A Cycle Analysis of Flow and Thermal Parameters in the Hydrogen Charging System at the Pressure of 50 MPa
Abstract
:1. Introduction
2. Experimental Methods
2.1. Experimental Apparatus
2.2. The Filling Experiment of Hydrogen
2.3. Experimental Conditions
3. Theoretical Analysis
3.1. Thermodynamic Behavior Analysis of the Hydrogen Tank
3.2. Analysis Results for the First Cycle and Second Cycle
3.3. Analysis of Hydrogen Pressure Reducing Valve
3.4. Analysis of Hydrogen Heat Exchanger
4. Conclusions
- (1)
- The temperature of the hydrogen storage tank was calculated to increase by 153.25 and 94.75 °C in the first cycle and second cycle. As the cycle continued, the increase of temperature decreased.
- (2)
- The hydrogen filling amounts in the high-pressure tank and buffer tank were calculated to be 7.94 and 3.58 kg for the first cycle, respectively, and 8.95 kg and 4.20 kg for the second cycle, respectively.
- (3)
- The temperature at the inner and outer walls of the high-pressure storage tank was calculated to be 108.25 and 50.25 °C for the first cycle and 72.95 and 44.95 °C for the second cycle.
- (4)
- The time required to charge the hydrogen in 1st cycle was calculated to be 984 s in the high-pressure tank, and 444 s in the buffer tank. In 2nd cycle, they were calculated to be 574 and 212 s respectively.
5. Outlook and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Internal heat exchange coefficient between tank wall and hydrogen, (W/(m2K)) | |
External heat exchange coefficient between ambient air and the tank wall, (W/(m2K)) | |
Specific enthalpy of incoming hydrogen, (J/kg) | |
Specific enthalpy of outflow hydrogen, (J/kg) | |
Specific heat capacity of the hydrogen at constant pressure, (J/(kgK)) | |
Specific heat capacity of the hydrogen at constant volume, (J/(kgK)) | |
Initial and settled mass in the tank, (kg) | |
Mass flow rate into the tank, (kg/s) | |
Mass outflow rate for discharge process, (kg/s) | |
Nusselt number of the gas, dimensionless. | |
Reynolds number of the flow based on tank internal diameter, | |
Rayleigh number of the gas. | |
Settled pressure of hydrogen gas in the tank, (MPa) | |
Initial within the tank, (MPa) | |
Final hydrogen pressure, (MPa) | |
The initial temperature of gas, (°C) | |
Temperature of filling hydrogen gas, (°C) | |
Final temperature of hydrogen gas in the tank, (°C) | |
The ambient temperature, = 28.9 °C | |
The wall temperature, (°C) | |
k | Thermal conductivity (W/m·K.) |
The total thermal resistance in the tank, (K/W) | |
The total thermal resistance of the side, (K/W) | |
Q | Heat transferring to ambient, (kJ) |
Heat transfer rate (W) | |
Total heat transfer coefficient | |
Constant of compression, | |
Subscripts | |
hydrogen; | |
water; |
References
- Kar, S.K.; Bansal, R.; Harichandan, S. An empirical study on intention to use hydrogen fuel cell vehicles in India. Int. J. Hydrog. Energy 2022, 47, 19999–20015. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, X.; Bujlo, P.; Chen, B.; Zhang, X.; Sheng, X.; Liang, C. Review on the safety analysis and protection strategies of fast filling hydrogen storage system for fuel cell vehicle application. J. Energy Storage 2021, 45, 103451. [Google Scholar] [CrossRef]
- Liu, G.; Qin, Y.; Liu, Y. Numerical simulation of hydrogen filling process in novel high-pressure microtube storage device. Int. J. Hydrog. Energy 2021, 46, 36859–36871. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Shao, J.; Deng, G. Fast filling strategy of type III on-board hydrogen tank based on time-delayed method. Int. J. Hydrog. Energy 2021, 46, 29288–29296. [Google Scholar] [CrossRef]
- Barthélémy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrog. Energy 2016, 42, 7254–7262. [Google Scholar] [CrossRef]
- Melideo, D.; Baraldi, D. CFD analysis of fast filling strategies for hydrogen tanks and their effects on key-parameters. Int. J. Hydrog. Energy 2015, 40, 735–745. [Google Scholar] [CrossRef]
