. machines

Article

A State-Compensated Deep Deterministic Policy Gradient
Algorithm for UAV Trajectory Tracking

Jiying Wu

check for
updates

Citation: Wu, J.; Yang, Z.; Liao, L.;
He, N.; Wang, Z.; Wang, C. A
State-Compensated Deep
Deterministic Policy Gradient
Algorithm for UAV Trajectory
Tracking. Machines 2022, 10, 496.
https://doi.org/10.3390/
machines10070496

Academic Editor: Dan Zhang

Received: 20 May 2022
Accepted: 14 June 2022
Published: 21 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

, Zhong Yang *, Luwei Liao, Naifeng He, Zhiyong Wang and Can Wang

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
wujiying@nuaa.edu.cn (J.W.); lw@nuaa.edu.cn (L.L.); nthe@nuaa.edu.cn (N.H.);

wangzhiyong@nuaa.edu.cn (Z.W.); wangcan@nuaa.edu.cn (C.W.)

* Correspondence: yangzhong@nuaa.edu.cn

Abstract: The unmanned aerial vehicle (UAV) trajectory tracking control algorithm based on deep
reinforcement learning is generally inefficient for training in an unknown environment, and the
convergence is unstable. Aiming at this situation, a Markov decision process (MDP) model for
UAV trajectory tracking is established, and a state-compensated deep deterministic policy gradient
(CDDPG) algorithm is proposed. An additional neural network (C-Net) whose input is compensation
state and output is compensation action is added to the network model of a deep deterministic policy
gradient (DDPG) algorithm to assist in network exploration training. It combined the action output
of the DDPG network with compensated output of the C-Net as the output action to interact with the
environment, enabling the UAV to rapidly track dynamic targets in the most accurate continuous
and smooth way possible. In addition, random noise is added on the basis of the generated behavior
to realize a certain range of exploration and make the action value estimation more accurate. The
OpenAl Gym tool is used to verify the proposed method, and the simulation results show that:
(1) The proposed method can significantly improve the training efficiency by adding a compensation
network and effectively improve the accuracy and convergence stability; (2) Under the same computer
configuration, the computational cost of the proposed algorithm is basically the same as that of the
QAC algorithm (Actor-critic algorithm based on behavioral value Q) and the DDPG algorithm;
(3) During the training process, with the same tracking accuracy, the learning efficiency is about 70%
higher than that of QAC and DDPG,; (4) During the simulation tracking experiment, under the same
training time, the tracking error of the proposed method after stabilization is about 50% lower than
that of QAC and DDPG.

Keywords: trajectory tracking; deep reinforcement learning; deep deterministic policy gradient
algorithm; state compensation network

1. Introduction

Trajectory tracking is related to time series and the mobile robot needs to reach
the original set position through the control of the trajectory tracking system within a
specified time. It is dedicated to estimating the motion state and motion trajectory of
the tracked object in a continuous spatiotemporal sequence. Therefore, a controller with
high-performance trajectory tracking capability is required for the mobile robot [1]. With
the development of control technology, the learning-based robot control method is the
latest research hotspot in the field of control [2—4], and researchers have proposed methods
based on reinforcement learning (RL). It ignores the dynamic model of the robot and learns
the control method through a large amount of motion data, which has received extensive
attention in the field of automatic control. Due to its data-driven approach, reinforcement
learning can reduce the need for complex engineering theory. Model-based reinforcement
learning algorithms generally target simple dynamic environments or agents with few
actual interactions. Without knowledge of the environmental dynamics model, model-free

Machines 2022, 10, 496. https:/ /doi.org/10.3390/machines10070496

https:/ /www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10070496
https://doi.org/10.3390/machines10070496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-3959-8946
https://doi.org/10.3390/machines10070496
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10070496?type=check_update&version=2

Machines 2022, 10, 496

20f18

reinforcement learning algorithms can directly evaluate the quality of a policy or find
the optimal value function and optimal policy through the actual interaction between
individuals and the environment. Internationally, a lot of research has been done on this
problem from theory to experiment, and fruitful results have been achieved in theoretical
analysis, numerical calculation and experimental verification [5-13]. Among them, the
value-based deep reinforcement learning (DRL) algorithms, such as Q-learning, Sarsa, and
the deep Q-learning algorithm (DQN) can only realize the control of discrete action space,
so they can only realize the discrete direction control of the robot. However, in the case
of a large-scale behavior space or continuous behavior, it will be difficult for value-based
reinforcement learning to learn a good result. For trajectory tracking, value-based control
methods can hardly achieve accurate tracking by simply using discrete action spaces. In
this case, policy learning can be performed directly.

The policy gradient algorithm proposed by Peters [14] realizes continuous control, and
the deterministic policy gradient (DPG) proposed by Silver [15] significantly outperforms
the stochastic policy gradient in high-dimensional behavior spaces. Lillicrap [16] introduced
DQN on the basis of DPG, combined with the training characteristics of the DQN neural
network, and proposed the DDPG algorithm. Due to the good performance of DDPG,
many researchers applied DDPG to UAV navigation and target tracking, and achieved good
results [17]. Gan Z et al. [18] established a UAV tracking model based on deep reinforcement
learning, and studied the target tracking problem of UAV. Modares et al. [19] used an
off-policy reinforcement learning algorithm to learn and track the solution of the Hamilton-
Jacobi-Isaac (HJI) equation online, and studied the design of an H-tracking controller for
nonlinear continuous-time systems with completely unknown dynamics. Ye L et al. [20]
proposed reinforcement learning tracking control (RLTC) for unknown continuous dynamic
systems to solve the traditional iterative learning control (ILC) problem.

