence. Among them, the margin index and impulse index in the outer
ring fault mode have a large variation between sample groups. Although the approximate
entropy between sample groups has a small change in amplitude, the approximate entropy
in the inner ring fault and rolling element fault modes basically coincide, the discrimination
is low. Therefore, this paper selects the kurtosis and the frequency domain sample entropy
as the characteristic indicators of the condition monitoring, which provides a reference for
the subsequent monitoring of the bearing unbalance condition.

Figure 5. Wavelet de-noising time domain waveform of IMS bearing test raw data.

Figure 6. Wavelet de-noising frequency domain waveforms of IMS bearing test raw data.
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Figure 7. Feature distribution diagram of IMS bearing under various working conditions: (a) Sample
entropy value, (b) Kurtosis value, (c) Margin value, (d) Impulse value, (e) AE value.

3.3. Cluster Analysis

The feature vectors from Section 3.2 are used to build the data set Y(Entropy,kurtosis), and
the IDBSCAN algorithm from Section 2.2 is used to identify the parameters of the features,
resulting in a list of Eps, MinPts variables. Finally, the number of clusters corresponding to
each set of parameters is estimated. Figure 8 shows the relationship between the number
of clusters and the number of samples, with the three intervals (a), (b), and (c) indicating
convergence before, convergence to, and convergence after the target number of clusters,
respectively.

Figure 8. The relationship between the number of clusters and the value of the sample.
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As the number of samples K increases, the value of N fluctuates until it reaches the
desired number of clusters. At K = 22, the target cluster number is attained for the first
time, but the number of clusters rapidly varies until it stabilizes and converges to the target
cluster number at K = 26. Then, at K = 31, a mutation occurs, and the value of N converges
to one as K increases, indicating that all feature values fall into a cluster of 1, however this
does not conform to our target value selection restrictions. Therefore, when K = 31, the
ideal parameters are determined, and the list of Eps and MinPts parameters indicates that
the optimal parameters are Eps = 0.1717 and MinPts = 28, respectively.

Clustering analysis was performed using the ideal parameters Eps = 0.1717 and
MinPts = 28 as well as two-dimensional feature vector of kurtosis and sample entropy. The
number of samples is used as a third dimension in this study to better understand the clus-
tering effect. IMS load-bearing state feature clustering is displayed in Figure 9 (below). The
clustering effect can be seen in the figure under four conditions: normal bearing operation,
inner ring failure, rolling element failure, and outer ring failure. Since the greater shocks
they produce have a high kurtosis and entropy value, failures of the outer and inner rings
are more common. The 99.2 percent accurate state feature distribution diagram produced
by this method only had one missing feature point. As shown in this research, data from the
IMS bearing test stand paired with the condition monitoring methods may be used to accu-
rately characterize the operating conditions of bearings using kurtosis-based, frequency
domain sample entropy characterization, and improved DBSCAN clustering analysis.

Figure 9. IMS bearing state feature clustering effect diagram.

4. Algorithm Verification Based on Unbalanced Bearing’s Load Test Bench
4.1. Data Collection

An unbalanced bearing load test bench was developed and constructed in this manuscript
to further examine the monitoring function of the suggested technique during biased
bearing operation, as seen in Figure 10. The test bench primarily consists of a motor, a
precision spindle, a rolling bearing, and an acceleration sensor, with the electric spindle
reaching a maximum speed of 10,000 r/min. The mechanical spindle is coupled to the
electric spindle by a flexible coupling, and the motor operation is controlled via the servo
control system.
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Figure 10. Bearing non-uniform preload test bench.

Four NSK7014C angular contact ball bearings were employed in this test bench.
Figure 11 illustrates the bearing structure loaded schematic diagram, where F1, F2, and
F3 are loaded on the bearing at 120◦, respectively, and the bearing bias running state is
defined by setting different sizes of preload; the bearings are mounted back-to-back, the
fixed speed is 4000 r/min, the sampling frequency is 8192 Hz, and the sampling length is
512. Table 2 shows the bearing parameters.

