
Citation: Ge, Y.; Lin, S.; Zhang, Y.; Li,

Z.; Cheng, H.; Dong, J.; Shao, S.;

Zhang, J.; Qi, X.; Wu, Z. Tracking and

Counting of Tomato at Different

Growth Period Using an Improving

YOLO-Deepsort Network for

Inspection Robot. Machines 2022, 10,

489. https://doi.org/10.3390/

machines10060489

Academic Editors: Xiangjun Zou,

Hao Gan, Zhiguo Li and

Yunchao Tang

Received: 3 May 2022

Accepted: 14 June 2022

Published: 17 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Tracking and Counting of Tomato at Different Growth Period
Using an Improving YOLO-Deepsort Network for
Inspection Robot
Yuhao Ge 1, Sen Lin 1,2,*, Yunhe Zhang 1,2,*, Zuolin Li 1, Hongtai Cheng 1, Jing Dong 2, Shanshan Shao 3,
Jin Zhang 4, Xiangyu Qi 1 and Zedong Wu 1

1 Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China; geyuhao@nercita.org.cn (Y.G.); lizl@nercita.org.cn (Z.L.);
chenghontai@nercita.org.cn (H.C.); qixiangyu@stu.syau.edu.cn (X.Q.); 2021020121@bistu.edu.cn (Z.W.)

2 Nongxin Scinence & Technology (Beijing) Co., Ltd., Beijing 100097, China; dongj@nercita.org.cn
3 Heze Zhengbang Holding Group Co., Ltd., Heze 274007, China; hzzbzyyxgs@163.com
4 China Datang Overseas Investment Co., Ltd., Beijing 100052, China; zhangjin@china-cdto.com
* Correspondence: linseng@nercita.org.cn (S.L.); zhangyh@nercita.org.cn (Y.Z.)

Abstract: To realize tomato growth period monitoring and yield prediction of tomato cultivation,
our study proposes a visual object tracking network called YOLO-deepsort to identify and count
tomatoes in different growth periods. Based on the YOLOv5s model, our model uses shufflenetv2,
combined with the CBAM attention mechanism, to compress the model size from the algorithm
level. In the neck part of the network, the BiFPN multi-scale fusion structure is used to improve
the prediction accuracy of the network. When the target detection network completes the bounding
box prediction of the target, the Kalman filter algorithm is used to predict the target’s location in
the next frame, which is called the tracker in this paper. Finally, calculate the bounding box error
between the predicted bounding box and the bounding box output by the object detection network to
update the parameters of the Kalman filter and repeat the above steps to achieve the target tracking
of tomato fruits and flowers. After getting the tracking results, we use OpenCV to create a virtual
count line to count the targets. Our algorithm achieved a competitive result based on the above
methods: The mean average precision of flower, green tomato, and red tomato was 93.1%, 96.4%,
and 97.9%. Moreover, we demonstrate the tracking ability of the model and the counting process by
counting tomato flowers. Overall, the YOLO-deepsort model could fulfill the actual requirements of
tomato yield forecast in the greenhouse scene, which provide theoretical support for crop growth
status detection and yield forecast.

Keywords: facility agriculture; deep learning; lightweight optimization; yield forecast; object tracking;
tomato

1. Introduction

The development of facility agriculture enables traditional agriculture to gradually
eliminate the shackles of nature and break the seasonal restrictions of traditional agriculture.
As an important representative of agricultural intelligence, facility agriculture is charac-
terized by acquiring all information (such as air temperature, soil temperature, humidity,
light, total radiation, carbon dioxide, atmospheric pressure, and live video data) about the
environment through sensors in real-time [1]. By analyzing the environmental data in the
greenhouse, the favorable natural conditions are maximized, and the biological potential
is realized. Facility agriculture’s fundamental goal is to obtain high-quality, high-yield,
and high-efficiency agricultural products on limited land. The yield estimation and the
specific analysis of the crop’s growth period are realized to determine whether the crop
growth is sufficient due to light, temperature, and water conditions, which are significant
for improving crop yield [2].

Machines 2022, 10, 489. https://doi.org/10.3390/machines10060489 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10060489
https://doi.org/10.3390/machines10060489
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-8137-1927
https://doi.org/10.3390/machines10060489
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10060489?type=check_update&version=2

Machines 2022, 10, 489 2 of 20

With the development of computer vision technology, target detection algorithms
based on traditional methods have been widely used in yield estimation and crop growth
period recognition. For instance, Using L*a*b* color space to perform K-means clustering
segmentation of tomatoes and using mathematical morphology to denoise tomato overlap
and occlusion to identify ripe tomatoes [3]. Liu G et al. use a support vector machine
(SVM) [4] with a histogram of oriented gradients (HOG). Then, a color analysis method
was used to remove false positives to improve detection accuracy [5]. Amarante M A et al.
divide tomatoes into six ripening stages: Breaker, Turning, Pink, Light Red, and Red. The
color of a tomato can be represented through different color spaces. They focused on con-
verting the picture of the tomato in RGB color space to L*a*b* color space and determined
the ripening stages and nutritional content of tomatoes using a color space conversion
algorithm [6]. However, the feature extraction ability of traditional object detection meth-
ods is minimal, leading to poor robustness of the model. The identification and detection
accuracy of tomatoes cannot meet the actual needs of current agricultural development.

With the continuous development of deep learning methods in recent years, target
detection methods based on deep learning have gradually become the mainstream in the
current computer vision field. In 2014, R-CNN proposed by R. Girshick et al. creatively
used the image classification network [7–9] as a feature extractor and then performed
target detection according to relevant features [10]. The proposal of R-CNN breaks the
bottleneck in the field of target detection, abandons the original image feature extraction
based on machine learning methods, and creates a target detection algorithm based on deep
learning. First, the network generates category-independent candidate regions; secondly,
the network extracts a fixed-length feature vector for each candidate region; finally, the SVM
classifier is used to determine the categories of these objects. Based on R-CNN, Girshick
et al. successively proposed the Fast R-CNN [11] and Faster R-CNN networks [12]. As a
representative of the second-order algorithm, the R-CNN series of networks are known for
their high accuracy.

However, limited by the network structure characteristics of the second-order algo-
rithm, the R-CNN series target detection network has much computational redundancy,
and the network reasoning speed is slow, which makes it challenging to ensure real-time
detection. The YOLO (You Only Look at Once) series network of one-stage structures
proposed by R. Joseph et al. in 2015 divides the feature map into multiple grids. Each
grid is responsible for generating a bounding box of the target. It also takes charge of
predicting the category and bounding box regression parameters of the target predicted,
which fall in this grid. The YOLO network dramatically improves the detection speed of
the network [13]. Still, there is a big gap between the detection accuracy and the two-stage
network, and the ability to predict small targets is insufficient. After that, R. Joseph made
a series of improvements based on YOLO. They proposed YOLOv2 and YOLOv3, which
further improved the detection accuracy of the network while maintaining the detection
speed [14,15]. At the same time, YOLOv2 and YOLOv3 draw on the prediction method
of the bounding box by the Faster R-CNN network. The bounding box is fine-tuned by
predicting the bounding box regression parameters, abandoning the original form that
directly predicted the bounding box size in YOLO. However, the accuracy of the YOLOv3
network is still lower than Faster R-CNN, and there is still an upper limit on the number
of predicted objects per grid. The proposal of YOLOv4 further improves the network’s
small target detection ability, and the network’s detection accuracy and inference speed
have also been greatly improved [16]. With the continuous development of target detection
based on deep learning methods, its excellent detection accuracy and robustness make
related deep learning methods widely used in agricultural product detection and counting.
Many researchers use deep learning-based object detection methods to identify the growth
stages of crops. Ko K E, et al. [17] propose a novel method for detecting tomato ripeness by
utilizing multiple streams of convolutional neural networks and their stochastic decision
fusion (SDF) methodology. Seo D, et al. [18] presented a method to detect tomato fruits
grown in hydroponic greenhouses using the Faster R-CNN (region-based convolutional

Machines 2022, 10, 489 3 of 20

neural network). In addition, we sought to select a color model that was robust to external
light, and we used hue values to develop an image-based maturity standard for tomato
fruits. Liu G, et al. [19] proposed an improved detection model based on YOLOv3 to deal
with tomato detection. However, the direct application of deep learning methods to the
agricultural domain tasks does not consider the cost control issues. We need models with
lower running and storage costs to complete detection tasks in greenhouses. Therefore,
according to the actual task requirements, it is of great significance to carry out the corre-
sponding lightweight processing of the network model. Magalhes S A, et al. [20] proposed a
method to automatize the tomato harvesting process in greenhouses. The visual perception
system can detect the tomato in any life cycle stage (flower to the ripe tomato). The method
also enables further developments in edge artificial intelligence for in situ and real-time
visual tomato detection. Sun J, et al. [21] use Resnet-50 with residual blocks to replace
the traditional vgg16 feature extraction network, and the K-means clustering method was
used to adjust more appropriate anchor sizes than a manual setting, to improve detection
accuracy. The training model can be transplanted to the embedded system. However,
the lightweight processing of the deep network model will inevitably reduce the model’s
detection accuracy and its robustness.