The DDPG algorithm is a deterministic policy algorithm using deep learning tech-
nology and based on the Actor-critic algorithm, which can better solve the trajectory
tracking problem in continuous behavior space [8]. Among the latest research results,
Luy NT et al. [21] proposed a reinforcement learning-based design method for mobile robot
kinematics and dynamic tracking control algorithms, in which the Actor-critic structure uses
only one neural network to reduce computational costs and storage resources. In response
to the time-consuming RL training, Wang GF et al. [22] proposed a TL framework based
on transfer learning, where the agent extracts knowledge from the human-demonstration
trajectories of the source task, and reuses the knowledge in RL in the target task, which
shows remarkable results in experiments. Levine S et al. [23] proposed a deep reinforce-
ment learning method based on uncertainty perception. By estimating the probability of
collision, the robot can keep “vigilance” in the face of unfamiliar and unknown environ-
ments, reduce the running speed and reduce the possibility of collision. In order to reduce
the number of trials and errors in the interaction between the UAV and the environment,
they also proposed a guided policy search algorithm which uses the optimized data for
learning to realize the obstacle avoidance control of the UAV in the simulation environment.
Hwangbo] et al. [24] proposed a new deep reinforcement learning algorithm under the
Actor-critic framework to achieve UAV path tracking control under any initial condition.
However, William F K et al. [25] compared three deep reinforcement learning algorithms,
namely, deep deterministic policy gradient, confidence region policy optimization, and
near-end policy optimization, with the traditional PID (Proportion Integration Differen-
tiation) algorithm. The experiment shows that in the UAV attitude control simulation
environment, the near-end policy optimization algorithm is superior to the other three
control algorithms in terms of overshoot, rise time and tracking error. B Rubi et al. [26]
proposed the DDPG algorithm for the path tracking problem of the UAV aircraft. Through
training and testing in the RotorS-Gazebo environment, it was proved that the tracking
performance of the method was better than that of the NLGL (Nonlinear Navigation Logic)
method. Zheng Q et al. [27] used the PPO algorithm of reinforcement learning to adjust the
PID controller gain, and achieved good stability of the aircraft in control, anti-jamming and

Machines 2022, 10, 496

30f18

flying height. In addition, Zhen Y et al. [28,29] proposed a hybrid DDPG (Mi-DDPG) algo-
rithm. Levine S et al. [30] formulated policy search as optimization of trajectory distribution.
Yang B et al. [31] used a deep deterministic policy gradient algorithm to solve a closed-loop
tracking method for tracking trajectories, and proved that it achieved a high tracking rate.
Most of the above-mentioned previous studies on DDPG focus on the optimization problem
of DDPG algorithm itself, or use a DDPG algorithm to adjust the parameters of traditional
controllers to increase the stability of the system.

Aiming at the shortcomings of the UAV trajectory tracking control algorithm based
on the deep deterministic policy gradient, such as low training efficiency and unstable
convergence in unknown environments, a new UAV trajectory tracking control algorithm
was proposed on the basis of DDPG, that is, state-compensated deep deterministic policy
gradient (CDDPG) algorithm which uses deep reinforcement learning and fuses different
state space networks. The process is shown in Figure 1. The CDDPG algorithm takes
improving the learning efficiency without reducing the training accuracy as a breakthrough
point. In practice, the state compensation network is used to compensate the dynamic
loss in real time to improve the following effect. In the subsequent process, the role of the
compensation network is constantly weakened, and reinforcement learning is the dominant
factor to achieve fast and accurate follow-up effects. For example, before learning a certain
skill, students first roughly learn most of the content; the instructor will correct the study
direction and guide them precisely to speed up the learning progress and accuracy; the
cycle goes back and forth. The students’ self-study gradually becomes dominant, while
weakening the tutor’s guidance, and they finally achieve a quick and accurate mastery of
this skill. It can be seen that the advantages of CDDPG are the stable convergence and the
short training period.

©00.00000,

©00.00000)

\ Initial Position ' Target Position |

|
==~ CDDPG in Simulation " =~~~

Figure 1. Principle of CDDPG algorithm.

The rest of this article is organized as follows. The second section presents the pro-
posed control method. The third section verifies the performance of the method through
simulation results. The fourth section is devoted to concluding remarks.

2. Models and Methods

Section 2.1 establishes the Markov decision process model for UAV trajectory tracking
and describes the problem formulation of policy search in a non-model-based RL frame-

Machines 2022, 10, 496

40f18

work. Section 2.2 presents the proposed method. In this paper, the policy is the controller
learned by RL, which is updated after the learning iteration. Also, the policy formulation is
undertaken in conjunction with the state compensation.

2.1. Problem Formulation

Consider a UAV dynamic tracking system with state s € R® and system input a € R?,
given by
Ste1 = f(s,a) + o @

where f(s,a) is an unknown function and o; is a noise function. Model-free reinforce-
ment learning learns the dynamics f (s, a) by continuously updating {(s,a), s¢+1}, where
t represents the time steps recorded in all previous steps during training. The dataset is
continuously updated during learning, assuming that all states are measurable.

