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Abstract: Background: Trajectory planning is the premise of the control of orthopedic robots, which
is directly related to the safety of the human body. However, to date, the trajectory of orthopedic
robots has been restricted to lines and spline curves. This limits the flexibility of the robot and leads
to unsatisfactory performance. In this paper, a trajectory planning method based on improved
RRT* and B-spline curve is proposed in order to improve the control accuracy and flexibility.
Method: Firstly, combined with the shortcomings of current trajectory planning methods and bone
docking task analysis, the characteristics of the trajectory for orthopedic robot are illustrated, and
the problem is described. Secondly, a sampling strategy and an extension strategy are proposed
to solve the optimal problem of the RRT* algorithm. Meanwhile, B-spline curve is selected for
path smoothing. Thirdly, based on our orthopedic robot, kinematics analysis is introduced briefly,
and hypotonic polynomial is used to fit the joint variables. Finally, a comparative study of the
improved RRT*, RRT*, and other algorithms are completed, and the feasibility of the robot’s
trajectory is verified by algorithm simulation and platform simulation. Results: Compared with
RRT*, shorter path and high node utilization are shown in the improved RRT*, which cut down
about 1mm in the average path length and increased about half in the average node utilization.
In the meantime, the fitting results are accepted, and the results of algorithm simulation and
platform simulation showed good consistency and feasibility. Conclusions: This study revealed
that the improved RRT* was superior to RRT*, and the proposed method could be used for the
trajectory planning of parallel orthopedic robots, which has some significance for bone fracture
and deformity correction.

Keywords: orthopedic robot; fracture reduction robot; parallel external fixator; path planning; RRT

1. Introduction

The frequency of bone fracture and deformity is very high in China, which has become
a big challenge for the doctors because of their great workload. In the meantime, the
treatment of bone fracture and deformity correction usually needs repeated trial and error
for new doctors, which is very inefficient. Therefore, orthopedic disease treatment is
highly dependent on the clinician’s experience and professional equipment. In particular,
problems such as secondary damage and correction deviation easily occur, which could
cause great confusion for doctors and patients. It is possible that open reduction and
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intramedullary nail are effective methods. However, the former is harmful for wound
healing, and the latter does not easily result in accurate reduction.