In recent years, the attention model has become an important method to improve
neural networks’ feature extraction ability and network performance. The attention mecha-
nism was first proposed by Bahdanau D, et al. [22] and was first used in natural language
processing. Later, the attention mechanism was applied to different convolutional neu-
ral network mechanisms, effectively improving neural networks’ ability. The attention
mechanism imitates the human visual system and tends to focus on the information in the
auxiliary judgment part of the image, ignoring the unimportant information. The attention
module gives the network the ability to focus on important regions. Jie H, et al. [23] was
proposed in 2017. The emergence of Squeeze-and-Excitation Networks is to solve the loss
problem caused by the different importance of different channels of the feature map in the
process of convolution pooling. Woo S, et al. [24] improved the model’s integrated perfor-
mance by sequentially combining channel attention and spatial attention modules. CBAM
sequentially infers attention weights along the two dimensions of space and channels
and then multiplies with the original feature map to adjust the features information. The
powerful ability of the attention mechanism has been fully proved in different application
fields. Some researchers modify the model by using the attention mechanism to improve
the detection ability of the model in agricultural scenarios. For example, Zhaoyi Chen,
et al. [25] added the Squeeze-and-Excitation method to improve the model’s sensitivity,
which could accurately recognize plant diseases under complex natural conditions.

Based on the above research, we find that many researchers achieve crop detection and
counting with the help of object detection networks. For illustration, Zhu Y. [26] proposed
an improved YOLOv4 with CBAM (convolutional block attention module), including a
spatial and channel attention model, which could enhance the feature extraction capabilities
of the network by adding receptive field modules to achieve detection and counting of
wheat ears. The growth density of crops in the image is calculated by analyzing the
detection results, and statistical methods are used to predict the crop yield. In addition,
Lu S, et al. [27] and Xue Xia, et al. [28] use the target detection network to detect the
target in the image and count the number of detection frames to achieve leaf or fruit count.
However, due to the unstructured nature of crop growth, fruit counting methods using
object detection networks do not have any practical value. The prediction of the yield of
field crops is far different from the fruits because of the relatively sparse fruit growth, which
means it does not have the conditions for statistical prediction based on the fruit growth
density [26]. Therefore, utilizing an object detection network for yield prediction will make
duplicate counting unavoidable. Thus, we need new methods to achieve greenhouse fruit
yield estimation.

This study proposes a target tracking network for identifying and counting tomatoes
at different growth stages called YOLO-deepsort. YOLO-deepsort is composed of a target

Machines 2022, 10, 489 4 of 20

detection network and a target tracking network. Based on the advanced YOLOv5s model,
the detection part of YOLO-deepsort has better real-time performance and higher accuracy
than the previous target detection algorithm, which could detect targets in different growth
stages of tomatoes in complex agricultural scenarios with few parameters. Not only
that, while improving the model detection ability, we also compress the model from the
algorithm level, reducing the weights of the model. After the detection is completed, the
SORT part of the network is responsible for processing the video stream data, tracking the
target by building the connection between different video frames and defining an ID for
each object in the video to achieve the count [29,30].

Our research is as follows: First, we proposed a new backbone combining the shuffnetv2
module and the CSP module to reduce model redundancy, thereby improving the target
detection speed of the final detection model. To further enhance the model accuracy, we
use the convolutional layer combined with the attention mechanism to extract the shal-
low features of the image. Secondly, we use the BiFPN structure as the Neck part of our
model to maximize the use of the image feature information extracted by the backbone
to balance the decline of the model’s lightweight process. Third, we introduce a target
tracking method called DeepSORT that can track and count targets based on the output
of the detection network. Finally, we realize accurate counting of tomato flowers under
complex backgrounds in the greenhouse and show its effect.

2. Materials and Methods
2.1. Data Processing
2.1.1. Data Acquisition and Experimental Environment

As shown in Figure 1, the collection of the experimental samples and the model effect
test in this paper were all carried out in the National Vegetable Quality Standard Center
(Shouguang, Shandong) Science and Technology Demonstration and Promotion Base. We
set up the experiment in the greenhouse to ensure the engineering applicability of the
algorithm. For the plant growth state data, the camera mounted on the inspection robot
is used to obtain it. The inspection robot uses QR code navigation to conduct inspections
through preset routes, as shown in Figure 2.

Machines 2022, 10, x FOR PEER REVIEW 4 of 21

prediction will make duplicate counting unavoidable. Thus, we need new methods to
achieve greenhouse fruit yield estimation.

This study proposes a target tracking network for identifying and counting tomatoes
at different growth stages called YOLO-deepsort. YOLO-deepsort is composed of a target
detection network and a target tracking network. Based on the advanced YOLOv5s model,
the detection part of YOLO-deepsort has better real-time performance and higher accu-
racy than the previous target detection algorithm, which could detect targets in different
growth stages of tomatoes in complex agricultural scenarios with few parameters. Not
only that, while improving the model detection ability, we also compress the model from
the algorithm level, reducing the weights of the model. After the detection is completed,
the SORT part of the network is responsible for processing the video stream data, tracking
the target by building the connection between different video frames and defining an ID
for each object in the video to achieve the count [29,30].

Our research is as follows: First, we proposed a new backbone combining the shuff-
netv2 module and the CSP module to reduce model redundancy, thereby improving the
target detection speed of the final detection model. To further enhance the model accu-
racy, we use the convolutional layer combined with the attention mechanism to extract
the shallow features of the image. Secondly, we use the BiFPN structure as the Neck part
of our model to maximize the use of the image feature information extracted by the back-
bone to balance the decline of the model’s lightweight process. Third, we introduce a tar-
get tracking method called DeepSORT that can track and count targets based on the out-
put of the detection network. Finally, we realize accurate counting of tomato flowers un-
der complex backgrounds in the greenhouse and show its effect.

2. Materials and Methods
2.1. Data Processing
2.1.1. Data Acquisition and Experimental Environment

As shown in Figure 1, the collection of the experimental samples and the model effect
test in this paper were all carried out in the National Vegetable Quality Standard Center
(Shouguang, Shandong) Science and Technology Demonstration and Promotion Base. We
set up the experiment in the greenhouse to ensure the engineering applicability of the
algorithm. For the plant growth state data, the camera mounted on the inspection robot is
used to obtain it. The inspection robot uses QR code navigation to conduct inspections
through preset routes, as shown in Figure 2.

Figure 1. National Vegetable Quality Standard Center (Shouguang, Shandong) Science and Tech-
nology Demonstration and Promotion Base.

Figure 1. National Vegetable Quality Standard Center (Shouguang, Shandong) Science and Technol-
ogy Demonstration and Promotion Base.

Machines 2022, 10, 489 5 of 20Machines 2022, 10, x FOR PEER REVIEW 5 of 21

Figure 2. In this experiment, an inspection robot is used to detect and count the growth state of
plants.

For video stream data, we intercept the images from the video stream every 10 fps to
obtain images for training and testing of the object detection model. In this study, we di-
vided the dataset into the training set and test set according to the ratio of 10:1, with 1000
training images and 100 testing images. As shown in Figure 3, we divide the targets into
three categories: flower, tomato red, and tomato green, according to the needs of the actual
production process. When we conducted a feasibility analysis at the beginning of the
study, we found that the network had a low detection ability for tomato flowers and green
tomatoes. Taking YOLOv5 s as an example, when the number of three types of targets in
the training set is about 600, the mAP (0.95) of tomato flower, green tomato, and red to-
mato is 60.4%, 87.6%, and 94.3%, respectively. So, it is difficult for the network to distin-
guish the two types of objects of tomato flower and green tomato from the background in
complex environments. Therefore, to improve the network’s high and balanced accuracy
for these three objects, we artificially increase the number of tomato flowers and green
tomatoes. The number of targets for each category is shown in Table 1.

Figure 2. In this experiment, an inspection robot is used to detect and count the growth state of plants.

For video stream data, we intercept the images from the video stream every 10 fps
to obtain images for training and testing of the object detection model. In this study, we
divided the dataset into the training set and test set according to the ratio of 10:1, with
1000 training images and 100 testing images. As shown in Figure 3, we divide the targets
into three categories: flower, tomato red, and tomato green, according to the needs of the
actual production process. When we conducted a feasibility analysis at the beginning of the
study, we found that the network had a low detection ability for tomato flowers and green
tomatoes. Taking YOLOv5 s as an example, when the number of three types of targets in
the training set is about 600, the mAP (0.95) of tomato flower, green tomato, and red tomato
is 60.4%, 87.6%, and 94.3%, respectively. So, it is difficult for the network to distinguish the
two types of objects of tomato flower and green tomato from the background in complex
environments. Therefore, to improve the network’s high and balanced accuracy for these
three objects, we artificially increase the number of tomato flowers and green tomatoes.
The number of targets for each category is shown in Table 1.

Machines 2022, 10, x FOR PEER REVIEW 6 of 21

(a) (b) (c)

Figure 3. Images in the dataset used for object detection model training and testing: (a) tomato
flower; (b) unripe tomatoes; (c) unripe tomatoes.

Table 1. The number of targets for each category.

Dataset Flower Tomato_Red Tomato_Green Total
Train set 1640 669 1138 3447
Test set 164 68 139 371

To realize the labeling of images, we use labelImg to label the objects in the photos.
The effect after labeling is shown in Figure 4.

Figure 4. Data labeling.

In addition, for the data set of the network in the target tracking part [29,30], we name
it Tracking_tomato_115. The inspection robot collects the video at a constant speed. We
use three camera positions to shoot the target, and each camera position captures one im-
age every 10 fps for one target, and a total of five shots are captured. We collected and
finally screened a total of 115 tomato and flower targets, and 1711 detected rectangles. At
least two cameras capture each target, as shown in Figure 5.

Figure 3. Images in the dataset used for object detection model training and testing: (a) tomato
flower; (b) unripe tomatoes; (c) unripe tomatoes.

Machines 2022, 10, 489 6 of 20

Table 1. The number of targets for each category.

Dataset Flower Tomato_Red Tomato_Green Total

Train set 1640 669 1138 3447
Test set 164 68 139 371

To realize the labeling of images, we use labelImg to label the objects in the photos.
The effect after labeling is shown in Figure 4.