In reinforcement learning, a trajectory tracking Markov decision process (MDP) is
defined. The UAV tracking MDP consists of a tuple (S, A, P, R,), where:

S is a finite state set;

A is a finite behavior set;

P is the behavior-based state transition matrix in the set:

P = E[Rt+1|5t :S,At :a] (2)

SSt4+1

R is the state and behavior-based reward function:
R$ = E[Rs41(St =5, At = a] 3)

7 is a decay factor: vy € [0, 1].
According to the Bellman equation, two Bellman equations of the state-value function
v (s) and behavior-value function g, (s, a) based on the policy 7 are obtained:

0 (s) = E[Res1 + 70n(Se41) St = 9])

qr(s,a) = E[Rp1 + ¥4n(Sts1, Ar) [Se = 5, Ar = a ()

As we know, the value of an action is expressed in terms of the value of subsequent
states that the action can reach:

ge(s,a) =R+ Y, Ph . Y, 7(aria|sein)qn(seir, ar) (6)

5¢+1€S ap1€A

The purpose of reinforcement learning is to find an optimal policy that allows in-
dividuals to obtain more gains than other policies in the process of interacting with the
environment. This optimal policy is represented by 77*.

Here, given the current state s € S, predict the probability of taking the next action
a € A, and then obtain the prediction for the next state s;;1:

st1 = f(St =5, Ay = a|mp(s,a)) + ot @)

mte(s,a) = P[A; = a|S; = s, 6] 8)

where 71y is a policy function, 6 is the parameter of 77y, P[A; = a|S; = s, 0] represents the
probability of taking any possible action a2 under the setting of a given state s and certain
parameters 6. The Markov reward process is expressed as:

R =) mo(als)R¢ ©)

acA

In (7), the training input state is S = [s1,s2, - -, Sx), and the output action is A =
[a1,az, - - -,a,]. The purpose of the article is to design the objective function J(6), find the

Machines 2022, 10, 496

50f18

optimal parameters 6 through the gradient ascent method, and find the optimal policy 7*
to achieve accurate target tracking.

2.2. Proposed Policy

In a DDPG algorithm, the parameters of the policy are randomly initialized to small
values. In our experience, the DDPG algorithm is easily biased towards exploration, and
it takes an extremely long time to complete each learning process with random actions in
the early stage, making a minor or meaningless policy update. Since multiple iterations
of learning are unavoidable, it is inefficient to apply the pre-learning DDPG algorithm
in practice.

Let the policy of the original RL be 7tr;, and the proposed policy be 7tc_gy. Then, the
hybrid control policy is:

Tlc—RL = TRL + 7TC (10)

where 71¢ is the compensatory control policy.

The DDPG algorithm is a typical representative of algorithms commonly used in the
reinforcement learning problem in continuous action space. The proposed policy chooses to
combine the DDPG algorithm and the state compensation network. As the DDPG algorithm
is based on the Actor-critic algorithm, two hybrid algorithms, CQAC and CDDPG, are
discussed below.

2.2.1. DDPG Algorithm

The Actor-critic algorithm consists of a policy function and a behavior value function,
where the policy function acts as an actor, generating behavior and interacting with the
environment; the behavior value function acts as a critic, which is responsible for evaluating
the actor’s performance and guiding the actor’s follow-up actions. The QAC algorithm does
not require a complete state sequence, but since the introduced critic is still an approximate
value function, there is a possibility of introducing bias.

The DDPG algorithm is derived from the DQN algorithm, which is a typical rein-
forcement learning algorithm for solving continuous control problems. It is based on
the Actor-critic algorithm but is different from it, and it adds a noise function to the de-
terministic behavior in the learning process to realize small-scale behavior exploration.
Moreover, backup parameters are added to the actor network and the critic network as
the target network, respectively, so as to achieve a dual parameter setting and increase the
convergence probability (Figure 2).

Actor Net 4}0—><Critic Net>—> Q (S, a)
f ¥

TD-error

T

Target ‘ /" Target \ 1ot At
@’ Actor Net o \ Eriiicyg/) Q (S a)

Figure 2. Transformation process in DDPG algorithm.

The conversion process is outlined below: (1) The current state s generates specific
behavior a through the actor network; (2) The critic network calculates the behavior value
Q(s,a) corresponding to s and a; (3) The target actor network generates a’ used to estimate
the value according to the subsequent state s’ given by the environment; (4) The target critic
network generates the behavior value Q'(s’,a’) used to calculate the target value QTarget
according to s’, ’ and the reward R.

The task of the actor in the DDPG algorithm is to find the optimal behavior to max-
imize the value of the output behavior, where the reward obtained by executing a is R,
and this transformation process is stored as (s,a,R,s). After the system stores enough

Machines 2022, 10, 496 6 of 18

transformation process, it randomly selects X samples (s;, a;, Rj;1,si+1) for calculation,
wherei =1,2,---, X, the calculation process of the objective function Qrarget is [16]:

QTarget =Rjy1 + ')’Q/ (Sir Al (Si ‘BA,) |6Q,) (11)

The loss of the Critic network is TD-error (temporal-difference error):
1 0))?2
Loss = Y?(QTarget - Q(Sir aj |9)) (12)
Updating actor network using gradient ascent:

1
Vou) ~ 21 VaQ(5,169) [c—g,a=a(s Vor A (516%) I (13)
Update the target network:

769 + (1—1)09 — <9

: / 14
764 + (1 — 1) — 64 14

where 1 is the decay factor, 7 is the update rate parameter; 89 and 8 are the weights to
the Critic network value function Q(s,a|69) and the actor network A(s]64); 09" and 04’
are the weights to the target Critic network value function Q' (s, a 09") and the target actor
network A’ (s \9”).