Figure 11. Schematic diagram of bearing structure loading.

Table 2. NSK7014C angular contact ball bearing parameters table.

Inner Ring
Diameter/mm

Outer Ring
Diameter/mm Thickness/mm Dynamic

Load/KN Static Load/mm

70 100 20 47 43

This manuscript defines six bearing operating states for light (OC_1, OC_01), medium
(OC_2 OC_02), and heavy load circumstances (OC_3, OC_03), where (OC_1, OC_2, OC_3)
denotes operation with an imbalanced load and (OC 01, OC 02, OC 03) denotes operation
with an even load. Table 3 summarizes the forces present in each condition.
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Table 3. Bearing loading conditions and operating conditions table.

Operational State F1/N F2/N F3/N

OC_1 400 200 200
OC_2 800 400 400
OC_3 1200 600 600
OC_01 200 200 200
OC_02 400 400 400
OC_03 600 600 600

4.2. Feature Extraction

Similarly, vibration signals within one second were extracted for analysis, wavelet
noise reduction was performed to the extracted vibration signals, and the resulting time
and frequency domain waveforms were shown. The time domain waveform of the bearing
under load after wavelet noise reduction is shown in Figure 12. As seen in the picture, the
amplitude of the periodic variation in operating state OC_1 is greater than that in state
OC_01, while the amplitude of the acceleration is smaller. The time domain waveform
reveals the change in operational condition intuitively. The frequency domain waveform
of the bearing loaded after wavelet noise reduction is shown in Figure 13. As shown in
the figure, the low frequency band part has a relatively small difference in amplitude
because the bearing has a fixed rotation frequency, but the high frequency band has a
noticeable difference in amplitude because the bearing is loaded differently. In order to
better distinguish the bearing crack type, the algorithm developed in this paper is used to
analyze and process the data.

Figure 12. Time domain waveform diagram of bearing load after wavelet noise reduction.

Figure 13. Frequency domain waveform diagram of bearing load after wavelet noise reduction.

During data collection, the collection time of each state of the bearing is set to 30 s,
a total of 245,760 data points are obtained, and then the data points are divided by the
equal time series method to obtain a multi-dimensional array of Y8192 × 30, where 8192
represents a single the length of the time series, and 30 represents the number of time series.
Next, kurtosis and sample entropy values were extracted from 180 sets of sample data
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under the six working conditions, yielding a two-dimensional feature vector of length 180.
The extracted feature data are classified into three operating conditions: light load (OC_1,
OC_01), medium load (OC_2, OC_02), and heavy load (OC_3, OC_03). The kurtosis and
frequency domain sample entropy values of the bearings’ unbalanced load and uniform-
load operating states are calculated using the method proposed in this paper. The typical
distribution of the bearing under working conditions is depicted in Figure 14 for the operat-
ing conditions (OC_1, OC_01), (OC_2, OC_02), and (OC_3, OC_03). The frequency domain
sample entropy and kurtosis values of the operating state of unbalanced load (OC_01) are
greater and more distinct than those of the uniform loaded state (OC_1) under light load
conditions. The eigenvalues of the states under medium and heavy load conditions are
less distinct, and the eigenvalues of the uniform loaded state are greater. To improve the
identification of the state distribution under each operating situation, the feature vectors
are processed and evaluated using an improved DBSCAN clustering algorithm.

Figure 14. The characteristic distribution map of the bearing running under different load conditions.

4.3. Cluster Analysis

Construct a data collection of light load, medium load, and overload circumstances
using the feature vectors in Section 4.2, including: Y(OC_1,OC_1)