Machines 2022, 10, x FOR PEER REVIEW 6 of 21

(a) (b) (c)

Figure 3. Images in the dataset used for object detection model training and testing: (a) tomato
flower; (b) unripe tomatoes; (c) unripe tomatoes.

Table 1. The number of targets for each category.

Dataset Flower Tomato_Red Tomato_Green Total
Train set 1640 669 1138 3447
Test set 164 68 139 371

To realize the labeling of images, we use labelImg to label the objects in the photos.
The effect after labeling is shown in Figure 4.

Figure 4. Data labeling.

In addition, for the data set of the network in the target tracking part [29,30], we name
it Tracking_tomato_115. The inspection robot collects the video at a constant speed. We
use three camera positions to shoot the target, and each camera position captures one im-
age every 10 fps for one target, and a total of five shots are captured. We collected and
finally screened a total of 115 tomato and flower targets, and 1711 detected rectangles. At
least two cameras capture each target, as shown in Figure 5.

Figure 4. Data labeling.

In addition, for the data set of the network in the target tracking part [29,30], we name
it Tracking_tomato_115. The inspection robot collects the video at a constant speed. We use
three camera positions to shoot the target, and each camera position captures one image
every 10 fps for one target, and a total of five shots are captured. We collected and finally
screened a total of 115 tomato and flower targets, and 1711 detected rectangles. At least
two cameras capture each target, as shown in Figure 5.

Machines 2022, 10, x FOR PEER REVIEW 7 of 21

(a) (b) (c)

Figure 5. Targets were shot from three different camera angles. (a) Shooting angle a; (b) Shooting
angle b; (c) Shooting angle c.

2.1.2. Data Augmentation
Data augmentation is the most important way to improve model performance by

artificially introducing prior knowledge into training data [31]. Since the samples obtained
after enhancement strongly correlate with the original samples, the network is forced to
learn various potential sample transformation methods. This study uses multiple data
augmentation methods on the training set of the network’s object detection dataset to im-
prove the robustness of the model in greenhouse scenes [16]. In addition, the images in
the dataset are basically taken in the same scene, and the related data augmentation
method can prevent the model from learning information irrelevant to the target and
avoid overfitting. At the same time, data augmentation can also make up for the lack of
data volume. For deep learning methods, whether the amount of data is sufficient will
directly determine the effectiveness of the network. The specific approach and its param-
eter settings are as follows:
1. The color gamut change is to generate a new image by randomly adjusting the orig-

inal image’s color saturation, brightness, and contrast. The random adjustment of the
input image color is vital for improving the robustness of the network and enhancing
the model’s performance in complex greenhouse scenes. The image data’s HSV (Hue,
Saturation, Value) describes the image’s color gamut distortion. The values of these
three parameters are, respectively, Hue (h) is 0.015, Saturation (s) is 0.6, and the
brightness (v) is 0.4.

2. Flip the image from left to right in the horizontal direction, and each image has a 50%
probability of flipping. This data enhancement method can also effectively expand
the data volume of training samples.

3. To enhance the network’s ability to detect tomato flowers, we use mosaic enhance-
ment technology and stitch the four images processed by steps 1 and 2 above by ran-
dom scaling, random cropping, and random distribution. There are 4 different im-
ages are mixed, while CutMix mixes only 2 images [32]. This method effectively in-
creases the diversity of images for the training process to improve the model’s ability

Figure 5. Targets were shot from three different camera angles. (a) Shooting angle a; (b) Shooting
angle b; (c) Shooting angle c.

Machines 2022, 10, 489 7 of 20

2.1.2. Data Augmentation

Data augmentation is the most important way to improve model performance by
artificially introducing prior knowledge into training data [31]. Since the samples obtained
after enhancement strongly correlate with the original samples, the network is forced to
learn various potential sample transformation methods. This study uses multiple data
augmentation methods on the training set of the network’s object detection dataset to
improve the robustness of the model in greenhouse scenes [16]. In addition, the images
in the dataset are basically taken in the same scene, and the related data augmentation
method can prevent the model from learning information irrelevant to the target and avoid
overfitting. At the same time, data augmentation can also make up for the lack of data
volume. For deep learning methods, whether the amount of data is sufficient will directly
determine the effectiveness of the network. The specific approach and its parameter settings
are as follows:

1. The color gamut change is to generate a new image by randomly adjusting the original
image’s color saturation, brightness, and contrast. The random adjustment of the
input image color is vital for improving the robustness of the network and enhancing
the model’s performance in complex greenhouse scenes. The image data’s HSV (Hue,
Saturation, Value) describes the image’s color gamut distortion. The values of these
three parameters are, respectively, Hue (h) is 0.015, Saturation (s) is 0.6, and the
brightness (v) is 0.4.

2. Flip the image from left to right in the horizontal direction, and each image has a 50%
probability of flipping. This data enhancement method can also effectively expand
the data volume of training samples.

3. To enhance the network’s ability to detect tomato flowers, we use mosaic enhancement
technology and stitch the four images processed by steps 1 and 2 above by random
scaling, random cropping, and random distribution. There are 4 different images are
mixed, while CutMix mixes only 2 images [32]. This method effectively increases the
diversity of images for the training process to improve the model’s ability to detect
the flowers. And this method also effectively increases the number of images. Not
only that, by splicing four images to form one, the batch size is increased in disguise,
which reduces the GPU memory requirements for model training.

2.2. YOLO-Deepsort Model
2.2.1. Object Detection Model

This study proposes a new backbone for feature extraction of the object detection
network based on YOLOv5 s. This research uses the Shufflenetv2 module to reuse and
blend image features. The Shufflenetv2 module effectively reduces the complexity of the
model [33]. We also use a convolutional module with a CBAM attention mechanism to
minimize the impact of model feature extraction capability degradation caused by model
lightweight [24]. Meanwhile, we use the bi-directional feature pyramid network (BiFPN)
structure in the Neck part, which improves the ability of the network to utilize features [34].
The network structure is shown in Figure 6, and the network Parameters are shown in
Table 2.

From the table, we can see that the object detection model proposed in this study
consists of the following four parts in total:

4. Inherited from the CSP-1-block of the original YOLOv5’s backbone, this hierarchical
feature fusion mechanism of the CSP structure effectively strengthens the learning
ability of the convolutional neural network. It reduces the number of parameters
of the network. Using the CSP structure can effectively alleviate the problem of
gradient disappearance. In addition, the CSP structure is nested by multiple residual
structures [35]. The basic module in the residual structure is CBL (convolution, batch
normalization, SiLu).

Machines 2022, 10, 489 8 of 20

Machines 2022, 10, x FOR PEER REVIEW 8 of 21

to detect the flowers. And this method also effectively increases the number of im-
ages. Not only that, by splicing four images to form one, the batch size is increased
in disguise, which reduces the GPU memory requirements for model training.

2.2. YOLO-Deepsort Model
2.2.1. Object Detection Model

This study proposes a new backbone for feature extraction of the object detection
network based on YOLOv5 s. This research uses the Shufflenetv2 module to reuse and
blend image features. The Shufflenetv2 module effectively reduces the complexity of the
model [33]. We also use a convolutional module with a CBAM attention mechanism to
minimize the impact of model feature extraction capability degradation caused by model
lightweight [24]. Meanwhile, we use the bi-directional feature pyramid network (BiFPN)
structure in the Neck part, which improves the ability of the network to utilize features
[34]. The network structure is shown in Figure 6, and the network Parameters are shown
in Table 2.

Figure 6. The structure of the object detection part network of YOLO-deepsort.

Table 2. The parameters of YOLO-deepsort.

 From n Params Module Arguments
0 −1 1 3746 Conv_CBAM [3, 32, 6, 2, 2]
1 −1 1 19,170 Conv_CBAM [32, 64, 3, 2]
2 −1 1 18,816 CSP_1*1_block [64, 64, 1]
3 −1 1 73,984 Conv + BN + SiLu [64, 128, 3, 2]
4 −1 2 115,712 CSP_1*1_block [128, 128, 2]
5 −1 1 295,424 Conv + BN + SiLu [128, 256, 3, 2]
6 −1 3 625,152 CSP_1*1_block [256, 256, 3]
7 −1 1 203,776 Inverted_Residual_2 [256, 512, 2]
8 −1 1 134,912 Inverted_Residual_1 [512, 512, 1]
9 −1 1 656,896 SPPF [512, 512, 5]

10 −1 1 131,584 Conv + BN + SiLu [512, 256, 1, 1]

Figure 6. The structure of the object detection part network of YOLO-deepsort.

Table 2. The parameters of YOLO-deepsort.

From n Params Module Arguments

0 −1 1 3746 Conv_CBAM [3, 32, 6, 2, 2]
1 −1 1 19,170 Conv_CBAM [32, 64, 3, 2]
2 −1 1 18,816 CSP_1*1_block [64, 64, 1]
3 −1 1 73,984 Conv + BN + SiLu [64, 128, 3, 2]
4 −1 2 115,712 CSP_1*1_block [128, 128, 2]
5 −1 1 295,424 Conv + BN + SiLu [128, 256, 3, 2]
6 −1 3 625,152 CSP_1*1_block [256, 256, 3]
7 −1 1 203,776 Inverted_Residual_2 [256, 512, 2]
8 −1 1 134,912 Inverted_Residual_1 [512, 512, 1]
9 −1 1 656,896 SPPF [512, 512, 5]

10 −1 1 131,584 Conv + BN + SiLu [512, 256, 1, 1]
11 −1 1 0 Upsample
12 [−1, 6] 1 0 Concat [1]
13 −1 1 361,984 CSP_2*1_block [512, 256, 1]
14 −1 1 33,024 Conv + BN + SiLu [256, 128, 1, 1]
15 −1 1 0 Upsample
16 [−1, 6, 14] 1 0 Concat [1]
17 −1 1 90,880 CSP_2*1_block [256, 128, 1]
18 −1 1 147,712 Conv + BN + SiLu [128, 128, 3, 2]
19 [−1, 6, 14] 1 0 Concat [1]
20 −1 1 361,984 CSP_2*1_block [512, 256, 1]
21 −1 1 590,336 Conv + BN + SiLu [256, 256, 3, 2]
22 [−1, 10] 1 0 Concat [1]
23 −1 1 1,182,720 CSP_2*1_block [512, 512, 1]
24 [17, 20, 23] 1 21,576 Detect

5. The SPPF structure is used to replace the SPP (spatial pyramid pooling) structure
as the output of the last layer of the backbone [36]. The feature map level fusion of
local and global features is achieved through the SPPF module. In addition, the SPPF

Machines 2022, 10, 489 9 of 20

structure dramatically improves the speed of network operations and the feature
information-carrying capacity of feature maps.