- Rothuizen, E.D.; Mérida, W.; Rokni, M.; Wistoft-Ibsen, M. Optimization of hydrogen vehicle refueling via dynamic simulation. Int. J. Hydrog. Energy 2013, 38, 4221–4231. [Google Scholar] [CrossRef]
- Rothuizen, E.D. Hydrogen Fuelling Stations: A Thermodynamic Analysis of Fuelling Hydrogen Vehicles for Personal Transportation; Department of Mechanical Engineering, Technical University of Denmark: Copenhagen, Denmark, 2013. [Google Scholar]
- Rothuizen, E.; Rokni, M. Optimization of the overall energy consumption in cascade fueling stations for hydrogen vehicles. Int. J. Hydrog. Energy 2014, 39, 582–592. [Google Scholar] [CrossRef]
- Kermani, N.A. Design and Prototyping of an Ionic Liquid Piston Compressor as a New Generation of Compressors for Hydrogen Refueling Stations; DCAMM Special Report No. S229; Technical University of Denmark: Copenhagen, Denmark, 2017. [Google Scholar]
- Liu, J.; Zheng, S.; Zhang, Z.; Zheng, J.; Zhao, Y. Numerical study on the fast filling of on-bus gaseous hydrogen storage cylinder. Int. J. Hydrog. Energy 2020, 45, 9241–9251. [Google Scholar] [CrossRef]
- Nazir, H.; Louis, C.; Jose, S.; Prakash, J.; Muthuswamy, N.; Buan, M.E.; Flox, C.; Chavan, S.; Shi, X.; Kauranen, P.; et al. Is the H2 economy realizable in the foreseeable future? Part I: H2 production methods. Int. J. Hydrog. Energy 2020, 45, 13777–13788. [Google Scholar] [CrossRef]
- Sadi, M.; Deymi-Dashtebayaz, M. Hydrogen refueling process from the buffer and the cascade storage banks to HV cylinder. Int. J. Hydrog. Energy 2019, 44, 18496–18504. [Google Scholar] [CrossRef]
- Ramasamy, V.; Richardson, E.S. Thermal response of high-aspect-ratio hydrogen cylinders undergoing fast-filling. Int. J. Heat Mass Transf. 2020, 160, 120179. [Google Scholar] [CrossRef]
- Melideo, D.; Baraldi, D.; Acosta-Iborra, B.; Cebolla, R.O.; Moretto, P. CFD simulations of filling and emptying of hydrogen tanks. Int. J. Hydrog. Energy 2017, 42, 7304–7313. [Google Scholar] [CrossRef]
- Melideo, D.; Baraldi, D.; Echevarria, N.D.M.; Iborra, B.A. Effects of some key-parameters on the thermal stratification in hydrogen tanks during the filling process. Int. J. Hydrog. Energy 2019, 44, 13569–13582. [Google Scholar] [CrossRef]
- Bourgeois, T.; Brachmann, T.; Barth, F.; Ammouri, F.; Baraldi, D.; Melideo, D.; Acosta-Iborra, B.; Zaepffel, D.; Saury, D.; Lemonnier, D. Optimization of hydrogen vehicle refuelling requirements. Int. J. Hydrog. Energy 2017, 42, 13789–13809. [Google Scholar] [CrossRef]
- Bourgeois, T.; Ammouri, F.; Baraldi, D.; Moretto, P. The temperature evolution in compressed gas filling processes: A review. Int. J. Hydrog. Energy 2018, 43, 2268–2292. [Google Scholar] [CrossRef]
- Molkov, V.; Dadashzadeh, M.; Makarov, D. Physical model of onboard hydrogen storage tank thermal behaviour during fuelling. Int. J. Hydrog. Energy 2019, 44, 4374–4384. [Google Scholar] [CrossRef]
- Sapre, S.; Pareek, K.; Rohan, R.; Singh, P.K. H2 refueling assessment of composite storage tank for fuel cell vehicle. Int. J. Hydrog. Energy 2019, 44, 23699–23707. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, J.; Chang, Q.; Xing, W. Effects of geometry and inconstant mass flow rate on temperatures within a pressurized hydrogen cylinder during refueling. Int. J. Hydrog. Energy 2012, 37, 6043–6052. [Google Scholar] [CrossRef]
- Kuroki, T.; Sakoda, N.; Shinzato, K.; Monde, M.; Takata, Y. Dynamic simulation for optimal hydrogen refueling method to Fuel Cell Vehicle tanks. Int. J. Hydrog. Energy 2018, 43, 5714–5721. [Google Scholar] [CrossRef]
- Kuroki, T.; Sakoda, N.; Shinzato, K.; Monde, M.; Takata, Y. Prediction of transient temperature of hydrogen flowing from pre-cooler of refueling station to inlet of vehicle tank. Int. J. Hydrog. Energy 2018, 43, 1846–1854. [Google Scholar] [CrossRef]
