Morphological Component Analysis-Based Hidden Markov Model for Few-Shot Reliability Assessment of Bearing
Abstract
:1. Introduction
2. Methodology
2.1. Vibration Response of Bearing
2.2. Sparse Components Separation Based on Dual-Basis Pursuit (Dual-BP)
2.3. Few-Shot Reliability Assessment via Mixture of Gaussian Hidden Markov Models (MoG-HMM)
- Detection: given the model λ and observation sequence O, compute the probability P(O|λ) of the sequence given the model. This problem can be solved the using the forward-backward algorithm.
- Prediction/Decoding: given the model λ and observation sequence O, find the hidden state sequence S that most likely produced the observation sequence. This problem can be solved by the Viterbi algorithm.
- Learning: given observation sequence O, find the model parameters λ that maximize the probability P(O|λ). This problem can be solved by the Baum–Welch algorithm.
3. Case Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, F.; Chen, X.; Liu, C.; Yan, D.; Li, H. Reliability assessment of rolling bearing based on principal component analysis and Weibull proportional hazard model. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017. [Google Scholar]
- Abaei, M.M.; Hekkenberg, R.; Bahootoroody, A. A multinomial process tree for reliability assessment of machinery in autonomous ships. Reliab. Eng. Syst. Saf. 2021, 210, 107484. [Google Scholar] [CrossRef]
- Varshney, L.; Vardhan, A.; Vardhan, A.; Kumar, S.; Sanjeevikumar, P. Performance characteristics and reliability assessment of self-excited induction generator for wind power generation. IET Renew. Power Gener. 2020, 15, 1927–1942. [Google Scholar] [CrossRef]
- Norouzi, N. The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change. Nucl. Eng. Technol. 2021, 53, 1658–1663. [Google Scholar] [CrossRef]
- Cai, G.; Chen, X.; Li, B.; Chen, B. Operation reliability assessment for cutting tools by applying a proportional covariate model to condition monitoring information. Sensors 2012, 12, 12964–12987. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Pan, C.; Shao, C.; Xie, K.; Niu, T.; Li, C.; Peng, L. Decision-Dependent Uncertainty Modeling in Power System Operational Reliability Evaluations. IEEE Trans. Power Syst. 2021, 36, 5708–5721. [Google Scholar] [CrossRef]
- Qc, A.; Cz, A.; Zhao, Y.; Yan, X.B. Operational reliability assessment of photovoltaic inverters considering voltage/VAR control function. Electr. Power Syst. Res. 2021, 190, 106706. [Google Scholar]
- Ren, Z.; Zhu, Y.; Yan, K.; Chen, K.; Kang, W.; Yue, Y.; Gao, D. A novel model with the ability of few-shot learning and quick updating for intelligent fault diagnosis. Mech. Syst. Signal Process. 2020, 138, 106608.1–106608.21. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, R.; Li, X.; Chen, D.; Hu, Q. Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis With Limited Data. IEEE Trans. Ind. Inform. 2022, 18, 3894–3904. [Google Scholar] [CrossRef]
- Chen, H.; Liu, R.; Xie, Z.; Hu, Q.; Dai, J.; Zhai, J. Majorities help minorities: Hierarchical structure guided transfer learning for few-shot fault recognition. Pattern Recognit. 2022, 123, 108383. [Google Scholar] [CrossRef]
- Liu, R.; Yang, B.; Zhang, X.; Wang, S.; Chen, X. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis. Mech. Syst. Signal. Process. 2016, 75, 345–370. [Google Scholar] [CrossRef]
- Niu, L.; Cao, H.; He, Z.; Li, Y. Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways. J. Manuf. Sci. Eng. 2014, 136, 041015. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H.; Chen, X. Modelling and vibration analysis of machine tool spindle system with bearing defects. Int. J. Mechatron. Manuf. Syst. 2015, 8, 33–48. [Google Scholar] [CrossRef]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 1998, 20, 33–61. [Google Scholar] [CrossRef]
