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Abstract

:

Job shop scheduling problem (JSSP) is essential in the production, which can significantly improve production efficiency. Dynamic events such as machine breakdown and job rework frequently occur in smart manufacturing, making the dynamic job shop scheduling problem (DJSSP) methods urgently needed. Existing rule-based and meta-heuristic methods cannot cope with dynamic events in DJSSPs of different sizes in real time. This paper proposes an end-to-end transformer-based deep learning method named spatial pyramid pooling-based transformer (SPP-Transformer), which shows strong generalizability and can be applied to different-sized DJSSPs. The feature extraction module extracts the production environment features that are further compressed into fixed-length vectors by the feature compression module. Then, the action selection module selects the simple priority rule in real time. The experimental results show that the makespan of SPP-Transformer is 11.67% smaller than the average makespan of dispatching rules, meta-heuristic methods, and RL methods, proving that SPP-Transformer realizes effective dynamic scheduling without training different models for different DJSSPs. To the best of our knowledge, SPP-Transformer is the first application of an end-to-end transformer in DJSSP, which not only improves the productivity of industrial scheduling but also provides a paradigm for future research on deep learning in DJSSP.
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1. Introduction


Smart manufacturing is an emerging concept with the development of Internet of Things technology [1], and scheduling plays a vital role in smart manufacturing since effective scheduling can improve profitability and resource utilization in the production [2]. Job shop scheduling problem (JSSP) is a classical scheduling problem in manufacturing, which is an NP-hard combinatorial optimization problem [3] that aims to find the optimal solution to production scheduling given a set of jobs, each with multiple operations processed by different machines. Most JSSP methods assume that the production environment is static, and the states of the production environment are known in advance. However, these JSSP methods have to reschedule the jobs when dynamic events such as machine breakdown and the insertion of new jobs occur in the production environment, causing the initial scheduling plans to be invalid. The extension of JSSP considering such dynamic events is called dynamic job shop scheduling problem (DJSSP), which effectively solved can better boost the productivity in the actual manufacturing.



DJSSP has been widely studied, and various methods are proposed. Dispatching rules are preferred in the production due to their simpler, easier implementation, and low computational complexity [4]. However, real-time selection of dispatching rules for scheduling is crucial because performances of different dispatching rules vary significantly in different DJSSPs. Simple priority rules are a kind of dispatching rule that uses a single job or shop feature to prioritise jobs and process the job with the highest priority first. Human operators select simple priority rules based on their own experience in the production, which does not guarantee that the rules are optimal at each step. Moreover, selecting simple priority rules is intractable for human operators, failing to realize real-time scheduling. And using only one simple priority rule to schedule the jobs at each step is irrational since DJSSP often requires considering multi objects that cannot be achieved using a simple priority rule. Thus, two types of composite dispatching rules are proposed, which combine good features of different simple priority rules [5]. One is to deploy different simple priority rules on different machines; the other is to combine different simple priority rules to form a new dispatching rule using some operators such as addition, subtraction, multiplication, and division. But designing a stable composite dispatching rule is hard since different ways to combine the simple priority rules significantly affect the performance of the composite dispatching rule [6].



Meta-heuristic algorithm has been proven competitive in solving DJSSP. The most used ones in DJSSP are evolutionary algorithms (EAs) and swarm-based algorithms. EAs are algorithms inspired by biological evolution, which mimic the mechanism of biological evolution to generate better solutions, such as genetic algorithm (GA) [7] and differential evolutionary (DE) algorithm [8]. Whereas swarm-based algorithms mimic the behaviour of animal groups such as fish, birds, and wolf packs in nature and use the information exchange between groups to achieve optimization through simple and limited interactions between individuals, such as grey wolf optimizer (GWO) [9], ant colony optimization [10], and particle swarm optimization [11]. Although meta-heuristic algorithms can yield high-quality solutions, they often require massive iterations to get the optimal or near-optimal solution, and the parameters of the meta-heuristic algorithms are set empirically. Furthermore, meta-heuristic algorithms need to reschedule the jobs when dynamic events occur in the production environment, but rescheduling the jobs is impractical.