6. The feature vector extracted by the shallow network often contains rich location
information, such as contours and texture information. In contrast, the feature vectors
extracted by deep feature extraction networks often contain rich semantic information
and less location information. The location information determines the prediction
accuracy of the target location, and the semantic information determines the accuracy
of the target category prediction. Our model uses BiFPN [34] as the Neck-Part of the
network to maximize the use of the feature information.

7. The Head Part is used for the final detection part, applying anchor boxes on the feature
map and generating regression parameters with class probability, target probability
score, and bounding box [15]. YOLO-deepsort has a total of three heads. The scales of
these heads are (80 × 80 × 21) (40 × 40 × 21) (20 × 20 × 21), each head has a total of
(classes + confidence + coordinate offsets (dx, dy, dw, dh)) × 3 anchor boxes, a total of
21 channels.

2.2.2. Attention Module

CBAM (Convolutional Block Attention Module) is an attention mechanism module
that merges spatial and channel attention [24], as it is shown in Figure 7.

Machines 2022, 10, x FOR PEER REVIEW 10 of 21

Figure 7. The structure of CBAM (Convolutional Block Attention Module).

First, the CBAM attention mechanism performs global average pooling and global
max pooling on the feature map, the processed output feature matrix sizes are (1 × 1 ×
channels) and (1 × 1 × channels), respectively. Then, the two groups of channel weights
are combined after passing through the fully connected layer, and then the weights in the
channel dimension are obtained through the non-linear activation layer [23], as shown in
Figure 8.

Figure 8. The structure of channel attention.

Secondly, the feature matrix obtained after the input feature matrix is weighted by
the channels, as mentioned above, also uses global pooling and average pooling to process
the channel dimension of the feature matrix. The resulting output feature matrix shapes
are (h × w × 1) (h × w × 1). Finally, through the convolution layer with a kernel size of 7,
the output feature matrix of size (h × w × 1) is obtained through the convolution and non-
linear activation layer processing, as shown in Figure 9.

Figure 9. The structure of spatial attention.

The purpose of adding the CBAM attention mechanism in this study is to eliminate
the loss of model feature extraction capability caused by using the lightweight module.

Figure 7. The structure of CBAM (Convolutional Block Attention Module).

First, the CBAM attention mechanism performs global average pooling and global
max pooling on the feature map, the processed output feature matrix sizes are (1 × 1 ×
channels) and (1 × 1 × channels), respectively. Then, the two groups of channel weights
are combined after passing through the fully connected layer, and then the weights in the
channel dimension are obtained through the non-linear activation layer [23], as shown in
Figure 8.

Machines 2022, 10, x FOR PEER REVIEW 10 of 21

Figure 7. The structure of CBAM (Convolutional Block Attention Module).

First, the CBAM attention mechanism performs global average pooling and global
max pooling on the feature map, the processed output feature matrix sizes are (1 × 1 ×
channels) and (1 × 1 × channels), respectively. Then, the two groups of channel weights
are combined after passing through the fully connected layer, and then the weights in the
channel dimension are obtained through the non-linear activation layer [23], as shown in
Figure 8.

Figure 8. The structure of channel attention.

Secondly, the feature matrix obtained after the input feature matrix is weighted by
the channels, as mentioned above, also uses global pooling and average pooling to process
the channel dimension of the feature matrix. The resulting output feature matrix shapes
are (h × w × 1) (h × w × 1). Finally, through the convolution layer with a kernel size of 7,
the output feature matrix of size (h × w × 1) is obtained through the convolution and non-
linear activation layer processing, as shown in Figure 9.

Figure 9. The structure of spatial attention.

The purpose of adding the CBAM attention mechanism in this study is to eliminate
the loss of model feature extraction capability caused by using the lightweight module.

Figure 8. The structure of channel attention.

Secondly, the feature matrix obtained after the input feature matrix is weighted by the
channels, as mentioned above, also uses global pooling and average pooling to process
the channel dimension of the feature matrix. The resulting output feature matrix shapes
are (h × w × 1) (h × w × 1). Finally, through the convolution layer with a kernel size of

Machines 2022, 10, 489 10 of 20

7, the output feature matrix of size (h × w × 1) is obtained through the convolution and
non-linear activation layer processing, as shown in Figure 9.

Machines 2022, 10, x FOR PEER REVIEW 10 of 21

Figure 7. The structure of CBAM (Convolutional Block Attention Module).

First, the CBAM attention mechanism performs global average pooling and global
max pooling on the feature map, the processed output feature matrix sizes are (1 × 1 ×
channels) and (1 × 1 × channels), respectively. Then, the two groups of channel weights
are combined after passing through the fully connected layer, and then the weights in the
channel dimension are obtained through the non-linear activation layer [23], as shown in
Figure 8.

Figure 8. The structure of channel attention.

Secondly, the feature matrix obtained after the input feature matrix is weighted by
the channels, as mentioned above, also uses global pooling and average pooling to process
the channel dimension of the feature matrix. The resulting output feature matrix shapes
are (h × w × 1) (h × w × 1). Finally, through the convolution layer with a kernel size of 7,
the output feature matrix of size (h × w × 1) is obtained through the convolution and non-
linear activation layer processing, as shown in Figure 9.

Figure 9. The structure of spatial attention.

The purpose of adding the CBAM attention mechanism in this study is to eliminate
the loss of model feature extraction capability caused by using the lightweight module.

Figure 9. The structure of spatial attention.

The purpose of adding the CBAM attention mechanism in this study is to eliminate
the loss of model feature extraction capability caused by using the lightweight module.

2.2.3. Lightweight Module

Shufflenetv2 is a lightweight model based on principles of efficient CNN network
design. To improve the defects of shufflenetV1 [37], shufflenetV2 introduces a new opera-
tion called channel split [23]. Figure 10a shows that the input feature map will be equally
divided into two branches in the channel dimension. The left branch is equally mapped, the
right branch contains three convolutions, and the input and output channels are the same.
The two branches are spliced together after completing the operations, respectively. The
network uses a channel shuffle to reorganize the spliced output to ensure the information
exchange between the two branches above. As shown in Figure 10b, there is no additional
channel split for the down sampling module, but each branch directly copies an input, and
each branch has down sampling with a stride is 2. Finally, after stitching these two branches
together, the feature map space size is halved, and the number of channels is doubled.

Machines 2022, 10, x FOR PEER REVIEW 11 of 21

2.2.3. Lightweight Module
Shufflenetv2 is a lightweight model based on principles of efficient CNN network

design. To improve the defects of shufflenetV1 [37], shufflenetV2 introduces a new oper-
ation called channel split [23]. Figure 10a shows that the input feature map will be equally
divided into two branches in the channel dimension. The left branch is equally mapped,
the right branch contains three convolutions, and the input and output channels are the
same. The two branches are spliced together after completing the operations, respectively.
The network uses a channel shuffle to reorganize the spliced output to ensure the infor-
mation exchange between the two branches above. As shown in Figure 10b, there is no
additional channel split for the down sampling module, but each branch directly copies
an input, and each branch has down sampling with a stride is 2. Finally, after stitching
these two branches together, the feature map space size is halved, and the number of
channels is doubled.

(a) (b)

Figure 10. (a) Inverted Residual_1; (b) Inverted Residual_2.

2.2.4. BiFPN Module
The difficulty in improving the performance of the target detection network is the

effective representation and processing of multi-scale features. Feature Pyramid Net-
works (FPN), a seminal work in this section, proposes a top-down approach to combining
multi-scale features [38]. Based on FPN, a new FPN structure called Path Aggregation
Network (PANet) for Instance Segmentation that strengthens the bottom-up path is pro-
posed, which improves the utilization efficiency of features of different network layers
[39]. To improve the ability of the model to detect objects of different scales, bi-directional
feature pyramid network (BiFPN) adopts the idea of bidirectional cross-scale connection
and weighted feature fusion to fuse more features without increasing the cost [34]. The
BiFPN structure performs a series of mixing and combining image features and passes the
image features to the prediction layer. Figure 11 shows three different compound scaling
methods.

Figure 10. (a) Inverted Residual_1; (b) Inverted Residual_2.

Machines 2022, 10, 489 11 of 20

2.2.4. BiFPN Module

The difficulty in improving the performance of the target detection network is the
effective representation and processing of multi-scale features. Feature Pyramid Networks
(FPN), a seminal work in this section, proposes a top-down approach to combining multi-
scale features [38]. Based on FPN, a new FPN structure called Path Aggregation Network
(PANet) for Instance Segmentation that strengthens the bottom-up path is proposed, which
improves the utilization efficiency of features of different network layers [39]. To improve
the ability of the model to detect objects of different scales, bi-directional feature pyramid
network (BiFPN) adopts the idea of bidirectional cross-scale connection and weighted
feature fusion to fuse more features without increasing the cost [34]. The BiFPN structure
performs a series of mixing and combining image features and passes the image features to
the prediction layer. Figure 11 shows three different compound scaling methods.