2.2.2. CDDPG Algorithm

The state compensation network is added to DDPG algorithm to form a CDDPG
algorithm controller. The control policy of the hybrid controller 7tcpppg is:

meppre (0, w) = mpppc(0) + e (w) (15)

where 0 is the parameter of the DDPG control policy mpppg, w is the parameter of the
state compensation control policy mpppg. In this algorithm, all parameters are updated
iteratively, as 0 of mpppg is determined by the gradient ascent method and w of 7¢ is
determined by the gradient descent method.

Rewrite Equations (11) and (12) to get the following deduction equation.

Qrarger = Ri1 +7Q (51,4 (s: 167, 0)) (16)

1 c\)2
Loss = % Y (Qrarger — (Q(sivail62, w))) (17)
Therefore, the objective gradient function can be obtained.

Vel = %Z VQQ(S,LI |9Q> |s:si,a:C(si)vaC(s ‘wC) |5i

V] =Voa] + V] (18)

Aw = —&V]
! ! l
wC + Aw — wC€ (19)

Above formula, where ¢ is a learning rate of the state compensation network (C-Net)
C(s|w®); wC is the weight to C-Net; w® is the weight to the target state compensation
network (TC-Net) C’ (s |wcl). Figure 3 and Algorithm 1 outlines the proposed algorithm,
where J, and J,/ are the compensated actions calculated by C-Net and TC-Net.

Machines 2022, 10, 496 7 of 18

Experience
Replay Pool
Store t LSample
r—-— - - —-"—"—"—— — — — _____________I
I Environmental S’ |
I S Interaction |
I A
| v :
| R Target
| Actor Net ey |
| |
o, +
I
A

| I
| I
| I

Critic Net

Network
Parameter |
Update | , I
3 | QCDDPG |
Policy |

Gradient > |
A 4 | v |
| |

» . &
Qcoors » TD-error € Q, |
L — — — —]

Figure 3. CDDPG algorithm schematic diagram.

Algorithm 1: CDDPG Algorithm

Input: v,q,s,GQ,GA,wC
Output: optimized 62, 04, w®
randomly initialize Q (s, [69), A(s|64), C(s
initialize target network Q’ (s, a |9Q/), Al(s]
W€ — W€
initialize the experience cache space T’
for episode from 1 to Limit do
Initialize a noise function and receive the initial state
fort=1to T do
Perform action a; = A(s; |6A) +C(st |wc) + Oy, get reward Ry
next state s; 1, store transition (st,as, Ry1+1,5¢4+1) in T
sample a batch of random X transition (si,ui, Rii1, 5i+1) inT,
wherei =10,1,2,--- X
set target value function via equation (16)
update critic by minimizing the loss via equation (17)
update actor policy by policy gradient via equation (18)
update networks via equation (14), (19)
end for
end for

|w®) with weights 62, 64, w©
64'), ' (s1w®) with weights 09+ 62, 04’ « 04,

The above is the inference of the CDDPG algorithm based on the DDPG algorithm, but
the above logic analysis is also applicable to the QAC algorithm, and the QAC algorithm
combined with the state compensation network is recorded as CQAC in the same way. We
compare the performance of using the QAC and DDPG algorithm with the CQAC and
CDDPG algorithm in the third section.

Machines 2022, 10, 496

8 of 18

3. Simulations and Results Discussion
The algorithm is solved with the UAV position and velocity parameters s =

[Pxs Pys Pz Py ;by, ;'oz]T known. Assuming that the attitude control is stable, this paper
focuses on the driving force control of the UAV in three-dimensional space of the Cartesian
coordinate system.

In the algorithm simulations, the current state feature (p X Pys Pzr Prs py, pz) of the UAV

and the following target position (tx, ty, tz) are used as the state input of the algorithmic
framework algorithm, and its drive acceleration (ax, ay, az) in the X, Y and Z directions of
the three-dimensional space is used as the output. The learning process is to repeat the
policy function solution process. During the trajectory tracking process, the measurement
and control system will transmit the current position information, speed information and
coordinate data of the following target to the UAV in each time step, and at the same time
determine the reward value. The larger the following error, the lower the reward value,
and the maximum reward value is zero.

3.1. Training Framework and Results

In CDDPG, the critic network evaluates the value of the UAV in the current state to
guide the policy generation action, and the actor network is responsible for generating
specific actions according to the current state. The input accepted by the critic network is
the number of features observed by the UAV and the number of features of the action, and
the output is the value of the state-action. Considering the need of the UAV for feature
extraction of the observed state, we design a total of 3 hidden layers in critic. Since the
number of elements in the input layer is the sum of the number of state elements and the
number of behavior elements, the number of hidden layers is determined by the effect
and delay of the algorithm. If the number of hidden layers is too large, the delay of the
algorithm will be higher, and if the number of hidden layers is too small, the accuracy of
the algorithm will be reduced, and the effect will be worse. Taking the above factors into
consideration, the input of the critique network designed in this paper contains nine states
and three actions, and the output is a Q value. After several simulations, to maintain a
good training effect without too much delay, the hidden layer in this paper is set to three
layers. The hidden layer that processes the state and the action is operated separately first,
and is fully connected through the last hidden layer, and then outputs the state-action value
together. The input to the actor network is the state observed by the UAV, and the output is
the action the UAV will perform. The actor network is designed with a total of the hidden
layers, and the layers are fully connected. The architecture of this network is shown in
Figure 4. In order to realize the exploration, the algorithm adopts the Ornstein-Uhlenbeck
process as the noise model, and adds a random noise on the basis of the generated action
so that it can realize a certain range of exploration around the exact action.