As shown in Figure 1, fracture reduction robots and deformity correction external
fixators are all based on a parallel structure. These orthopedic robots can complete broken
bone docking by position control accurately. Based on the parallel structure, orthopedic
robots have big advantages for the bone docking task [1,2], but so far, there is a lack
of sufficient trajectory, which is detrimental for patient treatment. Since the invention
of medical robots, studies of orthopedic robots have been continuous. Various robot
systems [3,4] have been designed by scholars to solve the above problems, which are
beneficial to patients for precise and safe treatment. However, the lines and B-spline
curves [5–7] are only used for the trajectory planning of parallel robots. Although literature
about the trajectory planning of orthopedic robots is very few, trajectory is important for
parallel orthopedic robots. For the sake of fracture reduction, it is a process of resetting
broken bones to normal morphology. Moreover, for deformity correction, it dissects
abnormal bones and regrows them back into their normal form gradually. In other words,
both fracture reduction and deformity correction require broken bones to be reset to normal
position and morphology. Thus, the preoperative movement planning of broken bones, as
the basis of orthopedic robot control, is necessary and important for robot-assisted surgery
and movement. Furthermore, the performance of robots is vital for patient safety [8] and
the clinical effect after the surgery, which are influenced by path planning. In addition,
damage to the human would be minimized due to the smoothness and continuity of the
robot movement. Meanwhile, it is difficult for the robot to deal with emergencies, and
misoperations could damage soft tissue, such as muscles, because of uncertainty in the
clinical environment [9]. It is necessary to avoid collisions between the broken bone and
other human tissues, as well as repairing broken bone rapidly and accurately. Therefore, it
is of great significance that the appropriate path planning methods and safety strategies
are studied and introduced.
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Fortunately, some intelligent methods of path planning have aroused the enthusiasm
of researchers [10]. To date, there are several methods, such as genetic algorithm (GA), artifi-
cial potential field (APF) and rapidly exploring random tree algorithm (RRT). However, GA
imitates biological evolution and variation [11]. It is advantageous in search and collision
avoidance, but very difficult for environmental modeling. In the meantime, due to the
unknown population of algorithm initialization, it would require a lot of computation and
is disadvantageous for safe operation. APF is designed by the gravitational field function
and the repulsive force function, which have a positive effect on the overall planning [12].
Nevertheless, it would be harmful to avoid the collision force when the repulsion and
gravitation forces are equal. Simultaneously, the quality of the path planning is dependent
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on the design of the potential field, which is difficult to derive. Additionally, the envi-
ronment of the human body is very complicated, and orthopedic robots’ movements are
related to human safety directly. So, the above-mentioned methods are unsuitable for the
fracture reduction and deformity correction robot. RRT* has been proposed to obtain a
shorter path than RRT [13], and it is effectively used for path planning in complex environ-
ments with a stronger ability for searching and has a better effect on collision avoidance.
Tomasz, R. [14] realized the point-to-point trajectory planning of manipulators by RRT, and
collision was avoided, which reflected the effectiveness of RRT in solving motion problems
in three-dimensional space. Sakamoto, T. [15] also applied RRT* to path planning for pal-
letizing or de-palletizing tasks, and the superiority of the algorithm was fully shown and
demonstrated compared with conventional planning methods. Combining RRT* with D*
lite, Chao, N. [16] presented the DL-RRT* algorithm for trajectory planning in radioactive
environments, and the efficiency of path planning was improved. Kim, M.C. [17] proposed
a wrapping-based informed RRT* by sampling the random path nodes within a hyper
ellipsoid and tested it in various environments for superior verification. However, it seems
that the results obtained by RRT* did not achieve the optimal path, and the problem of
inefficiency in planning was not solved completely [18]. Moreover, since the real-time
performance is impacted by the numbers of search nodes [19], it is crucial to obtain an
optimal path for the robot movement [20] and improve the node utilization in practical
application. In short, RRT* has been widely used for path planning in various robots, but it
is not applied in surgical robots, in particular, orthopedic robots. Considering the lack of
field studies and the complexity of the human body, it is necessary to apply cutting-edge
methods to solve the problem.

In view of the above analysis, we introduced an improved RRT* method based on a
computer for preoperative planning and path planning of an orthopedic robot (Figure 1).
Meanwhile, we aimed to solve the algorithm of inefficiency and inadequate optimization in
path planning, as well as the difficulty in smoothness. To this end, an improved RRT* was
proposed based on target constraints and guidance strategy, and corresponding simulation
analysis and platform tests were conducted. Finally, the feasibility and superiority of this
method are confirmed, respectively.

2. Problem Description and Collision Detection
2.1. Problem Description

According to Arbeitsgemeinschaftfür Osteosynthesefragen (AO) classification [21],
long bone fracture can be divided into type A, type B and type C, and each type consists
of three injury degrees: level 1, level 2 and level 3, respectively. Type A is named
sample malposition, such as oblique and transverse. Type B is composed of spiral bone
fractures, while type C is complicated bone fractures such as comminuted bone fracture.
Actually, AO classification has a certain guiding effect on the path planning of the robot.
However, the standard of operation between the robot and the doctors is quite different.
In most cases, type A and B could be treated easily by clinicians, but it is difficult for the
robot to find the over-pull point and obtain the reset path because of the complicated
human body. Indeed, the errors should be increased when the doctors splice the broken
bones, while the robots could improve the accuracy and efficiency of operation for
type C. Therefore, shortening and rotational malposition are selected for path planning
in this paper.

In general, the bone fracture is divided into proximal fragment and distal fragment,
where we regard the distal fragment as far away from patient’s head. The problem is
normally described as follows: (1) the proximal and the distal fragment are fixed on
the robot; (2) the robot is controlled along the path planning for position adjustment
between the proximal and distal fragment; (3) the bone docking task is driven and
completed by the robot. Specifically, the movement is regarded as point-to-point, and
the collision is avoided under the robot constraints, such as maximum offsets. Therefore,
firstly, the movement should be constantly close to the target to improve efficiency
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and reduce damage to the human body due to excessive offset of the path. Secondly,
because the environment of the broken bone in the clinical is one of uncertainty and
variability after the robot begins moving, a safety strategy is essential. Additionally, it
is necessary to introduce a strategy for collision avoidance. Thirdly, the movement of
the robot should be as smooth, continuous and short as possible to avoid injury to the
human body.