Reinforcement learning (RL) has been considered a powerful method for solving combinatorial optimization problems [12] and has been successfully used in various fields like AlphaGo wins the go game against one of the top human players [13], and AlphaFold predicts the protein structure with great accuracy [14]. The main component in RL is called agent, which takes actions to obtain maximum cumulative reward through interactions with the environment like a human being. Since the fast computation and ability to cope with dynamic events of RL [15], RL has achieved outstanding success in solving DJSSP. Q-learning is a classic algorithm of RL which chooses the action with the highest Q-value stored in the Q table. Q-learning not only improves multi-objective performance in JSSP but also effectively responds to dynamic events [16]. Considering that the Q table may become too large as the DJSSP size increases, causing the massive memory occupied and long computation time, deep reinforcement learning has been proposed. Deep reinforcement learning is also known as Deep Q-Network (DQN) and outperforms the popular dispatching rules in solving DJSSP [17]. Other RL methods such as proximal policy optimization (PPO) [18] and deep deterministic policy gradient [19] are also used in solving DJSSP and achieve great success. However, researchers have experimentally found that the optimal policy obtained by the RL agent is deterministic, but the observability of the unseen instance is partial. Thus RL models tend to generalize poorly [20], resulting in the models trained on a fixed-size instance can not cope with instances of different sizes.



Deep learning is a kind of representation-learning method in artificial intelligence, which contains a deeper network structure, helping it extract more accurate feature representation and map the feature representation with a particular output. Deep learning methods can generalize well on the unseen problem, and some researchers have successfully used deep learning to solve DJSSP. Weckman et al. [21] combine a multi-layer artificial neural network (ANN) with Giffler–Thomson (GT) algorithm to build a neural network scheduler, which can schedule the operations in real time. The ANN takes the real-time features related to the production environment as input and output the priorities of each operation. The priorities of each operation are further processed using GT algorithm to get a scheduling plan that can deal with dynamic events. Sim et al. [22] further optimize the neural network scheduler, and they consider that the priorities of different operations output by the ANN might be the same for the same machine, causing the operations with the same priorities to be arbitrarily scheduled, so they propose to use dispatching rules to schedule the operations with the same priorities, but the GT algorithm is still needed to process the priorities of other operations to get a scheduling plan, failing to realize an end-to-end scheduling method. Zang et al. [23] design a hybrid deep neural network scheduler (HDNNS) combined with the two-dimensional convolution neural network (CNN), which can also extract the features of the production environment and output the priorities of each operation. But the ability to cope with dynamic events of HDNNS is not tested, and the CNN overlooks some critical features with time steps in the environment, which makes the performance of HDNNS still not satisfactory. Tian et al. [24] use the long short-term memory network (LSTM) that can retain the features with time steps to predict the production information and use the improved GA to achieve the scheduling. Shao et al. [25] also build a model based on LSTM named self-supervised long-short term memory (SS-LSTM), which can deal with dynamic events effectively, but the hyperparameters in SS-LSTM are difficult to determine. All the above-mentioned deep learning models either need one module to preprocess the input of the neural network or use other modules to process the output of the neural network to get the final scheduling plan, which may aggravate the errors between each module and lead to the suboptimal scheduling plan.



DJSSP can be viewed as a time series forecasting problem [26], and transformer is a deep learning-based method that is widely used for time-series forecasting [27]. Moreover, transformer with attention mechanism is a frontier model and some studies successfully use attention mechanism to solve JSSP. For example, Magalhães et al. [28] build a neural network with attention mechanism to solve dual resource constrained flexible job shop scheduling problem, Yang [29] utilizes attention mechanism to extract the representation of the production environment, and Chen et al. [30] use attention mechanism to allocate the processing resources to the more significant parts when solving the JSSP of large size. Most JSSP methods based on attention mechanism use attention mechanism to extract the features of the production environment, but there is no work to use the transformer based on attention mechanism to solve JSSP directly. In this paper, we build an end-to-end transformer-based deep learning model named spatial pyramid pooling-based transformer (SPP-Transformer) to solve different-sized DJSSPs. The disjunctive graph, which can represent the production environment features with time information [31], is adopted as the input of SPP-Transformer. SPP-Transformer utilizes a feature extraction module to extract the features in the disjunctive graph [32] and transforms them into vectors of different sizes. Then, a feature compression module compresses the different-sized feature vectors into fixed-length vectors. The fixed-length vectors are further input to the action selection module to select a simple priority rule. To the best of our knowledge, SPP-Transformer is the first work purely using a transformer-based model to solve DJSSP and achieve satisfactory results, providing a paradigm for further studies on deep learning in DJSSP. The contributions of this work are as follows:




	
An end-to-end transformer-based method is proposed, which takes the disjunctive graph as input and outputs the simple priority rule that can directly be applied in the production, providing a total data-driven method to solve DJSSP.