In the compensation simulation, the method performed is to train C-Net with a neural
network and optimize the network with its tracking average error as the objective function.
The input of the network is the state after the UAV performs the action, and the output
is the target difference, which will be weighted into the output action to interact with the
environment. The C-Net is designed with a total of three hidden layers, and the layers
are fully connected (Figure 5). After this neural network is embedded in the controller,
trajectory tracking training is performed.

In the simulation, the tracking accuracy is set as r, that is, if the UAV is located within
the range of the tracking target as the center and within the radius of 7, it is a successful
follower, and a larger reward can be obtained. The simulation is carried out using a deep
reinforcement learning framework incorporating a state compensation network. The pro-
posed method is simulated with OpenAI Gym, and the simulated computer configuration
is an Intel(R) Core(TM) i5-7300HQ. The UAV flight range is a three-dimensional space of
10 x 10 x 10 (m). Taking the tracking accuracy r as 0.3 m, the proposed method is used to

Machines 2022, 10, 496

90f18

simulate and analyze the control policy of the data model after basic experience learning,
and each successful follow-up is regarded as an episode.

CDDPG

128 Neuron Nodes 128 Neuron Nodes| Vs 256 Neuron Nodes

(0000-0000) (0000-000 o}JIQNet/\OO OOO{OOO 00)
A

256 Neuron Nodes|
(00000-00000) (0 @ @)«
h

Action Position Velocity Target

\
A

| 7

Historical Data

(00 0O @ 0 @ 0 0 O)state

State Deviation

Y

:\ Historical Status

1% Layer 2" Layer 3" ayer 4™ Layer 5™ Layer
(input layer in) (hidden layer h) (hidden layer h) (hidden layer h) (output layer out)

Figure 5. Compensation network architecture.

Four algorithms, QAC, DDPG, CQAC, and CDDPG, are used to follow the training
of target points. As we know, a complete episode contains multiple iteration steps, and
the reward after each iteration step is the negative value of the linear distance between
the tracking point and the target point. The episode reward is defined as the sum of
the rewards for all iterations in a complete episode. The learning weights are set to
v =0.999, = ¢ = 0.001 and simulated.

After 1000 episodes are completed, all training models are saved to prepare for subse-
quent effect verification. Figure 6 shows the episode rewards after 1000 episodes. It shows

Machines 2022, 10, 496 10 of 18

that from the 11th episode, the rewards after that are all close to zero, but judging from
the previous episodes rewards, the CQAC algorithm and CDDPG algorithm during the
training process have increased significantly compared to QAC and DDPG. It can also
be seen from the curve of the iteration steps experienced by each episode in Figure 7. In
the early stage of training, the QAC and DDPG algorithms have to go through tens of
thousands of iterations for each complete episode, while the iteration steps required by
CQAC and CDDPG is only 30% of the original algorithm. Since the calculated time cost of
the four algorithms are basically the same (about 0.998 milliseconds, Figure 8) under the
same computer configuration, it fully shows that the training time is improved by about
70% with the same training accuracy. The same conclusion can also be confirmed by the

comparison of total iterations of the four algorithms (Figure 9).

1x10°
0. 00 (--- QAC
AU " — CWAC
0.25) VA DDPG
" ; i —— CDDPG
wn 1 (]
T 0.501 1 50,000 i
© 1
= 0.75 : -100000 !}
= 1 |
i !
2 1 i
=1.00 1 -150,000 1
= 1 i
] 1
o=] 1
1251 -200,000 !
I 5 10 [E
I
.50 !
0 200 400 600 800 1000
Episodes
Figure 6. Training episode rewards of four algorithms.
: 12,000 '} —-== QAC
25,000 ! ool — CaAC
! i DDPG
R000 1
20,000 ' \: — CDDPG
1 6000 |:
1 i
» '
515,000 : 20000
& ‘% 2000 :
10,000 |} , w
0 20 10
5000
0 . P bttt "
0 200 400 600 800 1000
Episodes
Figure 7. Training steps of four algorithms.
1. 0001 | — QAC
— CQAC
0.9991 | —— DDPG

. 9981 |

9975y

. 9961

Running Time (ms)

0. 995{

0. 994

10

20

30
Time (s)

10

—— CDDPG |

50 60

Figure 8. Calculate time cost of each single iteration step.

Machines 2022, 10, 496

110f18

-== QAC

''''' — RAC
150,000 et - DDPG
% e —— CDDPG
5 Pt and
£100,000 | —
3 -~
< <
£50,000 { | ——
]
]
o 1
0 200 400 600 800 1000
Episodes

Figure 9. Total iterations of four algorithms.

3.2. Trajectory Tracking Simulation

To verify the dynamic tracking effect of the above training model, we designed a
simulation experiment to track the target point as accurately as possible to complete the
spiral trajectory motion in the Cartesian coordinate system. In this simulation, the target
point moves at a constant speed to complete the preset trajectory tracking task. Since it
has an angular velocity of 71/15 rad/s in the X-Y plane and a rising velocity of 7r/30 m/s
in the Z-axis, it is designed to complete two turns of helical motion with a radius of 3 m
and a pitch of 77 m in space. It takes 60 s to complete that trajectory tracking. Through the
adoption of four algorithm models, Figures 10-13 shows the tracking trajectories of the
four algorithms in three-dimensional space and the tracking trajectories in the X, Y, and
Z directions. Visually, the tracked trajectories under the CQAC and CDDPG algorithms
are closer to the reference trajectories than those under the QAC and DDPG algorithms. In
order to further clarify the superiority of the proposed algorithm, we conducted further
analysis of the specific tracking error data.

