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Abstract: In this paper, a novel methodology for estimating the parameters of robotic manipulator
systems is proposed. It can be seen that, for the purpose of parameter estimation, the input torque to
each joint motor is designed as a linear combination of sinusoids. After the transient responses of joint
angles exponentially converge to zero, the steady states of joint angle outputs can be extracted. Since
the steady states of joint angles are the equivalent finite Fourier series, the coefficients of the steady
state components of joint angles can be further extracted in a fundamental period. With the amazing
finding that the steady states contain all dynamic information of manipulator systems, all unknown
parameters of the system model can be accurately estimated with the extracted coefficients in finite
frequency bands. The simulation results for a two-link manipulator are carried out to illustrate the
effectiveness and robustness against measurement noise of the proposed method.

Keywords: parameter estimation; robotic manipulator; least square method optimization

1. Introduction

In modern manufacturing industry, robot manipulator systems are widely adopted
in many aspects such as assembling, welding, painting, etc. [1–3]. In order to ensure the
stability and reliable performance of robot manipulators, many model-based controllers
have been proposed [4–11]. The stability of the control performance highly depends on
the accuracy of the system dynamic model. To establish the accurate dynamic model, the
knowledge of system dynamic parameters is required [12]. However, internal parameter
perturbation may occur during long-time continuous operation in many practical appli-
cations, which may degrade the reliability of the system operations. Thus, the accurate
estimation of system dynamic parameters is of great significance.

Various methodologies have been developed to solve the parameter estimation prob-
lem for manipulator systems [13–19]. One commonly adopted method for identifying the
unknown manipulator parameters is the recursive least square method (RLS) [20,21]. The
common characteristics of the existing RLS methods are that a cost function needs to be
designed; the optimization process will start at a random initial position in the parameter
space and proceed along with the surface of that cost function in a series manner [22].
Although many RLS-based approaches have been proposed to complete variable parameter
estimation tasks, these methods still have several limitations. For instance, most RLS
methods in the time domain have always suffered from low convergence speed [23]; the
robustness of the RLS is weak against external disturbances due to its low sensitivity to
the new measurements in long-time recursive iteration [24]. Moreover, the local minima
problem will happen if the start point has not been selected properly, which may also lead
to the degeneration of the estimation performance [25,26].
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The Kalman filter (KF) and its variants including extended the Kalman filter (EKF)
and unscented the Kalman filter (UKF) have also been proved to be effective of estimating
unknown dynamic parameters of manipulator systems [27–32]. The KF algorithms employ
the stochastic system model, and the model uncertainties and measurement noises are all
assumed to be Gaussian. With properly designed KF gains, the posteriori error covariance
is minimized, and the optimal estimates of model parameters are obtained in the form
of a weighted combination of the priori estimates and measurements. However, the
implementation of KF algorithms requires a nominal system model and full system states
information [33]. The estimation accuracy will also be degraded due to the unknown
distribution of disturbance [34]. In manipulator systems, if the joint angular velocity and
angular acceleration are not available, it will be quite hard to formulate the KF algorithm
for either estimating system model parameters or system states [35,36]. Furthermore, the
robustness of the Kalman filter cannot be guaranteed as well [37,38].

In this paper, a novel parameter estimation scheme is developed for manipulator
systems in the frequency domain. To start with, the manipulator system dynamic model
has been re-constructed using the linearization technique. It is shown that the information
from the other joint can be decoupled and only the joint angular position measurement is
required for further parameter estimation. Considering the fact that the transient response
of the joint angular position and angular velocity are all damped and will exponentially
converge to zero with fast convergence speed, the angular position and angular velocity
are dominated by their steady state after sufficient long time. The steady state of angular
position can then be extracted from the measurement. In this study, the manipulator system
is excited by a linear combination of sinusoidal components. The steady state of the output
can also be equivalent to a finite Fourie series. It is shown that, the coefficients of the
steady state joint position measurement are all polynomials about the system dynamic
parameters and system’s dynamic information has been fully embedded in these coefficients
within one fundamental period. Then, the coefficients of the steady state of the angular
position can be extracted from the angular position measurement using joint position
measurement in one fundamental period. Furthermore, utilizing the relationship among
the coefficients of the steady state sinusoidal components of joint position measurement and
the system’s dynamic parameters in the frequency domain, all the unknown parameters
including the mass of the joint, the length of the joint, etc. can then be estimated based on
extracted coefficients.