- Elad, M.; Milanfar, P.; Rubinstein, R. Analysis versus synthesis in signal priors. Inverse Probl. 2007, 23, 947. [Google Scholar] [CrossRef] [Green Version]
- Starck, J.L.; Elad, M.; Donoho, D. Redundant multiscale transforms and their application for morphological component separation. Adv. Imaging Electron. Phys. 2004, 132, 287–348. [Google Scholar]
- Starck, J.L.; Elad, M.; Donoho, D.L. Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 2005, 14, 1570–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daubechies, I.; Defrise, M.; Mol, C.D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 2010, 57, 1413–1457. [Google Scholar] [CrossRef] [Green Version]
- Sardy, S.; Tseng, B.P. Block coordinate relaxation methods for nonparametric wavelet denoising. J. Comput. Graph. Stat. 2000, 9, 361–379. [Google Scholar]
- Baruah, P.; Chinnam, R.B. HMMs for diagnostics and prognostics in machining processes. Int. J. Prod. Res. 2005, 43, 1275–1293. [Google Scholar] [CrossRef]
- Chinnam, R.B.; Baruah, P. Autonomous diagnostics and prognostics through competitive learning driven HMM-based clustering. In Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 4, pp. 2466–2471. [Google Scholar]
- Wang, Y.; Yan, H.; Zhang, H.; Shen, H.; Lam, H.K. Interval Type-2 Fuzzy Control for HMM-Based Multiagent Systems Via Dynamic Event-Triggered Scheme. IEEE Trans. Fuzzy Syst. 2021. [Google Scholar] [CrossRef]
- Tobon-Mejia, D.A.; Medjaher, K.; Zerhouni, N.; Tripot, G. A data-driven failure prognostics method based on mixture of gaussians hidden markov models. IEEE Trans. Reliab. 2012, 61, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Söffker, D. A Review of the current HMM-based Approaches of Driving Behaviors Recognition and Prediction. IEEE Trans. Intell. Veh. 2021. [Google Scholar] [CrossRef]
- Li, F.; Zheng, W.X.; Xu, S. HMM-Based fuzzy control for nonlinear Markov jump singularly perturbed systems with general transition and mode detection information. IEEE Trans. Cybern. 2021. [Google Scholar] [CrossRef]
- Lee, W.L.J.; Burattin, A.; Munoz-Gama, J.; Sepúlveda, M. Orientation and conformance: A HMM-based approach to online conformance checking. Inf. Syst. 2021, 102, 101674. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Z.; He, Z.; Shen, Z.; Chen, B.; Xiao, W. Novel method for bearing performance degradation assessment—A kernel locality preserving projection based approach. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 548–560. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, K.; Lin, H.; He, G.; Du, C.; Chen, Z. A Novel Impact Feature Extraction Method Based on EMD and Sparse Decomposition for Gear Local Fault Diagnosis. Machines 2022, 10, 242. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Li, W.; Zhang, K.; Li, X.; Cai, W.; Liu, R. Morphological Component Analysis-Based Hidden Markov Model for Few-Shot Reliability Assessment of Bearing. Machines 2022, 10, 435. https://doi.org/10.3390/machines10060435
Feng Y, Li W, Zhang K, Li X, Cai W, Liu R. Morphological Component Analysis-Based Hidden Markov Model for Few-Shot Reliability Assessment of Bearing. Machines. 2022; 10(6):435. https://doi.org/10.3390/machines10060435
Chicago/Turabian StyleFeng, Yi, Weijun Li, Kai Zhang, Xianling Li, Wenfang Cai, and Ruonan Liu. 2022. "Morphological Component Analysis-Based Hidden Markov Model for Few-Shot Reliability Assessment of Bearing" Machines 10, no. 6: 435. https://doi.org/10.3390/machines10060435
APA StyleFeng, Y., Li, W., Zhang, K., Li, X., Cai, W., & Liu, R. (2022). Morphological Component Analysis-Based Hidden Markov Model for Few-Shot Reliability Assessment of Bearing. Machines, 10(6), 435. https://doi.org/10.3390/machines10060435