— QAC

— (QAC
—— DDPG
—— (DDPG
— reference
8
7
6
5 S
-
2 3
3 Start
4 9
+ 5
%)

4 y 5(\\0

oo
(S

Figure 10. Spiral trajectory tracking curve of four algorithms.

Machines 2022, 10, 496 12 of 18

81 —— OAC
—_— CQAC
7] -~ DDPG
— CDDPG
61 —— reference
5.

e

X Position {(m)

o

0 10 20 30 40 a0 60
Time (s)

Figure 11. Tracking track of X position.

-== QAC
31 — QAC
7 -—= DDPG
_ — CDDPG
E6] —— reference
Ss
L4
- U
3 k P A
N
21 "':I’
0 10 20 30 40 50 60

Timi:' (s)

Figure 12. Tracking track of Y position.

Figure 14a plots the comprehensive tracking errors under each algorithm, and
Figure 14b—d plot the tracking errors in the directions of three coordinate axes. The tracking
error is then quantified and analyzed by the plot of simulation data. It can be seen from
Figure 14 that the comprehensive tracking in the simulation is relatively stable. Since the
tracking accuracy is set to 0.3 m during model training, the comprehensive tracking error
of the QAC and DDPG algorithms in the figure basically fluctuates around 0.3 m, while the
CQAC and CDDPG algorithms basically fluctuate around 0.15 m. Comparing the tracking
error curves in the directions of the three coordinate axes, the tracking errors of the CQAC

Machines 2022, 10, 496 13 of 18

and CDDPG algorithms are reduced to half of the original QAC and DDPG,; the error
fluctuation range is also greatly reduced, and the error trend is more stable compared with
the original algorithm. Obviously, due to the addition of the compensation network, the
tracking accuracy and convergence stability of the proposed method have been effectively
improved; under the same training time, the stable tracking error of the proposed method
is reduced by about 50% compared with the original algorithm. It shows that the compen-
sation network added to the controller produces more active control to reduce the position
error and improve the follow-up effect during the UAV flight.

8 === QAC
CQAC
7 DDPG
CDDPG
g reference
s
[
~d
3
2

0 10 20 30 40 50 60
Time (s)

Figure 13. Tracking track of Z position.

== QAC pr i QAC

—_— QAT Ll ;] —— oqac
08 DOFG 0.4 i.-' \ I DDPG
—_— CDDPG h A1 ! —CDDPG

5 0 20 50 i0 =0 &0 0 10 20 N 10 50 6
Time (s) Time (s)

(a) (b)

=== QAC

—_—

DDPG
);"w\\ — (DG

0 10 20 30 {0 50 60

(c) (d)

Figure 14. (a) Composite tracking error of four algorithms; (b) X-direction tracking error of four algo-
rithms; (c) Y-direction tracking error of four algorithms; (d) Z-direction tracking error of four algorithms.

Through the above simulation process, the tracking speed and its errors during track-
ing are discussed. Figure 15 plots the comparison of the tracking speed and its error in
three directions during the tracking process. According to the simulation settings, the
target point performs a uniform circular motion on the X-Y plane and a uniform upward
motion on the Z axis. That is to say, the speed along the X and Y axes conforms to the

Machines 2022, 10, 496

14 0f 18

s)

wed (m/s)

s

X-speed (m,

10

0

20

law of trigonometric functions, which belongs to the variable acceleration motion. We can
see from the comparison of the tracking speed in each axis direction that the speed in the
tracking process is basically consistent with the reference speed, and the speed error is not
much different. It can be seen from the above discussion that, the size of the tracking error
can better represent the quality of the tracking effect.

QAL === QAL
CQAC 0.2 — AT
PG R 3 DOFG
CODrG - o DG
reference | 800 ViINY T
- \.‘
\ Eos
;'::. 4
Z
<
0.6
. || 0.8 I . .
30 a0 50 60 0 10 20 30 40 50 60
Time (s} Time (s)
(a) (b)
== 0.5¢ -—= QAC
—_— QAr g COAC
DOPG 0.0 S
— G i — TG
— relerence -
= 0.5
st
=-1.0
=-1.5
-2.0
30 a0 0 60 0 10 20 B 10 A0 i)
Time (s) Time ()
(c) (d)
0.1 —-—— AL
—_ AT
_ PG
i 0.2 | — DG
£ 0.0
0.2
~
o4
e 0 50 0 0 10 20 30 40 50 i)
Time (s} Time (s)
(e) ®

Figure 15. (a) X-direction tracking speed of four algorithms; (b) X-direction velocity error of four algo-
rithms; (c) Y-direction tracking speed of four algorithms; (d) Y-direction velocity error of four algorithms;
(e) Z-direction tracking speed of four algorithms; (f) Z-direction velocity error of four algorithms.

In order to determine the effect of Z-axis uniform acceleration motion on the simulation
effect, the following simulation adds an acceleration constant (0.033 m/s?) along the Z axis
based on the above simulation conditions. The target point does a half-circle helical motion
(Figure 16), and its comprehensive error (Figure 17) and position error (Figure 18) on Z axis
are observed, then the stability of each algorithm is analyzed.

Machines 2022, 10, 496 15 0f 18

— MAC

— (QAC
DDPG
— CDDPG

reference

Figure 16. Spiral trajectory tracking of uniform acceleration.