The advantages of the proposed method can be concluded as: (i) only the steady
state part of the measurement in one fundamental period is required to extract the coef-
ficients of the steady state sinusoidal components. (ii) All unknown parameters within
the system model can be accurately estimated based on extracted coefficients while the
estimation convergence speed is faster than that of traditional recursive estimation schemes
and the global optimization mechanism is guaranteed. (iii) The averaging process of ex-
tracting the coefficients of steady state sinusoidal components contributes to compensate
the effects of the measurement noises. The proposed estimation scheme is robustness
against measurements.

Compared to existing parameter estimation approaches, in the proposed method, a
nominal model and prior information are not required, only the steady state of the joint
position measurement in one fundamental period is needed; the coefficients of the steady
state sinusoidal components can all be extracted, based on which all unknown parameters
can be estimated in finite frequency bands. In addition, due to the orthogonal properties
of the trigonometric base in the sinusoidal components, the computational cost of matrix
inversion of the high dimension can be greatly reduced; therefore, the proposed estimation
method exhibits high convergence speed, since no recursive process is involved. Moreover,
the proposed estimation scheme will show a global optimization mechanism.

The rest of this paper is organized as follows: in Section 2, the dynamic model of a
manipulator is reconstructed using a linearization technique. The system’s output response
in frequency domain is analyzed. In Section 3, the input torque is designed as a linear
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combination of sinusoids and the coefficients of steady state sinusoidal components of
the measurement are derived and extracted. The unknown parameters are then estimated
based on these coefficients. In Section 4, the simulation results are carried out to verify
the theoretical analysis and good estimation performance of the proposed method; the
robustness of the proposed method is also discussed. In Section 5, the conclusion is
briefly summarized.

2. Problem Formulation

Consider a two-link manipulator; the angular position and angular velocity are de-
noted as q = [q1, q2]

T and
.
q =

[ .
q1,

.
q2
]T , respectively. The dynamic model of this 2 degrees

of freedom (DOF) manipulator can be derived as:

D(q)
..
q + C

(
q,

.
q
) .
q + G(q) = τ (1)

where τ is the vector of torques applied at two joints and

D(q) =
[

d11 d12
d21 d22

]
(2)


d11 = (m1 + m2)r2

1 + m2r2
2 + 2m2r1r2 cos(q2) + J1

d12 = d21 = m2r2
2 + m2r1r2 cos(q2)

d22 = m2r2
2 + J2

(3)

C
(
q,

.
q
) .
q =

[
β12(q2)

.
q2

1 + 2β12(q2)
.
q1

.
q2

−β12(q2)
.
q2

2

]
(4)

β12(q2) = m2r1r2 sin(q2) (5)

G(q) =
[

γ1(q1, q2)g
γ2(q1, q2)g

]
(6)

γ1(q1, q2) = −((m1 + m2)r1 cos(q2) + m2r2 cos(q1 + q2)) (7)

where m1 and m2 are the masses of link 1 and link 2. l1 and l2 are the length of link 1 and
link 2, respectively. Due to the manufacturing error, the actual values of these dynamic
quantities are different from their nominal values. In addition, the parameter perturbation
during the operation also degenerates the reliability of the model. Thus, it is of great
significance to develop an online parameter estimation scheme to estimate real time values
of all robotic mechanical quantities. The system’s model (1) can be further re-written as:

..
q = α

(
q,

.
q
)
+ β(q)τ = f (q, τ) (8)

where
α
(
q,

.
q
)
= D−1(q)

(
−C
(
q,

.
q
) .
q− G(q)

)
(9)

(q) = D−1(q) (10)

In order to implement the proposed parameter identification algorithm, the Taylor
series expansion method has been applied to system (1) for the approximation of a linear
system, considering the fact that the manipulator system can be stabilized, and the manipu-
lator joint can remain at an equilibrium position q0 = [q10, q20]. Meanwhile, the system’s
joint angular position and velocity are all assumed to change slowly. Thus, the system can
be linearized regarding to the equilibrium position q0 as:

..
q0 + δ

..
q = f (q0 + δq, τ0 + δτ) ≈ f (q0, τ0) +

∂ f
∂q
|q0,τ0 δq +

∂ f
∂τ
|q0,τ0 δτ (11)
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where
..
q0 = f (q0, τ0); thus,

δ
..
q =

∂ f
∂q
|q0,τ0 δq +

∂ f
∂τ
|q0,τ0 δτ (12)

The linearized system model (12) in the time domain can be further re-expressed in
state-space form as:[

δ
..
q1

δ
..
q2

]
=

[
a11 a12
a21 a22

][
δq1
δq2

]
+

[
b11 b12
b21 b22

][
δτ1
δτ2

]
(13)

where 

a11 = g∗(2m1 sin(q10))+m2 sin(q10)−m2 sin(q10+2q20)
l1(2m1+m2−m2 cos(2q20))

a12 = − gm2(sin(q10+2q20)+sin(q10))
l1(2m1+m2−m2 cos(2q20))

a21 =

g


l2m2 cos2(q20) sin(q10)− l2m2 sin(q10)−
l2m1 sin(q10) + l1m1 cos(q10) sin(q20)+

l2m2 cos(q10) cos(q20) sin(q20)


l1l2(m1+m2−m2 cos2(q20))

a22 =
l2
1 m1+l2

1 m2+2l1l2m2 cos(q20)

l2
1 l2

2 m2(m1+m2−m2 cos2(q20))

(14)



b11 = 1
l2
1(m1+m2−m2 cos2(q20))

b12 = − l2+l1 cos(q20)

l2
1 l2(m1+m2−m2 cos2(q20))

b21 = b12

b22 =
l2
1 m1+l2

1 m2+l2
2 m2+2l1l2m2 cos(q20)

l2
1 l2

2 m2(m1+m2−m2 cos2(q20))

(15)

The transfer functions of system (13) can then be formulated as:

Q1(s) =
b11s+a12b21−a22b11

s2−(a11+a22)s+a11a22−a12a21
U1(s) +

b12s+a12b22−a22b12
s2−(a11+a22)s+a11a22−a12a21

U2(s)

= (b11s+p1)U1(s)
(s−σ0)

2+ω2
d

+ (b12s+p2)U2(s)
[(s−σ0)

2+ω2
d ]

(16)

Q2(s) =
b21s+a21b11−a11b21

s2−(a11+a22)s+a11a22−a12a21
U1(s) +

b22s+a21b12−a11b22
s2−(a11+a22)s+a11a22−a12a21

U2(s)

= (b21s+p3)U1(s)
(s−σ0)

2+ω2
d

+ (b22s+p4)U2(s)
[(s−σ0)

2+ω2
d ]

(17)

where σ0 = a11+a22
2 , ω2

d = (a11a22 − a12a21) − a11+a22
2

2
= ω2

0 − σ2
0 . p1 = a12b21 − a22b11,

p2 = a12b22 − a22b12, p3 = a21b11 − a11b21, p4 = a21b12 − a11b22 In this case, |σ0| is the
damping factor, ω0 is the undamped frequency, and ωd is the damping frequency. In this
section, for convenience, it is assumed that:

ω2
0 − σ2

0 ≥ 0 (18)

In systems (16) and (17), parameters a11 − a22, b11 − b22 are all polynomials with re-
spect to the dynamic quantities. In order to estimate the dynamic quantities of manipulator
systems, system parameters need to be obtained first. In the next section, the parameter
estimation algorithm is proposed to extract the parameters from the steady state of the joint
position output.