- Wang, D.; Liao, B.; Zheng, J.; Huang, G.; Hua, Z.; Gu, C.; Xu, P. Development of regulations, codes and standards on composite tanks for on-board gaseous hydrogen storage. Int. J. Hydrog. Energy 2019, 44, 22643–22653. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, X.; Zhou, X.; Bénard, P.; Chahine, R. A dual zone thermodynamic model for refueling hydrogen vehicles. Int. J. Hydrog. Energy 2019, 44, 8780–8790. [Google Scholar] [CrossRef]
- Xiao, J.; Cheng, J.; Wang, X.; Bénard, P.; Chahine, R. Final hydrogen temperature and mass estimated from refueling parameters. Int. J. Hydrog. Energy 2018, 43, 22409–22418. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, T.; Xiao, J.; Bénard, P.; Chahine, R. Estimation of filling time for compressed hydrogen refueling. Energy Procedia 2019, 158, 1897–1903. [Google Scholar] [CrossRef]
- Xiao, J.; Ma, S.; Wang, X.; Deng, S.; Yang, T.; Bénard, P. Effect of hydrogen refueling parameters on final state of charge. Energies 2019, 12, 645. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Q.; Myoung, N.S.; Kwon, J.T.; Jang, S.J.; Lee, T. A Study on the Prediction of the Temperature and Mass of Hydrogen Gas inside a Tank during Fast Filling Process. Energies 2020, 13, 6428. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, J.; Hu, S.; Dong, S.; Wei, P. Investigations of filling mass with the dependence of heat transfer during fast filling of hydrogen cylinders. Int. J. Hydrog. Energy 2014, 39, 4380–4388. [Google Scholar] [CrossRef]
Condition | |
---|---|
Length (m) | 4.4197 |
Inner diameter(m) | 0.3143 |
Outer diameter(m) | 0.3985 |
Property | |
16.3 | |
40 |
High Pressure Tank | Buffer Tank | |
---|---|---|
50 | 20 | |
40 | 40 | |
11.3 | 11 | |
27 | 31.4 | |
2.932 | 2.819 | |
28.9 | 28.9 |
First Cycle | Second Cycle | |||
---|---|---|---|---|
High-Pressure Tank | Buffer Tank | High-Pressure Tank | Buffer Tank | |
50 | 20 | 50 | 20 | |
7.937 | 3.581 | 8.95 | 4.20 | |
153.25 | 152.55 | 94.75 | 83.45 | |
7121 | 3162 | 3896 | 1441 | |
4.722 | 4.691 | 2.281 | 1.811 | |
984 | 444 | 574 | 212 | |
108.25 | 107.75 | 72.95 | 66.15 | |
50.25 | 50.15 | 44.95 | 43.95 |
First Cycle | Second Cycle | |||
---|---|---|---|---|
Parameter | (2) Pressure-Reducing Valve | (4) Pressure-Reducing Valve | (2) Pressure-Reducing Valve | (4) Pressure-Reducing Valve |
(MPa) | 50 | 20 | 50 | 20 |
(°C) | 153.25 | 152.55 | 94.75 | 83.45 |
(MPa) | 20 | 10 | 20 | 10 |
(°C) | 163.05 | 154.8 | 104.06 | 85.22 |
L (m) | (m) | (m) | (m) | (kg/s) | (°C) | (°C) | (°C) |
---|---|---|---|---|---|---|---|
4 | 0.0355 | 0.01428 | 0.0079 | 0.008069 | 7 | 12 | 30 |
First Cycle | Second Cycle | |||||
---|---|---|---|---|---|---|
(1) Heat Exchanger | (3) Heat Exchanger | (5) Heat Exchanger | (1) Heat Exchanger | (3) Heat Exchanger | (5) Heat Exchanger | |
(°C) | 40 | 163.048 | 154.8 | 40 | 104.06 | 85.22 |
1.21 | 15.78 | 14.68 | 1.21 | 8.80 | 6.50 | |
0.058 | 0.75 | 0.70 | 0.058 | 0.42 | 0.31 | |
109 | 2187 | 2064 | 109 | 1370 | 1075 | |
15,064 | 18,589 | 18,972 | 15,064 | 17,631 | 17,710 | |
108.3 | 1956 | 1861 | 108.3 | 1271 | 1014 | |
25.42 | 68.03 | 65.61 | 25.42 | 49.79 | 43.37 | |
0.494 | 23.9 | 21.93 | 0.494 | 11.36 | 7.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.-Q.; Song, B.-H.; Kwon, J.-T. A Cycle Analysis of Flow and Thermal Parameters in the Hydrogen Charging System at the Pressure of 50 MPa. Machines 2022, 10, 461. https://doi.org/10.3390/machines10060461
Li J-Q, Song B-H, Kwon J-T. A Cycle Analysis of Flow and Thermal Parameters in the Hydrogen Charging System at the Pressure of 50 MPa. Machines. 2022; 10(6):461. https://doi.org/10.3390/machines10060461
Chicago/Turabian StyleLi, Ji-Qiang, Byung-Hee Song, and Jeong-Tae Kwon. 2022. "A Cycle Analysis of Flow and Thermal Parameters in the Hydrogen Charging System at the Pressure of 50 MPa" Machines 10, no. 6: 461. https://doi.org/10.3390/machines10060461
APA StyleLi, J. -Q., Song, B. -H., & Kwon, J. -T. (2022). A Cycle Analysis of Flow and Thermal Parameters in the Hydrogen Charging System at the Pressure of 50 MPa. Machines, 10(6), 461. https://doi.org/10.3390/machines10060461