Based on the above analysis, RRT* was imported for path planning and improved
for algorithm performance. Aiming at the first and second points, target guiding strategy
and constrained selection search point strategy were imported to improve the efficiency
and the optimization problem. Moreover, the method of bounding box detection was
introduced to ensure the safety in the movement of the robot. Aiming at the third key
point, the problems of path smoothness and continuity were solved by spline curve.
Usually, spline curve is used to bring a smoother path, so that the stability and continuity
of the movement can be ensured. Then, inverse kinematics was used to reveal the
movement on the drive actuators as the input to control the robot. Additionally, the
position of the driving actuators was fitted by a seventh degree polynomial in order to
realize the constraint and smoothness of the robot.

2.2. Collision Detection

In order to avoid any possible physical contact between the distal fragment and
other parts during the robot movement, a collision detection method based on a bound-
ing box was introduced. In general, cuboid and sphere bounding boxes are used to wrap
the obstacles, and safety is confirmed when there is no intersection between the robot
path and the bounding boxes. However, for distal fragment and proximal fragment, the
possible solutions space is reduced only through the sphere or rectangle bounding boxes.
In the meantime, the results, such as the reduction accuracy, are affected. Therefore,
the bounding boxes should be as close to the shape of the bone and the obstruction
as possible. According to anatomy, the bone is the human tissue with the shape of a
cylinder, and the obstacles on the path are surrounded by spheres with a certain radius,
so “cylinder + sphere” is adopted to represent the collision area. The collision-free
conditions are described as follows. (x− x f )

2 + (y− y f )
2 > rsa f e, zmin < z < zmax

(x− x0)
2 + (y− y0)

2 + (z− z0)
2 > asa f e

(1)

where x, y and z represent the position on the path, and rsafe and asafe are the safe distance. xf
and yf represent the center of the skeleton cross section. zmin and zmax represent the length
of the cylinder. x0, y0 and z0 represent the sphere center.

The plane projection of the shortening and rotational malposition is displayed in
Figure 2b. It could be observed that o1 is the start, and O2 is the goal. The process of
the bone docking is to control o1 to move to O2, while the barriers on the path should be
avoided. Figure 2a shows a critical condition diagram of the collision between the distal
fragment and the proximal fragment. Meanwhile, the rectangle of the dotted line is the
obstacle; thereby, O3 would not be admitted to be in this scope. Moreover, the radius of the
cylinder is determined by the width of the rectangle. Therefore, the path is presented in the
outside of the rectangle.
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Figure 2. The diagram of the broken bone collision conditions: (a) initial state; (b) collision
critical condition.

3. Improved RRT* Algorithm

RRT* with concise structure, real time and scalability is proposed to obtain a shorter
path based on RRT. By adding the rewire operation, the path cost can be reduced. However,
RRT* still has some randomness in the path planning, and the efficiency and security cannot
be guaranteed. Moreover, RRT* cannot fully satisfy the requirement of the bone docking
path. Therefore, further improvement was conducted as follows.

3.1. Sampling Strategy

The sampling in RRT* is random and blind and increases the path cost. As shown in
Equation (2), pa is defined as the target bias probability [22]; p is the sampling probability
with a random number and could be compared with the pa.{

xgoal , p < pa

xrand, p > pa
(2)

In this paper, pa is set larger to make sure the sampling point is close to the target
initially, so the sampling guidance to the target is promoted. Secondly, the sampling point
set with randomness every time should be closer than the former set randomly to the target.
Therefore, the search space of the path is continuously reduced, while the sampling point
is farther away from the target in the axial distance than the last, and the re-sample would
be set until the requirements are met.