3. Main Results

Regarding the system’s transfer function (16) and (17), the input signal has been
designed as a linear combination of sinusoidal components as:

uk(t) = ∑n
i=1 dki cos(ωkit), k = 1, 2 (19)
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The corresponding transfer function of the above input signal is given by:

Uk(s) = ∑n
i=1

dkis
s2 + ω2

ki
, k = 1, 2 (20)

Substituting (20) into (16) and (17) yields:

Q1(s) = ∑n
i=1(

(b11s + p1)d1is

[(s− σ0)
2 + ω2

d](s
2 + ω2

1i)
+

(b12s + p2)d2is

[(s− σ0)
2 + ω2

d](s
2 + ω2

2i)
) (21)

Q2(s) = ∑n
i=1(

(b21s + p3)d1is

[(s− σ0)
2 + ω2

d](s
2 + ω2

1i)
+

(b22s + p4)d2is

[(s− σ0)
2 + ω2

d](s
2 + ω2

2i)
) (22)

3.1. Estimation of Steady State Coefficients

Using the partial fraction expansion method, the ith component of (21) can be
expressed as:

Q1i(s) =
A11i(s− σ0) + B11iωd

(s− σ0)
2 + ω2

d

+
C11is + D11iω1i

s2 + ω2
1i

+
A12i(s− σ0) + B12iωd

(s− σ0)
2 + ω2

d

+
C12is + D12iω2i

s2 + ω2
2i

(23)

Based on (21) and (23), the following relationships can be obtained:
A11i + C11i = 0
−A11iσ0 + B11iωd − 2C11iσ0 + D11iω1i = d1ib11
A11iω

2
1i + C11iω

2
0 − 2D11iωiiσ0 = d1i p1

−A11iσ0ω2
11i + B11iωdω2

11i + D11iω11iω
2
0 = 0

(24)

By solving the equation set (24), A11i, B11i, C11i and D11i can be calculated as:

A11i =
2ω11iσ0d1ib11+d1i p1(ω2

1i−ω2
0)

4ω2
1iσ

2
0+(ω2

1i−ω2
0)

2

B11i =
(d1ib21)

ωd
+ σ0

ωd

−2ω11iσ0d1ib11−d1i p1(ω2
1i−ω2

0)
4ω2

1iσ
2
0+(ω2

1i−ω2
0)

2

+ω1i
ωd

2ω1iσ0d1i p1−d1ib11ω1i(ω2
1i−ω2

0)
4ω2

1iσ
2
0+(ω2

1i−ω2
0)

2

C11i =
−2ω11iσ0d1ib11−d1i p1(ω2

1i−ω2
0)

4ω2
1iσ

2
0+(ω2

1i−ω2
0)

2

D11i = −
2ω1iσ0d1i p1−d1ib11ω1i(ω2

1i−ω2
0)

4ω2
1iσ

2
0+(ω2

1i−ω2
0)

2

(25)

Similarly, A21i, B21i, C21i and D21i can also be obtained as:

A21i =
2ω21iσ0d2ib12+d2i p2(ω2

2i−ω2
0)

4ω2
2iσ

2
0+(ω2

2i−ω2
0)

2

B21i =
(d2ib22)

ωd
+ σ0

ωd

−2ω21iσ0d2ib12−d2i p2(ω2
2i−ω2

0)
4ω2

2iσ
2
0+(ω2

2i−ω2
0)

2

+ω2i
ωd

2ω2iσ0d2i p2−d2ib12ω2i(ω2
2i−ω2

0)
4ω2

2iσ
2
0+(ω2

2i−ω2
0)