Machines 2022, 10, x FOR PEER REVIEW 12 of 21

(a) (b) (c)

Figure 11. (a) The structure of FPN; (b) the structure of PANAT; (b) the structure of BiFPN.

2.2.5. DeepSort Model
The predecessor of Deepsort was SORT (sample online and real-time tracking) [29].

As a cascade matching algorithm, the network takes the detection result as input (bound-
ing box, confidence, feature), where confidence is mainly used to filter the bounding box,
and the bounding box and feature match the target with the tracker calculated later. The
Deepsort algorithm uses a Kalman filtering algorithm to generate a tracker based on the
target in the previous frame [40]. The Kalman filter algorithm is divided into two pro-
cesses, prediction, and update.
8. Prediction: When the target passes through a building, parameters such as the target

frame position and speed of the current frame are predicted through parameters such
as the target frame and speed of the previous frame.

9. Update: The predicted and observed values, the two states of the normal distribution,
are linearly weighted to obtain the state predicted by the current system.
We obtain the corresponding targets in the target box and perform feature extraction

on these targets using a deep neural network. Then the similarity calculation is performed
on the trajectory and appearance features of the target and the tracker. For the trajectory
matching calculation, the model uses the Mahalanobis distance (1) to measure the differ-
ences between the tracker and the target [41]. 𝑡(ଵ)(𝑖, 𝑗) = ൫𝑡 − 𝑦൯்𝑆ି ଵ(𝑡 − 𝑦) (1)

where 𝑡 represents the target 𝑗, 𝑦 represents tracker 𝑖 and 𝑆 represents the covari-
ance of 𝑡 and 𝑦. The model measures the similarity between the target and the tracker by
the cosine distance (2). 𝑡(ଶ)(𝑖, 𝑗) = min {1 − 𝑟் 𝑟()|𝑟()𝜖𝑅} (2)

where 1 − 𝑟் 𝑟() represents cosine distance. The cosine distance is used to measure the
apparent features of the track and the apparent features corresponding to the detection to
predict the ID more accurately. Combining (1) and (2), the comprehensive matching de-
gree formula of the model is obtained. 𝑐, = 𝜆𝑡(ଵ)(𝑖, 𝑗) + (1 − 𝜆)𝑡(ଶ)(𝑖, 𝑗) (3)

After the model mentioned above similarity calculation, the model also constructs a
similarity matrix by calculating the IoU of the tracker and the target, and finally obtains
the cost matrix. The Hungarian algorithm matches the predicted tracker with the target in
the current frame [42]. Finally, the parameters of the Kalman filter are updated according
to the matching results. Figure 12 shows the flowchart of the Deepsort algorithm.

Figure 11. (a) The structure of FPN; (b) the structure of PANAT; (b) the structure of BiFPN.

2.2.5. DeepSort Model

The predecessor of Deepsort was SORT (sample online and real-time tracking) [29].
As a cascade matching algorithm, the network takes the detection result as input (bounding
box, confidence, feature), where confidence is mainly used to filter the bounding box,
and the bounding box and feature match the target with the tracker calculated later. The
Deepsort algorithm uses a Kalman filtering algorithm to generate a tracker based on the
target in the previous frame [40]. The Kalman filter algorithm is divided into two processes,
prediction, and update.

8. Prediction: When the target passes through a building, parameters such as the target
frame position and speed of the current frame are predicted through parameters such
as the target frame and speed of the previous frame.

9. Update: The predicted and observed values, the two states of the normal distribution,
are linearly weighted to obtain the state predicted by the current system.

We obtain the corresponding targets in the target box and perform feature extraction
on these targets using a deep neural network. Then the similarity calculation is performed
on the trajectory and appearance features of the target and the tracker. For the trajectory
matching calculation, the model uses the Mahalanobis distance Equation (1) to measure
the differences between the tracker and the target [41].

t(1)(i, j) =
(
tj − yi

)TS−1
i
(
tj − yi

)
(1)

where tj represents the target j, yi represents tracker i and Sl
i represents the covariance of t

and y. The model measures the similarity between the target and the tracker by the cosine
distance Equation (2).

t(2)(i, j) = min{1− rT
j r(i)k |r

(i)
k εRi} (2)

Machines 2022, 10, 489 12 of 20

where 1− rT
j r(i)k represents cosine distance. The cosine distance is used to measure the

apparent features of the track and the apparent features corresponding to the detection
to predict the ID more accurately. Combining Equations (1) and (2), the comprehensive
matching degree formula of the model is obtained.

ci,j = λt(1)(i, j) + (1− λ)t(2)(i, j) (3)

After the model mentioned above similarity calculation, the model also constructs a
similarity matrix by calculating the IoU of the tracker and the target, and finally obtains the
cost matrix. The Hungarian algorithm matches the predicted tracker with the target in the
current frame [42]. Finally, the parameters of the Kalman filter are updated according to
the matching results. Figure 12 shows the flowchart of the Deepsort algorithm.

Machines 2022, 10, x FOR PEER REVIEW 13 of 21

Figure 12. The framework of object tracking.

2.3. Evaluation of Model Performance
In this study, the following metrics are implemented to evaluate the model’s perfor-

mance: precision, recall, F1 score, and mAP (Mean Average Precision). The first letter rep-
resents the correctness of this prediction, T is true, and F is False; the second letter repre-
sents the category predicted by the classifier, P represents the positive samples predicted,
and N represents the negative samples predicted. Our study uses mean accuracy (mAP)
to measure the model performance. The meanings of the relevant parameters and the con-
sensus are as follows：
• TP(True Positive): the prediction result and ground truth are positive samples
• FP(False Positive): the detection result is negative, but the prediction result is true
• TN(True Negative): the prediction result and ground truth are both negative samples
• FN(False Negative): the detection result is positive instead of negative

The calculation function is as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 ∗ 100% (4)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 ∗ 100% (5)

𝐹1௦ = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (6)

𝑚𝐴𝑃.ଽହ = 12 ∫ଵ𝑃(𝑅)𝑑𝑅 ∗ଵ
ୀ 100% (7)

3. Results
3.1. Object Detection Part Training

For model training, the setting of hyperparameters significantly impacts the model’s
training effect. Unlike model parameters, hyperparameters do not depend on data to dy-
namically change but are manually adjusted parameters before or during training. Among
them, the design and debugging of the model’s optimization parameters and regulariza-
tion parameters, such as learning rate, batch size, optimizer, and weight decay, will di-
rectly or indirectly impact the final effect of the network. The purpose of the optimization

Figure 12. The framework of object tracking.

2.3. Evaluation of Model Performance

In this study, the following metrics are implemented to evaluate the model’s perfor-
mance: precision, recall, F1 score, and mAP (Mean Average Precision). The first letter
represents the correctness of this prediction, T is true, and F is False; the second letter repre-
sents the category predicted by the classifier, P represents the positive samples predicted,
and N represents the negative samples predicted. Our study uses mean accuracy (mAP)
to measure the model performance. The meanings of the relevant parameters and the
consensus are as follows:

• TP(True Positive): the prediction result and ground truth are positive samples
• FP(False Positive): the detection result is negative, but the prediction result is true
• TN(True Negative): the prediction result and ground truth are both negative samples
• FN(False Negative): the detection result is positive instead of negative

The calculation function is as follows:

Precision =
TP

TP + FP
∗ 100% (4)

Recall =
TP

TP + FN
∗ 100% (5)

F1score =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

Machines 2022, 10, 489 13 of 20

mAP0.95 =
1
2

1

∑
m=0

∫ 1

0
Pm(Rm)dRm ∗ 100% (7)

3. Results
3.1. Object Detection Part Training

For model training, the setting of hyperparameters significantly impacts the model’s
training effect. Unlike model parameters, hyperparameters do not depend on data to
dynamically change but are manually adjusted parameters before or during training.
Among them, the design and debugging of the model’s optimization parameters and
regularization parameters, such as learning rate, batch size, optimizer, and weight decay,
will directly or indirectly impact the final effect of the network. The purpose of the
optimization and adjustment of the network model is to find the optimal global solution,
and the regular term hopes that the model will fit as best as possible. Model optimization
seeks to minimize empirical risk, making it easy to fall into overfitting. The regular term is
used to constrain model complexity. So how to balance the relationship between the two
and get the optimal solution is the purpose of hyperparameter adjustment. The results often
confirm that the appropriate setting of hyperparameters is more critical than other methods
for improving network performance. Table 3 shows the setting range of hyperparameters
in this study. The selection of hyperparameters in this study is based on our subjective
judgments based on practice and previous experience, which can be further discussed.
Moreover, to reduce overfitting, after each iteration of 16 images, the network is evaluated
on a validation set of 100.

Table 3. The appropriate values for some hyperparameters and the effect of this hyperparameter
setting on model performance.

Hyperparameter Selection Notice

learning rate SGD [43] If the learning rate is too high or too low, the
optimization of the model will fail.

momentum 0.937 Speed up convergence, jump out of the extreme point
and avoid falling into the local optimal solution

weight_decay 0.0005 Constrain the number of parameters, prevent model
overfitting

batch size 8 Updating the weight every 8 images per iteration

box 0.05
In most cases, the loss function hyperparameters may

affect the optimization. Inappropriate hyperparameters
will make it challenging to optimize the model even if

the loss function is very suitable for the target
optimization.

cls 0.5
cls_pw 1.0

obj 1.0
obj_pw 1.0
Iou_t 0.2

anchor_t 4.0

box: box loss gain; cls: cls loss gain; cls_pw: cls BCELoss positive_weight; obj: obj loss gain (scale with pixels);
obj_pw: obj BCELoss positive_weight; IoU_t: IoU training threshold; anchor_t: anchor-multiple thresholds.