1. 07

-—= QC
— (QAC
~== DDPG

—~ 0, 81 |
2] \ — CDDPG
1
] \
B o .
& 0. 64 \
@ \
20.4
0.2
0 2 1 6 8 10 12 14
Time (s)

Figure 17. Compisite tracking error of uniform acceleration.

4. 50
7 4. 25 ’{’: —-—— QAC
= — cAC
6 14.00 = — =~ DDPG
oo —— CDDPG
E ref
'_‘5 relerence
=
w4
a
~N
3
2
0 2 4 6 8 10 12 14

Time (s)

Figure 18. Position trajectory in the Z-axis direction under uniform acceleration.

Machines 2022, 10, 496

16 of 18

After analysis, the simulation results are consistent with the previous results. The
proposed algorithm still maintains good tracking characteristics, and uniform acceleration
in the z-axis direction does not affect the following effect, which also proves that the
proposed algorithm always has good accuracy and stability.

By comparing the simulation results of trajectory tracking, it is found that the tracking
effect and error of the CDDPG algorithm are better than those of the DDPG algorithm. The
designed hybrid controller for trajectory tracking based on CDDPG overcomes the disad-
vantage that it is difficult to form high-quality behaviors in a short time in reinforcement
learning. It not only shortens the learning iteration period, but also solves the problem of
large tracking error, which not only speeds up the convergence speed, but also has good
convergence stability.

4. Conclusions

Reinforcement learning may require a series of iterative processes in the learning
process, and the long initial policy training period results in a large amount of training
time for controller development. This paper designs a CDDPG algorithm based on deep
reinforcement learning to speed up training time, improve learning efficiency, and stabilize
the balance between exploration and utilization. Aiming at the UAV trajectory tracking
control problem of the model unknown system, a compensation control algorithm com-
bined with RL is proposed. The simulation results show that: (1) The training efficiency
can be significantly improved by adding a compensation network, and the accuracy and
convergence stability are also effectively improved; (2) Under the same configuration, the
computational cost of the algorithm in this paper is basically the same as that of the DDPG
algorithm; (3) The training time is about 70% lower than that of QAC and DDPG; (4) The
tracking error is about 50% lower than QAC and DDPG. The above factors are better than
model-free reinforcement learning algorithms represented by the DDPG algorithm. It
breaks the traditional idea of using reinforcement learning to adjust or optimize system pa-
rameters, and embeds the compensation network into the reinforcement learning method,
which is also the innovation of this paper.

The work in this paper is a simulation performed under ideal conditions, confining
the movement of the UAV to the same space, and does not involve the attitude stability
and anti-jamming capability of the aircraft. In further studies, the above problems will be
considered, comprehensive simulation will be carried out, real machine experiments will
be increased as much as possible, and in-depth research will be carried out in real scenarios.

Author Contributions: Conceptualization,].W. and Z.Y.; methodology,].W.; software,].W.; valida-
tion, N.H., L.L. and Z.W.,; formal analysis,].W.; investigation, C.W. and]J.W.; resources, Z.Y.; data
curation, J.W.; writing—original draft preparation, J.W.; writing—review and editing,] W. and Z.Y.;
visualization, J.W.; supervision, Z.Y.; project administration, Z.Y.; funding acquisition, Z.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Guizhou Provincial Science and Technology Projects, grant
number Guizhou-Sci-Co-Supp[2020]2Y044. The authors fully appreciate their financial supports.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewers for their constructive comments
and suggestions that may help improve this paper.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Machines 2022, 10, 496 17 of 18

References

1. Hwangbo,].; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for
legged robots. Sci. Robot. 2019, 4, eaau5872. [CrossRef] [PubMed]

2. Xie, Z,; Berseth, G.; Clary, P; Hurst, J.; Panne, M. Feedback control for cassie with deep reinforcement learning. In Proceedings
of the 2018 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1-5 October 2018;
pp- 1241-1246.

3. Chen, YM.; He, Y.L.; Zhou, M.F. Decentralized PID neural network control for a UAV helicopter subjected to wind disturbance.
J. Cent. South Univ. 2015, 22, 168-179. [CrossRef]

4. Xu, Y; Li, X.; Yang, K.; Yang, Y. Design of UAV UAV control system based on deep learning. Comput. Meas. Control 2020,
28,123-155.

5. Mnih, V.; Kavukcuoglu, K,; Silver, D.; Rusu, A.A.; Veness,].; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K,;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529-533. [CrossRef] [PubMed]

6. Efe, M.O. Neural network assisted computationally simple pid control of a UAV uav. IEEE Trans. Ind. Inform. 2011, 7, 354-361.
[CrossRef]

7. Smart, W.D.; Kaelbling, L.P. Reinforcement learning for robot control. Proc. SPIE 2002, 4573, 92-103.

8. Li, Z,; Chen, X,; Xie, M.; Zhao, Z. Adaptive fault-tolerant tracking control of flying-wing unmanned aerial vehicle with system
input saturation and state constraints. Trans. Inst. Meas. Control 2021, 44, 880-891. [CrossRef]

9. Millan-Arias, C.; Fernandes, B.; Cruz, E; Dazeley, R.; Fernandes, S. A robust approach for continuous interactive Actor-critic
algorithms. IEEE Access 2021, 9, 104242-104260. [CrossRef]

10. Iwata, T.; Shibuya, T. Adaptive modular reinforcement learning for robot controlled in multiple environments. IEEE Access 2021,
9, 103032-103043. [CrossRef]

11. Wang, M.; Zeng, B.; Wang, Q. Research on Motion Planning Based on Flocking Control and Reinforcement Learning for
Multi-Robot Systems. Machines 2021, 9, 77. [CrossRef]

12. Yeh, Y.L.; Yang, PK. Design and Comparison of Reinforcement-Learning-Based Time-Varying PID Controllers with Gain-
Scheduled Actions. Machines 2021, 9, 319. [CrossRef]

13. Wada, D.; Araujo-Estrada, S.A.; Windsor, S. Unmanned Aerial Vehicle Pitch Control Using Deep Reinforcement Learning with
Discrete Actions in Wind Tunnel Test. Aerospace 2021, 8, 18. [CrossRef]

14. Peters, J.; Schaal, S. Policy Gradient Methods for Robotics. In Proceedings of the 2006 IEEE /RS] International Conference on
Intelligent Robots and Systems, Beijing, China, 9-15 October 2006; pp. 2219-2225.

15. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings
of the 31st International Conference on Machine Learning (ICML-14), Beijing, China, 21-26 June 2014; pp. 387-395.

16. Lillicrap, T.P; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

17. Kiumarsi, B.; Lewis, EL. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems. IEEE Trans
Neural Netw Learn. Syst. 2015, 26, 140-151. [CrossRef]

18. Gan, Z,; Li, B.; Neretin, E.S.; Dyachenko, S.A. UAV Maneuvering Target Tracking based on Deep Reinforcement Learning. J. Phys.
Conf. Ser. 2021, 1958, 012015. [CrossRef]

19. Chen, C,; Modares, H.; Xie, K.; Lewis, F.L.; Wan, Y.; Xie, S. H-infinity Tracking Control of Completely Unknown Continuous-Time
Systems via Off-Policy Reinforcement Learning. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2550-2562.

20. Ye, L. Li,J.; Wang, C.; Liu, H.; Liang, B. Reinforcement Learning Tracking Control for Unknown Continuous Dynamic Systems.
In Proceedings of the 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS'21), Suzhou, China, 14-16
May 2021.

21. Luy, N.T,; Thanh, N.T.; Tri, H.M. Reinforcement learning-based intelligent tracking control for wheeled mobile robot. Trans. Inst.
Meas. Control 2014, 36, 868-877. [CrossRef]

22. Wang, G.F; Fang, Z.; Li, P; Li, B. Transferring knowledge from human-demonstration trajectories to reinforcement learning.
Trans. Inst. Meas. Control 2016, 40, 94-101. [CrossRef]

23. Levine, S.; Pastor, P; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning Hand-Eye Coordination for Robotic Grasping with Deep
Learning and Large-Scale Data Collection. Int.]. Robot. Res. 2017, 37, 421-436. [CrossRef]

24. Hwangbo, J; Sa, I; Siegwart, R.; Hutter, M. Control of a UAV With Reinforcement Learning. IEEE Robot. Autom. Lett. 2017,
2,2096-2103. [CrossRef]

25. William, K. Flight Controller Synthesis via Deep Reinforcement Learning. Ph.D. Dissertation, Boston University, Boston, MA,
USA, 2019.

26. Rubi, B.; Morcego, B.; Pérez, R. A Deep Reinforcement Learning Approach for Path Following on a UAV. In Proceedings of the
European Control Conference (ECC 2020), Petersburg, VA, USA, 12-15 May 2020.

27. Qingqing, Z.; Renjie, T.; Siyuan, G.; Weizhong, Z. A PID Gain Adjustment Scheme Based on Reinforcement Learning Algorithm
for a UAV. In Proceedings of the 39th Chinese Control Conference (CCC), Shenyang, China, 27-29 July 2020.

28. Zhen, Y.; Hao, M. Research on Intelligent PID Control Method Based on Deep Reinforcement Learning. Tactical Missile Technol.

2019, 5, 3743.

http://doi.org/10.1126/scirobotics.aau5872
http://www.ncbi.nlm.nih.gov/pubmed/33137755
http://doi.org/10.1007/s11771-015-2507-9
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1109/TII.2011.2123906
http://doi.org/10.1177/01423312211027037
http://doi.org/10.1109/ACCESS.2021.3099071
http://doi.org/10.1109/ACCESS.2021.3070704
http://doi.org/10.3390/machines9040077
http://doi.org/10.3390/machines9120319
http://doi.org/10.3390/aerospace8010018
http://doi.org/10.1109/TNNLS.2014.2358227
http://doi.org/10.1088/1742-6596/1958/1/012015
http://doi.org/10.1177/0142331213509828
http://doi.org/10.1177/0142331216649655
http://doi.org/10.1177/0278364917710318
http://doi.org/10.1109/LRA.2017.2720851

Machines 2022, 10, 496 18 of 18

29. Zhen, Y,; Yuan, J.; Chi, Q.; Hao, M. Research on Application of Deep Reinforcement Learning Method in Aircraft Control.
Tactical Missile Technol. 2020, 4, 112-118.

30. Levine, S.; Koltun, V. Learning Complex Neural Network Policies with Trajectory Optimization. In Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014.

31. Yang, B; Liu, P; Feng, J.; Li, S. Two-Stage Pursuit Strategy for Incomplete-Information Impulsive Space Pursuit-Evasion Mission
Using Reinforcement Learning. Aerospace 2021, 8, 299. [CrossRef]

http://doi.org/10.3390/aerospace8100299

	Introduction
	Models and Methods
	Problem Formulation
	Proposed Policy
	DDPG Algorithm
	CDDPG Algorithm

	Simulations and Results Discussion
	Training Framework and Results
	Trajectory Tracking Simulation

	Conclusions
	References