2

C21i =
−2ω21iσ0d2ib12−d2i p2(ω2

2i−ω2
0)

4ω2
2iσ

2
0+(ω2

2i−ω2
0)

2

D21i = −
2ω2iσ0d2i p2−d2ib12ω2i(ω2

2i−ω2
0)

4ω2
2iσ

2
0+(ω2

2i−ω2
0)

2

(26)

Therefore, the ith component of the output joint angle (23) can be re-expressed in the
time domain as:

q1i(t) = q1ti(t) + q1si(t)#(27) (27)

where
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q1ti(t) = A11ieσ0t cos(ω1it) + B11ieσ0t sin(ω1it) + A21ieσ0tcos(ω2it) + B21ieσ0tsin(ω2it) (28)

q1is(t) = C11i cos(ω1it) + D11i sin(ω1it) + C12icos(ω2it) + D12i sin(ω2it) (29)

where q1ti(t) is the transient component of the ith term of joint position output while q1is(t)
is the steady state component. As time t moves towards infinity, with the excitation input
signal (19) and the transient response component q1ti(t) will exponentially decrease to 0. If
the time constant 1/|σ0| is small enough, the joint position output will be dominated by
the steady state component. The steady state output can then be formulated as:

q1s(t) =
n

∑
i=1

C11i cos(ω1it) + D11i sin(ω1it) + C12icos(ω2it) + D12i sin(ω2it) (30)

To extract the coefficients C11i, D11i, C12i and D12i (30) can be expanded into the matrix
from as:

q1s(t) = [cos(ω11), sin(ω11), cos(ω21), sin(ω21), · · · cos(ω1n), sin(ω1n), cos(ω2n), sin(ω2n)]


C11
D11

...
C2n
D2n

 (31)

Taking m samples of each function in (29) gives:

Q1 = [q1s(t− (m− 1)∆), q1s(t− (m− 2)∆), · · · q1s(t− ∆), q1s(t)]
T (32)

where ∆ is the sampling period. Substituting (28) into (29) yields:

Q1 = A1P1 =


cos(ω11(t− (m− 1)∆))
cos(ω11(t− (m− 2)∆))

...
cos(ω11t)

sin(ω11(t− (m− 1)∆))
sin(ω11(t− (m− 2)∆))

...
sin(ω11t)

· · ·
· · ·

...
· · ·

cos(ω2n(t− (m− 1)∆))
cos(ω2n(t− (m− 2)∆))

...
cos(ω2nt)

sin(ω2n(t− (m− 1)∆))
sin(ω2n(t− (m− 2)∆))

...
sin(ω2nt)




C11
D11

...
C2n
D2n


(33)

Using the least square optimization method, the coefficients vector P1 can be
estimated as:

P̂1 =
(

AT
1 A1

)−1
AT

1 Q1 (34)

It is noteworthy that, in the design of the input signal (19), each sinusoidal component
satisfies the following orthogonal properties:∫ T

0
cos(ωki) cos

(
ωkj

)
dt = 0, k = 1, 2, i 6= j (35)

∫ T

0
sin(ωki) sin

(
ωkj

)
dt = 0, k = 1, 2, i 6= j (36)

∫ T

0
sin(ωki) cos

(
ωkj

)
dt = 0, k = 1, 2, i 6= j (37)

In addition, ∫ T

0
sin2(ωki)dt =

T
2

, k = 1, 2 (38)
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∫ T

0
cos2(ωki)dt =

T
2

, k = 1, 2 (39)

In practice, in order to obtain the accurate estimation of the coefficients C11i, C12i,
D11i and D12i, for i = 1, 2, · · · , n, the output measurement needs to be sampled within a
fundamental period T. Furthermore, the sampling period ∆ is selected to be small enough,
(35)–(39) can then be approximated as follows:

T∫
0

cos(ωki) cos
(

ωkj

)
dt ≈

m

∑
n=1

cos(ωki − (n− 1)∆) cos
(

ωkj − (n− 1)∆
)

∆ ≈ 0, k = 1, 2, i 6= j (40)

T∫
0

sin(ωki) sin
(

ωkj

)
dt ≈

m

∑
n=1

sin(ωki − (n− 1)∆) sin
(

ωkj − (n− 1)∆
)

∆ ≈ 0, k = 1, 2, i 6= j (41)

T∫
0

sin(ωki) cos
(

ωkj

)
dt ≈

m

∑
n=1

sin(ωki − (n− 1)∆) cos
(

ωkj − (n− 1)∆
)

∆ ≈ 0, k = 1, 2, i 6= j (42)

T∫
0

sin2(ωki)dt ≈
m

∑
n=1

sin2(ωki − (n− 1)∆)∆ ≈ T
2

, k = 1, 2 (43)

T∫
0

cos2(ωki)dt ≈
m

∑
n=1

cos2(ωki − (n− 1)∆)∆ ≈ T
2

, k = 1, 2 (44)

Based on (40)–(44), the term
(

AT
1 A1

)−1 in (34) can then be approximate as:

(
AT

1 A1

)−1
≈


T

2∆ 0 0
...

. . .
...

0 . . . T
2∆


−1

=
2∆
T

 1 0 0
...

. . .
...

0 . . . 1

 (45)

Furthermore,

AT
1 Q1 ≈

T
2∆

P1 (46)

Thus,

P̂1 =
(

AT
1 A1

)−1
AT

1 Q1 ≈
2∆
T

AT
1 Q1 ≈ P1 (47)

The steady state coefficients C11i, D11i, C12i and D12i. can then be numerically estimated
according to (47) as:

Ĉ11i =
2
T

m
∑

k=1
q1s(t− (k− 1)∆) cos(ω1i(t− (k− 1)∆))∆

D̂11i =
2
T

m
∑

k=1
q1s(t− (k− 1)∆) sin(ω1i(t− (k− 1)∆))∆

Ĉ12i =
2
T

m
∑

k=1
q1s(t− (k− 1)∆) cos(ω2i(t− (k− 1)∆))∆

D̂12i =
2
T

m
∑

k=1
q1s(t− (k− 1)∆) sin(ω2i(t− (k− 1)∆))∆

(48)

It is shown from (45) that the computational cost of the matrix inverse calculation
has been greatly decreased after the numerical approximation of the sinusoidal compo-
nents based on their orthogonal properties. Moreover, the averaging process in (48) also
contributes to reduce the effects of the measurement noises and, as a result, guarantee the
robustness of the proposed algorithm against measurement noises.
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Since the accurate estimation of the coefficient vector P1 of the steady state of the joint
position measurement can be obtained from (48), the identification algorithm for estimating
the unknown dynamic parameters can be further developed.

3.2. Estimation of Unknown Dynamic Parameters

As discussed in (27)–(30), the joint angular position output is dominated by its steady
state components after sufficient long time; thus:

q1i(t) ≈ q1si(t) = C11i cos(ω1it) + D11i sin(ω1it) + C12icos(ω2it) + D12i sin(ω2it) (49)

Based on (21) and (23), the following relations can be derived:

C11iω
2
1i = C11iω

2
0 − 2D11iω1iσ0 − d1iP1 (50)

D1iω
2
1i = D1iω

2
0 + 2C1iω1iσ0 + d1iω1ib11 (51)

Since C11i and D11i can be accurately estimated via (45), (50) and (51) can then be
re-written as:

Ĉ11iω
2
1i = Ĉ11iω̂

2
0 − 2D̂11iω1iσ̂0 − d1i P̂1 (52)

D̂11iω
2
1i = D̂11iω̂

2
0 + 2Ĉ11iω1iσ̂0 + d1iω1i b̂11 (53)