At the same time, we use the warm-up method to warm up the learning rate when the
learning rate is updated. The warm-up stage uses a one-dimensional linear interpolation
method to update the learning rate of each iteration. When the warm-up phase is complete,
the model uses the cosine annealing algorithm Equation (8) to update the learning rate
during the rest of the training process.

newlr = lrmin + (lrinit − lrmin) ∗ ((1 + cos (
curepoch

totalepoch
∗ π))/2) (8)

In addition, YOLO-deepsort uses different learning rate adjustment methods for
different layers, including the weight layer, bias layer, and BN layer [9]. This strategy can
make the training process more efficient. To reduce the number of repeated boxes, we

Machines 2022, 10, 489 14 of 20

use non-maxima suppression (NMS) and set a threshold of 0.5. By calculating the overlap
between the output box and the bounding box by CIoU Equation (9), the bounding box
that exceeds the threshold will be filtered out. Therefore, when the threshold is set higher,
the number of bounding boxes predicted by the network will decrease, and vice versa, the
number of boxes inference by the network will increase.

CIoU = IoU −
(

ρ2(b, bgt)
c2 + αv

)
(9)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(10)

α =
v

(1− IoU) + v
(11)

where b represents the parameters of the predicted box center coordinates, and bgt rep-
resents the parameters of the center of the object bounding box. p2 is the square of the
distance between the two center points, and the layer represents the diagonal length of
the minimum circumscribed rectangle of the two rectangles. α and ν are aspect ratios, and
w, h, wgt, and hgt represent the height of the predicted box and the height and width of the
bounding box, respectively.

3.2. Object Detection Part Result

The detection algorithm of the YOLO_deepsort model is improved based on the
YOLOv5 s model. We compare the training process between the YOLOv5 s model and our
method to show the algorithm’s performance, as shown in Figure 13.

Machines 2022, 10, x FOR PEER REVIEW 15 of 21

𝛼 = 𝑣(1 − 𝐼𝑜𝑈) + 𝑣 (11)

where 𝑏 represents the parameters of the predicted box center coordinates, and 𝑏௧ rep-
resents the parameters of the center of the object bounding box. 𝑝ଶ is the square of the
distance between the two center points, and the layer represents the diagonal length of
the minimum circumscribed rectangle of the two rectangles. 𝛼 and 𝜈 are aspect ratios,
and 𝑤, ℎ, 𝑤௧ , and ℎ௧ represent the height of the predicted box and the height and
width of the bounding box, respectively.

3.2. Object Detection Part Result
The detection algorithm of the YOLO_deepsort model is improved based on the

YOLOv5 s model. We compare the training process between the YOLOv5 s model and
our method to show the algorithm’s performance, as shown in Figure 13.

(a) (b)

Figure 13. (a) The average mean precision of YOLOv5 s and YOLO-deepsort on the train set; (b) the
total loss curve of YOLOv5 s and YOLO-deepsort on the train set.

Figure 13a shows the model’s mean average precision change during the training
process. For the target detection network, the higher the mAP(0.95), the better the detec-
tion effect of the model. As we can see, the speed of YOLO_deepsort model’s mean aver-
age precision improvement within 100 epochs is better than that of YOLOv5 s with minor
fluctuation. In addition, the mAP(0.95) of the improved YOLO_deepsort model gradually
stabilizes after 350 epochs, while the YOLOv5 s model does not gradually stabilize until
the mAP of the 500-epoch model. The loss function curve of the model is often used to
evaluate the model’s performance. As shown in Figure 13b, the loss function curve of the
improved YOLO_deepsort model converges faster in the first 100 epochs than the
YOLOv5 s model. The total loss of the improved YOLO_deepsort model is a little lower
than that of YOLOv5 s.

3.3. Object Tracking Part
The target tracking network uses deep learning methods to extract target features to

help the target tracking network detect and match the bounding box of the network with
the tracker. Therefore, before online tracking, we first train a convolutional neural net-
work offline for feature extraction of the tracked target. We used a computer configured
with an Intel Core Xeon(R) CPU 2.5 GHz, 64 GB running memory, and 12 GB Nvidia GTX
2080 Ti GPU to implement the above convolutional neural network training, CUDA ver-
sion 10.1 parallel computing architecture, and cuDNN version 7.6 network Acceleration
library. The operating environment is Ubuntu 20.04 and PyTorch3.0. The training process

Figure 13. (a) The average mean precision of YOLOv5 s and YOLO-deepsort on the train set; (b) the
total loss curve of YOLOv5 s and YOLO-deepsort on the train set.

Figure 13a shows the model’s mean average precision change during the training
process. For the target detection network, the higher the mAP(0.95), the better the detection
effect of the model. As we can see, the speed of YOLO_deepsort model’s mean average
precision improvement within 100 epochs is better than that of YOLOv5 s with minor
fluctuation. In addition, the mAP(0.95) of the improved YOLO_deepsort model gradually
stabilizes after 350 epochs, while the YOLOv5 s model does not gradually stabilize until
the mAP of the 500-epoch model. The loss function curve of the model is often used to
evaluate the model’s performance. As shown in Figure 13b, the loss function curve of the
improved YOLO_deepsort model converges faster in the first 100 epochs than the YOLOv5
s model. The total loss of the improved YOLO_deepsort model is a little lower than that of
YOLOv5 s.

Machines 2022, 10, 489 15 of 20

3.3. Object Tracking Part

The target tracking network uses deep learning methods to extract target features to
help the target tracking network detect and match the bounding box of the network with
the tracker. Therefore, before online tracking, we first train a convolutional neural network
offline for feature extraction of the tracked target. We used a computer configured with an
Intel Core Xeon(R) CPU 2.5 GHz, 64 GB running memory, and 12 GB Nvidia GTX 2080 Ti
GPU to implement the above convolutional neural network training, CUDA version 10.1
parallel computing architecture, and cuDNN version 7.6 network Acceleration library. The
operating environment is Ubuntu 20.04 and PyTorch3.0. The training process of CNN is
shown in Figure 14; we train the CNN offline for over 3500 epochs. Figure 14a shows that
the loss on the test set is close to optimal when it exceeds 2000 epochs. The loss function
evaluates the model by measuring the error between the prediction and true values. In
Figure 14b, the top1 loss of the model gradually decreasing means that even if the shooting
angle of the target changes, the model can still judge whether it is the same target according
to its characteristics. The target features extracted by the CNN network will be used as an
essential basis for matching the bounding box and the tracker, contributing to improving
target tracking accuracy.

Machines 2022, 10, x FOR PEER REVIEW 16 of 21

of CNN is shown in Figure 14; we train the CNN offline for over 3500 epochs. Figure 14a
shows that the loss on the test set is close to optimal when it exceeds 2000 epochs. The loss
function evaluates the model by measuring the error between the prediction and true val-
ues. In Figure 14b, the top1 loss of the model gradually decreasing means that even if the
shooting angle of the target changes, the model can still judge whether it is the same target
according to its characteristics. The target features extracted by the CNN network will be
used as an essential basis for matching the bounding box and the tracker, contributing to
improving target tracking accuracy.

(a) (b)

Figure 14. (a) The loss curve of the training and testing process on the test set; (b) the top1_err of
training and testing process on the test set.

4. Discussion
4.1. Comparison with Other Object Detection Methods

To illustrate the performance of the YOLO-deepsort model, we compare the model
with YOLOv5 s, YOLOv5 m, and YOLOv5 l. The above method is trained with the same
dataset and device, and then the object detection models are compared using the same
test set.

Table 4 shows that YOLO-deepsort has high precision, recall, and mAP (mean aver-
age precision) in the detection tasks of different growth stages of tomato (flowering stage,
unripe fruit, ripe fruit). By comparing the metrics in the table, we can see that our model
has better performance than other YOLO series object detection networks. Specifically,
compared with YOLOv5 s, the precision of YOLO-deepsort remains unchanged, the F1-
score is improved by 4.1%, and the mAP (0.95) is improved by 7.1%. The YOLO-deepsort
model has fewer parameters and is very friendly to model deployment, which meets the
requirements for the greenhouse inspection robot to count tomato flowers during travel
and provides conditions for the network to follow up on target tracking. In general,
YOLO-deepsort model can meet the requirements for real-time monitoring in the green-
house.

Table 4. The detection results of a series of YOLO networks and YOLO-deepsort.

Model Precision Recall F1-Score mAP (0.5:0.95) Parameters
YOLOv5 s 99.5% 90.6% 94.8% 88.7% 7,018,216
YOLOv5 m 99.5% 95.3% 97.4% 91.6% 13,354,682
YOLOv5 l 99.5% 94.1% 96.7% 91.6% 46,119,048

YOLO-deepsort 99.5% 98.4% 98.9% 95.8% 5,072,848

Figure 14. (a) The loss curve of the training and testing process on the test set; (b) the top1_err of
training and testing process on the test set.

4. Discussion
4.1. Comparison with Other Object Detection Methods

To illustrate the performance of the YOLO-deepsort model, we compare the model
with YOLOv5 s, YOLOv5 m, and YOLOv5 l. The above method is trained with the same
dataset and device, and then the object detection models are compared using the same
test set.