3.2. Extension Strategy

Because of the blindness of sampling, the extension point would be also blind in the
view of the global point. In order to overcome this shortcoming, an extension strategy is
proposed based on the idea of artificial potential field. The extension point is determined
by the sampling point and the target [23]. The tree can be extended by assigning different
weight coefficients to them. Therefore, the extension point is closer to the target, and the
expansion efficiency could be improved. Meanwhile, the path cost would be reduced
indirectly. According to Equation (3), the expansion node xnew can be obtained, and the
expansion formula is as follows:

xnew = xnearest + σ · (ξ · ngoal + (1− ξ) · nrand) (3)

ngoal =
xgoal − xnearest

‖xgoal − xnearest‖
(4)
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nrand =
xrand − xnearest

‖xrand − xnearest‖
(5)

where σ is the size of the step, ξ is the weight coefficient, xrand is the random node of the
tree according to Equation (2), and xnearest is the closest node to the xrand. Meanwhile, xgoal is
the target.

Due to the randomness of the RRT*, the maximum number of attempts for path
searching every time is set as attemptmax, and the variable weight is introduced for point
extension by changing the guidance degree. When the searching space is sufficient and
the target is surrounded without obstacles, the extension point is guided for the target.
Otherwise, the point would stop expanding, and the randomness of the local space for
searching would be lost. Therefore, the strategy is directed by the target at the beginning of
the iteration with a high inertia weight, while it is transited to the lower value to carry out
local search for random search so as to promote the searching efficiency of the algorithm.
The weighting function of ξ is:

ξ = ξ · attemptmax− K
attemptmax

(6)

where attemptmax is the maximal iterations, and K is the current iterations.
At the end, the algorithmic program of the improved RRT* was shown in Algorithm 1,

which includes the sampling constraint, node extension, tree update and the path connect.
In Algorithm 1, xpotien is the potential node closest to the xrand in rewire strategy.

Algorithm 1 Algorithmic program of the improved RRT*.

Build_improverd_RRT*(xinit, xgoal, attemptmax)
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3.3. B-Spline Fitting

The path obtained by the improved RRT* is connected with extension points, which
are based on a straight line. As a result, lots of angles appear between the extension points.
So, the robot speed and acceleration are changed suddenly when the angle is presenting,
which could cause some damage to the robot movements. B-spline curve [24] is widely
used in path smoothing. Meanwhile, it is advantageous in approximating polygons with
higher precision and maintains the path shape despite the modified local. Therefore,
combining the problem description above, a B-spline curve is used in this paper. Moreover,
a two-dimensional map was introduced and established using MATLAB. In the meantime,
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the path between the start and the goal was obtained by the improved RRT*, and the path
fitting function was written using a B-spline curve. The comparison with smooth and
without smooth was shown in Figure 3, in which Q is the start point, and G is the goal
point. Additionally, the red line was the path after smoothing. It can be found that the path
shape in global was as before without change, and the angles were removed even if the
original path was smoothed.
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4. Kinematics Analysis and Polynomial Fitting
4.1. Kinematics Analysis

Based on our orthopedic robot in Figure 1a, the robot kinematics analysis reveals a cor-
responding relationship between the moving platform and the drive actuators. The model
of the parallel structure is shown in Figure 4. The model and the inverse kinematics have
been established, and the inverse formula has been derived [25]. In this paper, the forward
kinematics is solved by the iteration method [26,27] for the moving platform path verifica-
tion, and Pi and Bi (i = 1, 2, 3, . . . , 6) represent the hook hinge center; qi (i = 1, 2, 3, . . . , 6)
represents the vector of drive actuator.
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The forward kinematics is solved as follows. Given the parameters of the mechanism
and the length of each branch chain qim (i = 1, 2, 3, . . . , 6), l, which is the position and attitude
of the moving platform, is solved, which is represented as [x, y, z, φ, ϕ, σ]. Substituting the
six branch chains’ length into the equations of inverse kinematics, the equations containing
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six unknown parameters can be obtained. Then, the method of searching the optimal value
according to the iterative method can be used to obtain results. We can obtain the following.