	
A feature compression module that contains a spatial pyramid pooling (SPP) [33] layer is presented to enhance the generalizability of the proposed model. The feature compression module enables the proposed model to be applied to DJSSP instances of different sizes and be trained on the various-sized instances represented by the disjunctive graph. Thus, there is no need to train the model instance-by-instance.



	
A sequence-to-action model that effectively deal with dynamic events is presented. Different from the conventional sequence-to-sequence deep learning models, the proposed sequence-to-action deep learning model reacts to the environment at each step according to the real-time states of the production environment. Thus, dynamic events that happen at an uncertain step can be well tackled without extra measures.








The rest of this paper is organized as follows: Section 2 introduces the DJSSP with dynamic events such as machine breakdown and job rework, including the mathematical model and constraint conditions. Section 3 presents the whole structure of SPP-Transformer and gives the training details. Section 4 compares the performance of SPP-Transformer with exiting methods. Section 5 draws the conclusions finally.




2. Materials and Methods


2.1. Problem Description


The JSSP refers to allocating n jobs on m machines in a limited number of resources to optimize one or more objects, such as minimizing the makespan or achieving lower production costs. And DJSSP is an extension of JSSP, which considers the dynamic events that occur unexpectedly in the production and is more common than JSSP in the actual production. DJSSP can be described as follows: There are n jobs   J =   J 1  ,  J 2  , … ,  J n     arrive at the shop successively, which will be processed on m machines   M =   M 1  ,  M 2  , … ,  M m    . Each job   J i   consists of multiple operations   O =   O  i 1   ,  O  i 2   , … ,  O  i j   , …   .   O  i j    is the   j t h   operation of job   J i  , and it can only be processed on a specific machine. The dynamic events that may happen in the production are various, including machine breakdown, the insertion of new jobs, the change of the delivery dates and the processing time and job rework, etc. [34]. And DJSSP should satisfy the assumptions followed:




	(1)

	
Each machine can only process one operation at the same time;




	(2)

	
An operation is processed by only one machine at a time;




	(3)

	
All jobs and machines are available at time 0;




	(4)

	
An operation can not be interrupted if it has started unless machine breakdown;




	(5)

	
The processing time of each operation may change during machining;




	(6)

	
An operation cannot be processed until its preceding operations are completed.









In this paper, the dynamic events we considered include machine breakdown and job rework. We change the processing time and the machine order of job   J 1   randomly to simulate machine breakdown or job rework. However, the number of machines and operations needed by   J 1   are immutable. For simplicity, we only increase the processing time of the operation to represent machine breakdown and switch the machine order of the job to represent job rework. We use the parameter Switch to disorder the machine order to represent job rework. If   S w i t c h   is “True”, the machine order of the job is disordered. Moreover, we set a random rate f to represent the probability of machine breakdown, and the new processing time   p  i j  ′   of operation   O  i j    caused by machine breakdown is calculated as follows:


   p  i j  ′  =        p  i j   + min  ( 1 , max  ( − 1 , N  ( 0 , 0.1 )  )  )  ·  p  i j    ,     r < f        p  i j   ,     r > f       



(1)




where   p  i j    is the original processing time of operation   O  i j   ,   r ∈ [ 0 , 1 ]   is a random number, and   f ∈ [ 0 , 1 ]   is a hyperparameter.   N ( 0 , 0.1 )   is a normal distribution with mean 3 and variance 1.



SPP-Transformer is a sequence-to-action model and schedules the jobs at each step using the feature sequences from the disjunctive graph, which will change according to the production environment. And SPP-Transformer deals with dynamic events by taking actions depending on the input disjunctive graph without changing the scheduling procedure when dynamic events occur.




2.2. Mathematical Model


This study aims to minimize the makespan with the dynamic events, including machine breakdown and job rework that happened in the production. A mathematical model of DJSSP is formulated as follows with the notations listed in Table 1.


        min  C max  = min  max  ∑  i = 1  n   ∑  j = 1  h    s  i j   +  p  i j                s . t . C 1 :    p  i j   > 0          C 2 :  s  i j   +  p  i j   ⩽  s  i ( j + 1 )            C 3 :  e  i j   −  s  i j   =  p  i j            C 4 :  e  i j   ≠  e   i ′   j ′             C 5 : T = n × m     



(2)




where the objective is minimizing the makespan as shown in Equation (2). C1 indicates that the processing time of all operations is positive. C2 shows that an operation can not be processed if its preceding operations are not completed. C3 represents that an operation cannot be interrupted while it is being processed since the operation   O  i j    and the operation   O   i ′   j ′     may be processed on the same machine. C4 is built to make sure that each machine can only process one operation at a time by ensuring the end time of   O  i j    and   O   i ′   j ′     is different. C5 makes sure that each operation is processed by only one machine at a time.