Table 4 shows that YOLO-deepsort has high precision, recall, and mAP (mean average
precision) in the detection tasks of different growth stages of tomato (flowering stage, unripe
fruit, ripe fruit). By comparing the metrics in the table, we can see that our model has better
performance than other YOLO series object detection networks. Specifically, compared with
YOLOv5 s, the precision of YOLO-deepsort remains unchanged, the F1-score is improved
by 4.1%, and the mAP (0.95) is improved by 7.1%. The YOLO-deepsort model has fewer
parameters and is very friendly to model deployment, which meets the requirements for the
greenhouse inspection robot to count tomato flowers during travel and provides conditions
for the network to follow up on target tracking. In general, YOLO-deepsort model can
meet the requirements for real-time monitoring in the greenhouse.

Machines 2022, 10, 489 16 of 20

Table 4. The detection results of a series of YOLO networks and YOLO-deepsort.

Model Precision Recall F1-Score mAP
(0.5:0.95) Parameters

YOLOv5 s 99.5% 90.6% 94.8% 88.7% 7,018,216
YOLOv5 m 99.5% 95.3% 97.4% 91.6% 13,354,682
YOLOv5 l 99.5% 94.1% 96.7% 91.6% 46,119,048

YOLO-deepsort 99.5% 98.4% 98.9% 95.8% 5,072,848

To illustrate the high performance of our method, we drew a heatmap of the above
model, and YOLO-deepsort with different methods added, as shown in Figure 15. The
above results and visual heat map prove that YOLO-deepsort can fulfill the detection of
different periods of tomato and meet the requirements of practical application deployment.
In Figure 15, we show the heatmap of different networks, further demonstrating our
approach’s performance. By setting the target confidence to 0.75 (Filter out targets with
probability scores below 75% to prevent the model from detecting distant targets and
causing double counting), the model can only detect the target of the current row during
the inference process to avoid double-counting. We can see that the detection capabilities
of different models for the tomatoes are similar. However, for flower recognition, the area
of interest of YOLO-deepsort is more concentrated in the area where the target is located,
showing a strong detection ability.

4.2. Comparison with Other Object Lightweight Methods

Complex models often have better performance, but high storage space and computing
resource consumption are difficult to apply. Therefore, in the model design process, we tried
to reduce the consumption of the model’s computing memory and realized the compression
of the model from the algorithm level. Table 5 shows the model size, parameter quantity,
and model performance of YOLO-deepsort and various existing lightweight models. For
scenes where the relationship between the background and the subject is relatively stable,
the existing lightweight network will have better results, but it is not easy to achieve
the expected results in complex agricultural scenes. The number of model parameters of
YOLO-deepsort is only 5.07(Million), the size of the weight file is only 10.5 MB, and the
detection part of the network of YOLO-deepsort can still achieve target recognition and
detection well in agricultural scenarios.

Table 5. The storage cost of YOLO-deepsort and other lightweight models.

Model Input_Size Params Size(M) Percision mAP(0.5:0.95)

YOLO_nano 416 × 416 - 34.8 30.5% 15.4%
YOLOv3-tiny 416 × 416 8.67 M 17.4 95.7% 86.7%

YOLOv5 n 640 × 640 1.76 M 3.8 96.7% 85.4%
YOLOv5_Lite 640 × 640 5.39 M 10.9 99.2% 91.3%

YOLO-deepsort 640 × 640 5.07 M 10.5 99.5% 95.8%

Machines 2022, 10, 489 17 of 20

Machines 2022, 10, x FOR PEER REVIEW 17 of 21

To illustrate the high performance of our method, we drew a heatmap of the above
model, and YOLO-deepsort with different methods added, as shown in Figure 15. The
above results and visual heat map prove that YOLO-deepsort can fulfill the detection of
different periods of tomato and meet the requirements of practical application deploy-
ment. In Figure 15, we show the heatmap of different networks, further demonstrating
our approach’s performance. By setting the target confidence to 0.75 (Filter out targets
with probability scores below 75% to prevent the model from detecting distant targets and
causing double counting), the model can only detect the target of the current row during
the inference process to avoid double-counting. We can see that the detection capabilities
of different models for the tomatoes are similar. However, for flower recognition, the area
of interest of YOLO-deepsort is more concentrated in the area where the target is located,
showing a strong detection ability.

(a)

(b)

(c)

(d)

Machines 2022, 10, x FOR PEER REVIEW 18 of 21

(e)

Figure 15. (a) Input images; (b) the heatmap of YOLOv5 s; (c) the heatmap of YOLOv5 m; (d) the
heatmap of YOLOv5 l. (e) The heatmap of YOLO-deepsort.

4.2. Comparison with Other Object Lightweight Methods
Complex models often have better performance, but high storage space and compu-

ting resource consumption are difficult to apply. Therefore, in the model design process,
we tried to reduce the consumption of the model’s computing memory and realized the
compression of the model from the algorithm level. Table 5 shows the model size, param-
eter quantity, and model performance of YOLO-deepsort and various existing lightweight
models. For scenes where the relationship between the background and the subject is rel-
atively stable, the existing lightweight network will have better results, but it is not easy
to achieve the expected results in complex agricultural scenes. The number of model pa-
rameters of YOLO-deepsort is only 5.07(Million), the size of the weight file is only 10.5
MB, and the detection part of the network of YOLO-deepsort can still achieve target recog-
nition and detection well in agricultural scenarios.

Table 5. The storage cost of YOLO-deepsort and other lightweight models.

Model Input_size Params Size(M) Percision mAP(0.5:0.95)
YOLO_nano 416×416 - 34.8 30.5% 15.4%
YOLOv3-tiny 416×416 8.67 M 17.4 95.7% 86.7%

YOLOv5 n 640×640 1.76 M 3.8 96.7% 85.4%
YOLOv5_Lite 640×640 5.39 M 10.9 99.2% 91.3%

YOLO-deepsort 640×640 5.07 M 10.5 99.5% 95.8%

4.3. Performance of Object Tracking and Counting
Our method achieves the function of tracking and counting tomato flowers in com-

plex agricultural scenarios. We calculate the objects that hit the line by setting a virtual
counting statistic line. Due to the complexity of crop growth in the actual scene, it is diffi-
cult for us to ensure that the camera will not repeatedly collect the target. Our research is
based on the realization of target tracking to complete the counting task. The algorithm
itself can identify the target in the current video stream, which means that when the same
target repeatedly hits the line, it will not be a repeated count. The counting process is
shown in Figure 16.

Figure 15. (a) Input images; (b) the heatmap of YOLOv5 s; (c) the heatmap of YOLOv5 m; (d) the
heatmap of YOLOv5 l. (e) The heatmap of YOLO-deepsort.

4.3. Performance of Object Tracking and Counting

Our method achieves the function of tracking and counting tomato flowers in complex
agricultural scenarios. We calculate the objects that hit the line by setting a virtual counting
statistic line. Due to the complexity of crop growth in the actual scene, it is difficult for us
to ensure that the camera will not repeatedly collect the target. Our research is based on

Machines 2022, 10, 489 18 of 20

the realization of target tracking to complete the counting task. The algorithm itself can
identify the target in the current video stream, which means that when the same target
repeatedly hits the line, it will not be a repeated count. The counting process is shown in
Figure 16.

Machines 2022, 10, x FOR PEER REVIEW 19 of 21

Figure 16. Counting the number of tomato flowers in the greenhouse.

The three targets in the images are each assigned a specific ID, and the ID of each
target is still maintained while the camera position is constantly moving. In the green-
house environment, the land is uneven, and the inspection robot equipped with a camera
has poor shooting stability during the inspection process. The instability of the video data
can easily lead to the missed detection of the target in some frames. In response to the
above situation, YOLO-deepsort will store the characteristics of the target whose id was
previously determined to ensure that the id of the target does not change when the target
is successfully detected next time.

5. Conclusions
In recent years, given the practical application needs of target detection and yield

prediction in facility agriculture, we propose a tomato counting method based on an ob-
ject tracking algorithm and apply it to tomato yield prediction. Overall, the contributions
of this paper are as follows.

To realize the detection and counting of tomatoes at different growth stages, we pro-
pose an improved YOLO model and combine it with the target tracking algorithm using
a deep feature extraction network. In addition, to collecting and labeling images of toma-
toes at different growth stages for training the object detection network, we also collected
a dataset called Tracking_tomato_115 for training the object tracking network. For the
model object detection part of the network, we embedded the lightweight structure and
CBAM module into the backbone network and used the BiFPN structure at the neck of
the model. During the training process, warm-up and cosine annealing algorithms are
used to update the learning rate of the model. Then, we use Deepsort to achieve object
tracking of tomato fruits and flowers. We use the YOLO-deepsort model to test in a green-
house environment. The experimental results show that our algorithm can effectively
avoid the occurrence of double counting and achieve good practical results. After getting
the tracking results, we use OpenCV to create a virtual count line to count the targets.
Compared with the original YOLOv5 s model, our method achieved a competitive result.
The mean average precision of flower, green tomato, and red tomato was 93.1%, 96.4%,
and 97.9%, which increased by 17%, 2%, and 2.3%, respectively. Also, our model weights
are only 10.5 MB, and the memory consumption is lower than most lightweight networks
under the premise of ensuring performance. Our model meets the requirements for the
greenhouse inspection robot to count tomato flowers during travel and provides condi-
tions for the network to follow up on target tracking.

However, the detection is unstable due to the complex environment of the green-
house and the shaking during the inspection process, which will adversely affect the tar-
get tracking and counting. In the future, we will continue improving the model’s speed
and stability for real-time detection in complex scenes.

Figure 16. Counting the number of tomato flowers in the greenhouse.

The three targets in the images are each assigned a specific ID, and the ID of each
target is still maintained while the camera position is constantly moving. In the greenhouse
environment, the land is uneven, and the inspection robot equipped with a camera has
poor shooting stability during the inspection process. The instability of the video data
can easily lead to the missed detection of the target in some frames. In response to the
above situation, YOLO-deepsort will store the characteristics of the target whose id was
previously determined to ensure that the id of the target does not change when the target is
successfully detected next time.