F(l) =



f1
f2
f3
f4
f5
f6

 =



q1m −
√
(OP + R·PP1 −OB1)

T(OP + R·PP1 −OB1)

q2m −
√
(OP + R·PP2 −OB2)

T(OP + R·PP2 −OB2)

q3m −
√
(OP + R·PP3 −OB3)

T(OP + R·PP3 −OB3)

q4m −
√
(OP + R·PP4 −OB4)

T(OP + R·PP4 −OB4)

q5m −
√
(OP + R·PP5 −OB5)

T(OP + R·PP5 −OB5)

q6m −
√
(OP + R·PP6 −OB6)

T(OP + R·PP6 −OB6)


=



0
0
0
0
0
0

 (7)

Next, we can obtain a formula based on the Taylor formula and recursion,

ln+1 ≈ ln + J−1(ln)(qm − qn) (8)

where J is 

nT
1 (P1 × n1)

T

nT
2 (P2 × n2)

T

nT
3 (P3 × n3)

T

nT
4 (P4 × n4)

T

nT
5 (P5 × n5)

T

nT
6 (P6 × n6)

T





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 cos(σ) cos(φ) − sin(σ) 0
0 0 0 sin(σ) cos(φ) cos(σ) 0
0 0 0 − sin(φ) 0 1


and ni (i = 1, 2, 3, . . . , 6) is the unit vector of the branch chain qi. The value of l is the result
of the pose. The steps are as follows.

(1) Initialize the pose value l0;
(2) Calculate the matrix J of the current pose value and the length of the branch chain

by l0;
(3) Judge whether the terminal condition is met. If so, the output has been obtained.

Otherwise, the value should be updated according to Equation (7), and the current
step should be repeated until the terminate condition is met.

4.2. Polynomial Fitting

In the same way, based on the orthopedic robot, the moving platform path is obtained
by RRT* and discretized secondly. Then, inverse kinematics is used to get the actuators
length for drive. However, the path and the actuator length are discrete. The speed
and acceleration of the robot could be affected with mutation. So, there is a significant
possibility of causing injury to the human body by sudden arrest when the robot completes
the bone docking task. In this paper, a higher-degree polynomial is used to match the
length of the drive actuator, and continuous variation within a range of values would
be actualized. Generally, a quintic polynomial [28] could be used to realize acceleration
planning. Therefore, considering the continuous movement, speed and acceleration of the
moving platform, a seventh degree polynomial was selected for the drive actuators length
fitting. The equation is as follows.

f (t) = a0 + a1 · t + a2 · t2 + a3 · t3 + a4 · t4 + a5 · t5 + a6 · t6 + a7 · t7 (9)

So, the equation for the speed and acceleration could be obtained by the first and
second derivatives of Equation (9).

·
f (t) = a1 + 2a2 · t + 3a3 · t2 + 4a4 · t3 + 5a5 · t4 + 6a6 · t5 + 7a7 · t6 (10)

··
f (t) = 2a2 + 6a3 · t + 12a4 · t2 + 20a5 · t3 + 30a6 · t4 + 42a7 · t5 (11)
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Meanwhile, in order to ensure smaller jerk and stationarity of the robot movement,
the boundary conditions for the speed and acceleration are defined as follows:

f (0) = l0
f (t f ) = l f
·

f (0) = 0
·

f (t f ) = 0
··

f (0) = 0
··

f (t f ) = 0∣∣∣∣ ·f (t)
∣∣∣∣ ≤ vmax∣∣∣∣ ··f (t)
∣∣∣∣ ≤ amax

(12)

In addition, the accuracy must be guaranteed for polynomial fitting, especially on the
initial length and the final length of the drive actuators. Therefore, the fitting problem is
expressed of an unconstrained optimization problem; thereby, a minimization optimization
model is established with the objective function obtained by the errors. The objective
function is as follows:

min g(x) =
n

∑
i=1

[ fi(t)− f d
i ]

2
(13)

where n is the number of fitting points, fid is the expected length, and fi(t) is actual length.
The fmincon of MATLAB is used for problem optimization. In the first place, the unknown
coefficients are initialized, and the boundary contains are set. Then, the fmincon function is
solved for optimization.

5. Verification Experiment

The fracture reduction robot in Figure 1a was designed by us, including the hard-
ware and software. The hardware contains a monitor, a modbox controller, a motor
and six drive rods, which are the actuators. Correspondingly, the software is applied
on a computer, which includes the interface designed by MATLAB and Abaqus for
force-displacement analysis.

Taking the fracture reduction robot designed by us in Figure 1a as the object, the
parameters of the parallel robots were set: the minimum length and the maximum length
of the drive rods were 569 mm and 800 mm, respectively, and the maximum angle of the
cross universal hinge was 70◦. The path was planned in the workspace. The simulation
was realized by MATLAB 2016a, which was installed on a Thinkpad computer.