(Entropy,Kurtosis), Y(OC_2,OC_2)
(Entropy,Kurtosis) and

Y(OC_3,OC_3)
(Entropy,Kurtosis). The IDBSCAN algorithm described in Section 2.2 is used to calculate the

optimal feature parameters. Firstly, the Eps and MinPts parameter lists for each working
condition are obtained by training the data set, then the feature vectors are clustered
according to the values of the parameter lists from smallest to largest, and the change in
the number of clusters formed by each group of parameters is observed. When the number
of clusters converges to the target number of clusters, the parameter corresponding to
that position is selected as the optimal parameter for the cluster analysis. Figure 15 shows
the finding curve of clustering parameter for each loading condition. The curve (a), (b),
and (c) in Figure 15 represents the three stages of the optimization curve: (a), (b), and (c)
represent the convergence before the target number of clusters, the convergence on the
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target number of clusters, and after the convergence on the target number of clusters, and
after the convergence on the target number of clusters, respectively. Where (a) indicates
the number of clusters from the minimum threshold and kernel radius to calculate the
clustering effect, with the value of N getting closer to the target as the parameter values
continue to increase, (b) indicates when N has just reached the target number of clusters,
with increasing parameter values and the number of clusters remaining constant until the
next mutation is generated. At this point, the number of samples K before the mutation
is the definitive position for our search for the optimal parameter; (c) indicates that the
condition that the number of clusters in the feature set is 1, deviating from the rule for
which we are searching for the optimum. The figure shows that the target is 2 for all three
loaded conditions. The number of clusters changes and gradually approaches the target as
the number of samples increases, for which the optimal parameter determination position K
is the same for all three conditions. Finally, based on the value of K, the related parameters
Eps and MinPts were determined, as shown in Table 4.

Figure 15. Clustering parameter optimization curve diagram under various loading conditions.

Table 4. Cluster analysis optimal parameter table.

Loaded Conditions Eps MinPts

(OC_1,OC_01) 0.1682 17
(OC_2,OC_02) 0.2241 16
(OC_3,OC_03) 0.2412 17

Cluster analysis of the feature vectors for each operating condition according to
the parameters Eps and MinPts in Table 4. Figure 16 shows the clustering parameter
optimization curves for different loading conditions, where Figure 16a–c illustrate the
distribution of characteristics under light load, medium load, and overload conditions,
respectively. The categorization effect is immediately apparent, with an accuracy of 98.4%,
and only one feature point was not recognized under light and medium load circumstances.
Two feature points were not detected with an accuracy of 96.7% under overload conditions.
Thus, by constructing an unbalanced bearing load test bench and combining it with the
suggested condition monitoring approach in this paper, the research demonstrates that this
method is capable of efficiently distinguishing the distribution of bearing load conditions
under different preload.
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Figure 16. The optimal clustering results under each load condition: (a) light load (OC_1, OC_01),
(b) medium load (OC_2, OC_02), overload (c) (OC_3, OC_03).

5. Conclusions

The purpose of this research is to propose an IDBSCAN spindle condition monitoring
approach based on kurtosis and sample entropy for more accurate identification of the
spindle operating status and intelligent spindle condition assessment. The approach begins
by performing wavelet noise reduction on the original state data and then segmenting it
into numerous groups, collecting the kurtosis and frequency domain sample entropy values
for each group to generate a two-dimensional feature vector. The IDBSCAN clustering
algorithm is then used to discover the best parameters Eps and MinPts using the two-
dimensional feature vector. Finally, the ideal parameters are used to monitor the feature
vectors of various state categories. The algorithm was validated using data from the
University of Cincinnati’s IMS bearing test rig, which was then confirmed using the test
bench for bearing operation under varying preloads. The following conclusions have
been drawn:

• Weak bearing characteristics may be effectively extracted using the proposed kurtosis
and frequency domain sample entropy-based feature extraction method.

• An updated DBSCAN method enables automatic cluster analysis by determining the
optimal values of the Eps and MinPts parameters, as well as the position of the optimal
parameters, using a more precise optimization strategy.

• Using the condition monitoring approach proposed in the paper, the experimental
results reveal that both bearings in fault conditions and bearings under varying
loading conditions can be identified, and the condition detection rate is extremely
high, reaching 96% in all cases.

• Although this work demonstrates that the operating condition of a bearing may be
recognized under both unbalanced and uniform load situations, the recognition effect
of operating the bearing under diverse load conditions is not clearly demonstrated.
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