To estimate unknown parameters, sufficient number of coefficients C11 and D11 need
to be obtained via (47). Then, the following data equation in matrix form can be derived:

Q2 = A2P2 (54)

where
Q2 = [ Ĉ111ω2

11 Ĉ112ω2
12 . . . D̂111ω2

11 . . . Ĉ11nω2
1n ]

T (55)

A2 =



Ĉ111
Ĉ112

...
D̂111

...
D̂11n

−2D̂112ω12
−2D̂112ω12

...
2Ĉ111ω11

...
2Ĉ11nω1n

−d11
−d12

...
0
...
0

0
0
...

d11ω11
...

d1nω1n


(56)

P2 =
[

ω̂2
0 σ̂0 P̂1 b̂11

]T (57)

Using the least square method, the parameter vector P2 can be estimated as:

P2 =
(

AT
2 A2

)−1
AT

2 Q2 (58)

where all elements in P2 are equations with respect to the manipulator’s mechanical
quantities including the mass of the link, the length of the link, etc.

Similarly, the ith component of (22) can also be expanded using the partial fraction
expansion method as:

Q2i(s) =
A21i(s− σ0) + B21iωd

(s− σ0)
2 + ω2

d

+
C21is + D21iω1i

s2 + ω2
1i

+
A22i(s− σ0) + B22iωd

(s− σ0)
2 + ω2

d

+
C22is + D22iω2i

s2 + ω2
2i

(59)
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Applying the same process, m samples of the second joint’s angular position measurement
are sampled within one fundamental period; sample period ∆ is selected to be sufficiently
small. The coefficients of the steady state component of (59) can be numerically estimated as:

Ĉ21i =
2
T

m
∑

k=1
q2s(t− (k− 1)∆) cos(ω1i(t− (k− 1)∆))∆

D̂21i =
2
T

m
∑

k=1
q2s(t− (k− 1)∆) sin(ω1i(t− (k− 1)∆))∆

Ĉ22i =
2
T

m
∑

k=1
q2s(t− (k− 1)∆) cos(ω2i(t− (k− 1)∆))∆

D̂22i =
2
T

m
∑

k=1
q2s(t− (k− 1)∆) sin(ω2i(t− (k− 1)∆))∆

(60)

Based on (22) and (59), the following relationships can be obtained:

C21iω
2
2i = C21iω

2
0 − 2D21iω2iσ0 − d2iP3 (61)

D2iω
2
2i = D2iω

2
0 + 2C2iω2iσ0 + d2iω2ib21 (62)

Since C21i and D21i can be accurately estimated via (50), (51) and (60) can then be
re-written as:

Ĉ21iω
2
2i = Ĉ21iω̂

2
0 − 2D̂21iω2iσ̂0 − d2iP̂3 (63)

D̂21iω
2
2i = D̂21iω̂

2
0 + 2Ĉ21iω2iσ̂0 + d2iω1i b̂21 (64)

To estimate unknown parameters, a sufficient number of coefficients C21 and D21 needs
to be obtained via (60). Then, the following data equation in matrix form can be derived:

Q3 = A3P3 (65)

where
Q3 =

[
Ĉ211ω2

21 Ĉ212ω2
22 . . . D̂211ω2

21 . . . Ĉ21nω2
2n

]T (66)

A3 =



Ĉ211
Ĉ212

...
D̂211

...
D̂21n

−2D̂212ω22
−2D̂212ω22

...
2Ĉ211ω21

...
2Ĉ21nω2n

−d21
−d22

...
0
...
0

0
0
...

d21ω21
...

d2nω2n


(67)

P3 =
[

ω̂2
0 σ̂0 p̂3 b̂21

]T (68)

Using the least square method, the parameter vector P3 can be estimated as:

P3 =
(

AT
3 A3

)−1
AT

3 Q3 (69)

Once P2 and P3 can be estimated via (58) and (69), respectively, all the unknown
system dynamic parameters as well as the dynamic quantities can then be derived.