In order to verify the feasibility and the superiority of the improved RRT* algorithm,
further experiments were developed by the algorithm simulation and platform simulation,
and shortening and rotational malposition are selected for path planning. First of all, for
the algorithm simulation, one case is adopted where shortening and rotational dislocation
occurred. The distal fragment is regarded as the start, and the proximal fragment is
regarded as the goal, where the coordinates were [10, 10, 560] and [0, 0, 600], respectively.
Meanwhile, Euler angles whose relative positions were between the proximal and distal
fractures were 12◦, 15◦ and 10◦, respectively. The experiment was carried out by algorithm
simulation, in which the improved RRT* algorithm was compared with RRT*. Secondly,
based on our orthopedic robot (Figure 1a), the improved RRT* algorithm was applied
for planning, and platform simulation was conducted. Moreover, in order to ensure the
start and stop of the robot motion and the features of more intuitive control, the trajectory
planning in the joint space is carried out by means of seventh degree polynomial. In the
meantime, forward kinematics analysis of the parallel robot was executed in order to verify
the effectiveness of the polynomial fitting method.
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5.1. Algorithm Simulation

The RRT* algorithm and the improved RRT* algorithm were used for path planning,
while the start and the goal for the algorithms were the same. Because of the random-
ness of the RRT* and the improved RRT*, the repeated experiments, which contained
100 repetitions, were counted to exhibit the universality and superiority of the improved
algorithm. Additionally, sampling-based planning algorithms, such as PRM, LazyPRM,
RRT-connect and LazyRRT, were selected for the comparisons, as well as for application
for the repeated experiment above. Meanwhile, the average length and the average nodes
were obtained and are shown in Tables 1 and 2. However, the RRT* and the improved RRT*
was the main comparison in algorithm simulation. The results for path planning are shown
in Figure 5. The cylinder represented the boundary conditions, and the black sphere repre-
sented the obstacles on the path. In the meantime, the bold red line represented the path by
the algorithm, and the dots represents the start and the goal. It can be seen from Figure 5
that the RRT* algorithm was suitable for the path planning of the dynamic and complicated
environment, but lots of broken lines were present on the path, and the target directivity
was not ideal. Furthermore, the path length and the node utilization were compared in
Tables 1 and 2, in which the latter represented the proportion of the workable nodes to
the total nodes. In Table 1, the path length was selected to reveal the algorithm advantage,
which is an important parameter of orthopedic robots. It was observed that the average
path planned by the RRT* costed 46.5109 mm, while the result by the improved RRT* was
45.4918. Obviously, in order to improve the efficiency of corrective surgery, the latter was
shorter and could be more suitable for orthopedic robots. As shown in Table 2, The average
workable nodes of RRT* accounted for 9.15, and the average total nodes were 549.26, so the
average node utilization was about 1.66%. Similarly, the average workable nodes number
of the improved RRT* accounted for 9.24, and the average total nodes number is 371.82, so
the node utilization was about 2.49%. It was clearly that the node utilization of improved
RRT* was greater than that of the RRT*.

Table 1. Path length of different algorithm simulation.

Algorithm The Path Length(mm)

RRT* 46.5109
The improved RRT* 45.4918

PRM 50.2372
LazyPRM 50.2257

RRT-connect 52.3920
LazyRRT 53.7929

Table 2. Path nodes of different algorithm simulation.

Algorithm Total Nodes The Workable Nodes The Node
Utilization(%)