3. Proposed Method


3.1. Input and Output Representation


3.1.1. Input Representation


Considering the disjunctive graph can represent both the global and local features of the production and divide discrete-time steps in terms of operation assignment, it is adopted as the input of our model to help collect more features with time information. Disjunctive graph   G = ( V , C ∪ D )   is a kind of directed graph, and is also used to represent the JSSP popularly. All operations of all jobs construct the set V, and these operations are represented as vertices. However, V includes two more dummy vertices called source and sink, representing the start and the end of the scheduling, respectively. Moreover, the processing time of the two dummy vertices is zero. The precedence constraints initially between every two consecutive operations are reflected by the directed conjunctive edges that construct the set C. Unordered operations that can be processed on the same machine are linked to each other with the undirected disjunctive edges, which construct the set D [35]. Thus, solving a JSSP means turning a disjunctive edge into a directed edge to get a directed acyclic graph and determine the operation sequences on each machine. A simple JSSP instance and its solution represented by the disjunctive graphs are shown in Figure 1.



Each vertex denotes an operation of a job, and the content   O  i j    in it denotes the jth operation of job i. The solid lines denote the conjunctive edges, while the dotted lines denote the disjunctive edges. The numbers near the edges denote the processing time needed for the operations where the edges begin. Furthermore, the vertices of the same colour mean that the operations represented by these vertices are processed on the same machine.



However, the disjunctive graphs only reflect the static features in JSSP, failing to represent the dynamic features in DJSSP. Therefore, several following attributes are added to the vertices in the disjunctive graph to represent the dynamic features [36]:




	(1)

	
Operation identified number: The corresponding serial number of this operation in the job is added to the vertex;




	(2)

	
Job identified number: If a job includes the operation, its serial number is added to the vertex;




	(3)

	
Machine identified number: If a machine can process this operation, its serial number is added to the vertex. And 0 is added if there are no machines that can process this operation;




	(4)

	
Node situation: 1, 0, and −1 represent that the operation is finished, being processed, and unfinished, respectively;




	(5)

	
Completion rate: When this operation is finished, the completion rate of the entire job;




	(6)

	
Number of subsequent operations: The number of remaining operations to be finished;




	(7)

	
Time for waiting: The amount of time that has elapsed since the start before this operation can be processed;




	(8)

	
Processing time: The time required to process the operation;




	(9)

	
Remaining time: The remaining processing time of the operation (0 for unprocessed);




	(10)

	
Doable: It is “True” if the operation is doable.










3.1.2. Output Representation


Because of the black-box nature of the neural network, a detailed scheduling operation output by a neural network may be unsafe. Therefore, dispatching rules, which are widely used in JSSP since they are easy to implement and compute fast, are adopted as the output of our model. Dispatching rules prioritise the jobs waiting to be processed according to shop features (e.g., machine utilization) or job features, and the machine will first process the job with the highest priority [37]. Simple priority rule is a kind of dispatching rule and some typical simple priority rules have shown their effectiveness in DJSSP. In our work, SPP-Transformer takes the following 8 simple priority rules as output:




	(1)

	
First In First Out (FIFO): The machine will first process the job that first arrived at the queue of the machine;




	(2)

	
Last In Last Out (LIFO): The machine will first process the job that last arrived at the queue of the machine;




	(3)

	
Most Operations Remaining (MOR): The machine will first process the job that has the most remaining operations;




	(4)

	
Least Operations Remaining (LOR): The machine will first process the job that has the least remaining operations;




	(5)

	
Longest Processing Time (LPT): The machine will first process the job that has the longest processing time;




	(6)

	
Shortest Processing Time (SPT): The machine will first process the job that has the shortest processing time;




	(7)

	
Longest Total Processing Time (LTPT): The machine will first process the job that has the longest total processing time;




	(8)

	
Shortest Total Processing Time (STPT): The machine will first process the job that has the shortest total processing time.