5. Conclusions

In recent years, given the practical application needs of target detection and yield
prediction in facility agriculture, we propose a tomato counting method based on an object
tracking algorithm and apply it to tomato yield prediction. Overall, the contributions of
this paper are as follows.

To realize the detection and counting of tomatoes at different growth stages, we
propose an improved YOLO model and combine it with the target tracking algorithm
using a deep feature extraction network. In addition, to collecting and labeling images
of tomatoes at different growth stages for training the object detection network, we also
collected a dataset called Tracking_tomato_115 for training the object tracking network. For
the model object detection part of the network, we embedded the lightweight structure and
CBAM module into the backbone network and used the BiFPN structure at the neck of the
model. During the training process, warm-up and cosine annealing algorithms are used to
update the learning rate of the model. Then, we use Deepsort to achieve object tracking
of tomato fruits and flowers. We use the YOLO-deepsort model to test in a greenhouse
environment. The experimental results show that our algorithm can effectively avoid the
occurrence of double counting and achieve good practical results. After getting the tracking
results, we use OpenCV to create a virtual count line to count the targets. Compared with
the original YOLOv5 s model, our method achieved a competitive result. The mean average
precision of flower, green tomato, and red tomato was 93.1%, 96.4%, and 97.9%, which
increased by 17%, 2%, and 2.3%, respectively. Also, our model weights are only 10.5 MB,
and the memory consumption is lower than most lightweight networks under the premise
of ensuring performance. Our model meets the requirements for the greenhouse inspection

Machines 2022, 10, 489 19 of 20

robot to count tomato flowers during travel and provides conditions for the network to
follow up on target tracking.

However, the detection is unstable due to the complex environment of the greenhouse
and the shaking during the inspection process, which will adversely affect the target
tracking and counting. In the future, we will continue improving the model’s speed and
stability for real-time detection in complex scenes.

Author Contributions: Conceptualization, Y.G.; methodology, J.Z. and Y.G.; software, Y.G. and
Y.Z.; validation, Z.W., Z.L. and J.D.; resources, S.S.; data curation, S.L. and Y.G.; visualization, X.Q.;
investigation, Y.G., Y.Z., H.C.; writing—original draft preparation Y.G. and S.L.; writing—review and
editing, Y.G. and H.C.; visualization, Y.G. and Z.L.; supervision, Y.Z. and S.L.; project administration,
Y.Z. and S.L.; funding acquisition, Y.Z and S.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Beijing Municipal Science and Technology Project (Z211100004621006)
R&D, Science and Technology Innovation 2030 Project Sub-topics (2021ZD0113602) and demonstra-
tion application of facility vegetable intelligent decision-making system based on big data and Youth
Research Fund of Beijing Academy of Agriculture and Forestry Sciences (QNJJ202027).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, L.; Song, L.; Xie, C.; Zhang, J. Applications of Internet of Things in the Facility Agriculture. In Computer and Computing

Technologies in Agriculture VI. CCTA 2012. IFIP Advances in Information and Communication Technology; Li, D., Chen, Y., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013; Volume 392. [CrossRef]

2. Jin, X.-B.; Yu, X.-H.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Kong, J.-L. Deep Learning Predictor for Sustainable Precision Agriculture
Based on Internet of Things System. Sustainability 2020, 12, 1433. [CrossRef]

3. Yin, H.; Chai, Y.; Yang, S.X.; Mittal, G.S. Ripe Tomato Recognition and Localization for a Tomato Harvesting Robotic System.
In Proceedings of the 2009 International Conference of Soft Computing and Pattern Recognition, Washington, DC, USA, 4–7
December 2009; pp. 557–562. [CrossRef]

4. Suykens, J.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [CrossRef]
5. Liu, G.; Mao, S.; Kim, J.H. A Mature-Tomato Detection Algorithm Using Machine Learning and Color Analysis. Sensors 2019, 19,

2023. [CrossRef] [PubMed]
6. Amarante, M.A.; Ang, A.; Garcia, R.; Garcia, R.G.; Martin, E.M.; Valiente, L.F.; Valiente, L., Jr.; Vigila, S. Determination of Ripening

Stages and Nutritional Content of Tomatoes Using Color Space Conversion Algorithm, Processed Through Raspberry Pi. In
Proceedings of the International Conference on Biomedical Engineering and Technology, Tokyo, Japan, 15–18 September 2020.
[CrossRef]

7. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

8. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

10. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

11. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13
December 2015; pp. 1440–1448.

12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. 2022, 44, 154–180. [CrossRef] [PubMed]

13. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

http://doi.org/10.1007/978-3-642-36124-1_36
http://doi.org/10.3390/su12041433
http://doi.org/10.1109/SoCPaR.2009.111
http://doi.org/10.1023/A:1018628609742
http://doi.org/10.3390/s19092023
http://www.ncbi.nlm.nih.gov/pubmed/31052169
http://doi.org/10.1145/3397391.3397428
http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

Machines 2022, 10, 489 20 of 20

14. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

15. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
16. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
17. Ko, K.; Jang, I.; Choi, J.H.; Lim, J.H.; Lee, D.U. Stochastic Decision Fusion of Convolutional Neural Networks for Tomato Ripeness

Detection in Agricultural Sorting Systems. Sensors 2021, 21, 917. [CrossRef]
18. Seo, D.; Cho, B.-H.; Kim, K.-C. Development of Monitoring Robot System for Tomato Fruits in Hydroponic Greenhouses.

Agronomy 2021, 11, 2211. [CrossRef]
19. Liu, G.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on

YOLOv3. Sensors 2020, 20, 2145. [CrossRef]
20. Magalhães, S.A.; Castro, L.; Moreira, G.; dos Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the Single-Shot MultiBox

Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse. Sensors 2021, 21, 3569. [CrossRef]
21. Sun, J.; He, X.; Ge, X.; Wu, X.; Shen, J.; Song, Y. Detection of Key Organs in Tomato Based on Deep Migration Learning in a

Complex Background. Agriculture 2018, 8, 196. [CrossRef]
22. Dzmitry, B.; Kyunghyun, C.; Yoshua, B. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2015,

arXiv:1409.0473.
23. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
24. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
25. Chen, Z.; Wu, R.; Lin, Y.; Li, C.; Chen, S.; Yuan, Z.; Chen, S.; Zou, X. Plant Disease Recognition Model Based on Improved

YOLOv5. Agronomy 2022, 12, 365. [CrossRef]
26. Yang, B.; Gao, Z.; Gao, Y.; Zhu, Y. Rapid Detection and Counting of Wheat Ears in the Field Using YOLOv4 with Attention

Module. Agronomy 2021, 11, 1202. [CrossRef]
27. Lu, S.; Song, Z.; Chen, W.; Qian, T.; Zhang, Y.; Chen, M.; Li, G. Counting Dense Leaves under Natural Environments via an

Improved Deep-Learning-Based Object Detection Algorithm. Agriculture 2021, 11, 1003. [CrossRef]
28. Xia, X.; Chai, X.; Zhang, N.; Zhang, Z.; Sun, Q.; Sun, T. Culling Double Counting in Sequence Images for Fruit Yield Estimation.

Agronomy 2022, 12, 440. [CrossRef]
29. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International

Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [CrossRef]
30. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017

IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [CrossRef]
31. Buslaev, A.; Parinov, A.; Khvedchenya, E.; Iglovikov, V.I.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations.

Information 2020, 11, 125. [CrossRef]
32. Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable

features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–3 November
2019; pp. 6023–6032.

33. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

34. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

35. Wang, C.Y.; Liao, H.-Y.M.; Wu, Y.; Chen, P.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone that can Enhance Learning
Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580. [CrossRef]

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

37. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. arXiv
2017, arXiv:1707.01083v2.

38. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

39. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768.

40. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Fluids Eng. 1960, 82, 35–45. [CrossRef]
41. De Maesschalck, R.; Delphine, J.-R.; Massart, D.L. The mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [CrossRef]
42. Wright, M.B. Speeding up the Hungarian algorithm. Comput. Oper. Res. 1990, 17, 95–96. [CrossRef]
43. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.

http://doi.org/10.3390/s21030917
http://doi.org/10.3390/agronomy11112211
http://doi.org/10.3390/s20072145
http://doi.org/10.3390/s21103569
http://doi.org/10.3390/agriculture8120196
http://doi.org/10.3390/agronomy12020365
http://doi.org/10.3390/agronomy11061202
http://doi.org/10.3390/agriculture11101003
http://doi.org/10.3390/agronomy12020440
http://doi.org/10.1109/ICIP.2016.7533003
http://doi.org/10.1109/ICIP.2017.8296962
http://doi.org/10.3390/info11020125
http://doi.org/10.1109/CVPRW50498.2020.00203
http://doi.org/10.1109/TPAMI.2015.2389824
http://doi.org/10.1115/1.3662552
http://doi.org/10.1016/S0169-7439(99)00047-7
http://doi.org/10.1016/0305-0548(90)90031-2

	Introduction
	Materials and Methods
	Data Processing
	Data Acquisition and Experimental Environment
	Data Augmentation

	YOLO-Deepsort Model
	Object Detection Model
	Attention Module
	Lightweight Module
	BiFPN Module
	DeepSort Model

	Evaluation of Model Performance

	Results
	Object Detection Part Training
	Object Detection Part Result
	Object Tracking Part

	Discussion
	Comparison with Other Object Detection Methods
	Comparison with Other Object Lightweight Methods
	Performance of Object Tracking and Counting

	Conclusions
	References