In the proposed method, the parameter estimator for each joint is separately designed.
Since the dynamic information is embedded within the steady state of the joint angle
measurement, only the joint angle measurement in one fundamental period is required to
estimate all dynamic parameters. Meanwhile, the orthogonality of the trigonometric base
function contributes to reducing the computation load of the high dimension matrix. As a
result, the proposed method can be extended to high DOF manipulators.
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4. Simulation Results

In this section, simulation with a 2-DOF manipulator is performed to verify the
feasibility of the proposed parameter estimation algorithm. The nominal values of robotic
manipulator parameters are given in the Table 1 [39]:

Table 1. Parameter of the robotic manipulator.

Parameters Values

Mass of link 1 m1 (kg) 5
Mass of link 2 m2 (kg) 1.5

Inertial of link 1 j1
(
kg ·m2) 5

Inertial of link 2 j2
(
kg ·m2) 5

Length of link 1 l1 (m) 1
Length of link 2 l2 (m) 0.8

In this study, the masses of two links are supposed to be unknown. The input torque is
designed to be a linear combination of 10 sinusoidal components as shown in Table 2 [39].
The fundamental frequency is selected to be f0 = 0.01 Hz and ω0 = 2π f0.

Table 2. Sinusoidal components of the input torque signal τ1.

ith Component Frequency Amplitude

1 3ω0 0.2
2 5ω0 1.5
3 7ω0 0.3
4 9ω0 0.5
5 11ω0 0.7
6 13ω0 0.8
7 17ω0 1.0
8 21ω0 1.2
9 27ω0 1.4
10 42ω0 2.0

The system input torque with 10 sinusoidal components is shown in Figure 1 [39]. The
above torque has been applied to both joints at the same time.
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The comparison between the theoretical value and calculated value of coefficients C11
C21, D11 and D21 is illustrated in Figures 2 and 3 [39], respectively:
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It can be seen from Figures 2 and 3 that, with the fundamental frequency f0 = 0.01 Hz
as the sampling interval and 10 consecutive components, the coefficients of the steady state
components of the joint angular position can be accurately estimated based on (48) and (60).

In practical implementations, the measurement of the angular position is vulnerable
to being affected by the sensor noise. In order to illustrate the robustness of the proposed
identification algorithm against the measurement noises, a white noise d = 0.1 ∗ rand()
is manually added to system output to simulate the actual measurement. The estimation
performance of two unknown link masses can be seen in Figures 4 and 5 [39], respectively.
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Figure 5. Estimation of link 2′s mass m2.

It can be seen from Figures 4 and 5 that the unknown parameters derived based on
(58) and (65) can well approximate their actual values. The effect of measurement noises
has been reasonably compensated by the averaging process during the calculation of the
steady state coefficients in (48) and (60).

To illustrate the accuracy of the estimation, the RMSEs (root-mean square error) for
two joints are calculated:

rmsem1 = 1.0568 (70)

rmsem2 = 1.5420 (71)
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5. Conclusions

In this paper, a novel mythology to estimate the unknown parameters of the robotic
manipulator system in frequency domain has been proposed. It is seen that the joint angular
position measurement will be dominated by its steady state component after sufficient long
time. By designing the input signal to be a linear combination of sinusoidal components,
the steady state component of the measurement is equivalent to a finite Fourie series.
It is shown that all system dynamic information is embedded in the coefficients of the
steady state component within one fundamental period. Thus, the coefficients of the steady
state sinusoidal component of the joint angular position output are first extracted. By
utilizing the relationship among these coefficients and the system’s dynamic parameters
in the frequency domain, all unknown dynamic parameters and mechanical quantities
can be estimated accurately. It is expected that this new kind of new estimation scheme
can be widely applied in various industrial applications where the systems suffer from
uncertainties and disturbances.
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