RRT* 549.26 9.15 1.66
The improved RRT* 371.82 9.24 2.49

PRM 52.00 4.00 7.69
LazyPRM 102.00 4.00 3.92

RRT-connect 252.81 18.57 7.34
LazyRRT 679.60 15.02 2.21

Relatively, the improved RRT* had the most optimal path, which is the shortest in the
six algorithms. However, it is not shown the greatest node utilization, where PRM, RRT-
connect and LazyPRM are all superior to the improved RRT*. Generally, how to complete
the reduction and operation with the shortest path is very important in the malformation
correction surgery. Although improved RRT* still has shortcomings in node utilization,
its characteristic of shortest path is worthy of affirmation. Additionally, the mechanism of
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each algorithm is different and have their advantages and disadvantages. In other words,
comparative studies are only meaningful if the mechanism is the same or similar. In terms
of node utilization, the improved RRT* is superior to RRT* and LazyRRT, in which the
improved RRT* has the same or similar mechanism to the RRT*. Therefore, this kind of
comparison is persuasive.
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Meanwhile, with the improved RRT*, the B-spline curve was used for path smoothing.
As exhibited in Figure 6, the path was obtained by the improved RRT* and smoothed
by the three B-spline curve. In Figure 6a,b, paths from different angles are shown, and
the circles represented the control points on the path, which could be connected with
lines and create the path. Moreover, the red lines represented the results of the smoothed
path. Meanwhile, a comparative study with smooth and without smooth is displayed
in Figure 6c. All of the above results confirmed that the improved RRT* could be used
for path planning, and B-spline curve could provide safety assurance because of its good
continuity and smoothness. Moreover, the problem of large angle bending in the process
of reset and correction is solved with the smoothing B-spline curve, which could avoid
the damages to the human environment caused by the excessive angles. Furthermore, the
above results indicate that, combined with the improved RRT* path planning method and
B-spline curve smoothing method, orthopedic robots could realize the alignment of broken
bones and improve the safety of path planning. Thus, it would provide a reference for
doctors’ preoperative planning and serve as the basis for robot movement.

5.2. Platform Simulation

Trajectory planning is the basis of robot motion control, which guides the robot to
complete the treatment task. In parallel with the algorithm simulation, platform simulation
based on our orthopedic robot platform (Figure 1a) was completed, and drive actuator
lengths by inverse kinematics are shown in Figure 7. All the lengths were changed from
610 to 700. Additionally, for the drive actuators’ length fitting, the plots of the six drive
actuator lengths are displayed and compared in Figure 8. It was found that the polynomial
fitting method could realize trajectory planning in joint space well. Moreover, combined
with the improved RRT* and B-spline curve, the motion control of the orthopedic robot
could be realized more intuitively, and the speed and acceleration could be guaranteed from
0 to 0 at the initial moment. This solves the problem of speed and acceleration mutation of
the drive rods, thus improving the safety of the robot.
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Meanwhile, in Figure 9, a simulation comparison is displayed between the desired
trajectory and the actual trajectory. The red line is the desired trajectory planned by the
improved RRT* algorithm with B-spline curve smoothing, and the blue line is the actual tra-
jectory of broken bone movement obtained by monitoring the forward kinematics analysis
of the platform under polynomial fitting results. The results show that both of them could
achieve a reduction in broken bone, and the latter could control the speed and acceleration
of the robot drive rod. Therefore, the polynomial fitting could combine trajectory planning
with the robot platform to complete the bone-breaking docking task while greatly improv-
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ing the safety of the robot. Additionally, the effectiveness and feasibility of the method
were verified.
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6. Conclusions

The line [29] and the spline curve [30] have been used for path planning, but they
only expect that the injury to the human body is as small as possible. The strategies for
path planning are unsatisfied, and the path is not optimal. In this paper, the improved
RRT* has been selected for the path planning of the parallel orthopedic robot. The results
reveal that the length and the node utilization of improved RRT* are greater than RRT*.
Then, a B-spline curve is used for path smoothing to avoid sudden changes in the path.
Compared with RRT*, shorter path and high node utilization were shown in the improved
RRT*, which cut down about 1mm in the average path length and increased about half in
the average node utilization. It could be concluded that the improved RRT* is superior,
and the path planning method proposed by us could be realized simply for parallel robot
trajectory planning.

Although some significant results were obtained, there are also some limits in this
study. Firstly, the muscles toughed on the broken bone were ignored. However, in the
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movement of the robot, the influence of the muscle is very important. The dynamic model
of the robot and muscle–bone should be considered in the path planning for constraints
in the future. Secondly, the interference of a muscle’s morphology was not considered.
Nevertheless, shape changes of the muscle will influence the bone docking in the clinical
process. Thirdly, in terms of node utilization, the improved RRT* is still inadequate. In
the future, a complex model that includes morphology changes should be considered
for path planning, and further research on improvements inspired by the merits of PRM,
RRT-connect and LazyPRM is needed.
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