3.2. Transformer Layer


3.2.1. Feature Extraction Module


The feature extraction module of SPP-Transformer consists of 6 encoder layers, and each encoder layer contains stacked self-attention, a fully connected feed-forward network (FFN), residual connection [38], and layer normalization (LN) [39]. All operations   O =   O  i 1   ,  O  i 2   , … ,  O  i j   , …    corresponding with the vertices in the disjunctive graph construct a feature sequence   X =   x  i 1   ,  x  i 2   , … ,  x  i j   , …   , which can be viewed as a vector with 10 dimensions because 10 attributes are added to each vertex. And the feature sequence is input to the feature extraction module and processed by the feature extraction module to get a feature vector so that the features of the production can be better extracted.



Self-attention computes the attention distribution over the input feature sequence [40] and maps the query and the set of key-value pairs to an output. Three different linear transformations are learned and performed on the input feature sequence to obtain the queries, keys, and values of all the operations. The query of an operation represents the type of the operation it concerns. The key of an operation represents its type, and the value of an operation contains the information about itself. Furthermore, the queries, keys, and values of all the operations construct the query matrix Q, the key matrix K, and the value matrix V, respectively. And   Q , K , V ∈  R   d L  ×  d F     , where   d L   represents the number of total operations while   d F   represents the number of the attributes of each operation. Firstly, the dot products of the queries of each operation and the keys of the other operations are computed to obtain the matching scores over all operations, and the matching scores are further divided by    d F    to avoid the attention over-focusing on the high-scores operations. Then, a softmax function is applied on the matching scores for obtaining the attention weights of the values, and we compute the   o u t p u t ∈  R   d L  ×  d F      of a single attention function by finally conducting the matrix multiplication of the attention weights and values. And the attention function is shown in Equation (3). It is worth mentioning that such a process can be executed in parallel. Thus, high computational efficiency can be achieved.


  Attention  ( Q , K , V )  = softmax    Q  K ′     d F     V  



(3)







Further, self-attention is often combined with multi-head attention and the outputs of multiple attention functions are concatenated to obtain more information with different query weight matrices   W  t  Q  , key weight matrices   W  t  K  , value weight matrices   W  t  V  , as shown in Equation (4):


     MultiHead ( Q , K , V )     =  Concat    head 1  , … ,  head   H    W  multi           where   head t      =  Attention   Q  W  t  Q  , K  W  t  K  , V  W  t  V       



(4)




where H represents the number of self-attention heads that are applied on the input sequence,    W  t  Q  ,  W  t  K  ,  W  t  V  ∈  R   d F  ×   d F  H      and    W  multi    ∈  R   d F  ×  d F      represent the parameter matrices. By concatenating the outputs of different attention functions, we obtain a vector which contains more information about the input feature sequence.



Besides the multi-head attention sub-layer, a fully connected FFN is included in both the feature extraction module and the action selection module, which consists of a nonlinear activation function and two linear transformations in between to transform the input from a   d  I n p u t    dimensions vector to a   d  O u t p u t    dimensions vector with the parameter   W 1  ,   W 2  ,   b 1  , and   b 2   as shown in Equation (5).


  FFN  ( x )  = max  0 , x  W 1  +  b 1    W 2  +  b 2   



(5)







Moreover, residual connections are applied around FFN sub-layer and every multi-head attention, which helps prevent the gradient disappearance. We use LN after the residual connection to prevent internal covariate shifts since a single batch may contain several examples.




3.2.2. Feature Compression Module


Various-sized feature vectors are obtained after using the feature extraction module to process the different disjunctive graphs. And the feature compression module is proposed to compress these various-sized feature vectors into fixed-length. Various-sized feature vectors are input to the feature compression module, and the feature compression module outputs fixed-length feature vectors. The feature compression module is the SPP layer that is typically used in computer vision to aggregate the convolutional features of images by splitting images into a range of grids at each level in the pyramid and aggregating local features. Images can also be viewed as vectors with multiple dimensions, so the vectors output by the feature extraction module can be compressed into fixed-length vectors by the SPP layer in the feature compression module.



To sample the extracted features at different scales from the disjunctive graph, four different bins are used for adaptive pooling in the SPP layer. After various-sized feature vectors are input to the feature compression module, the four different-sized bins in the SPP layer pool the feature vectors to get four fixed-length vectors and all the four vectors are 64 dimensions. The sliding windows and the strides of the four bins are changing adaptively according to the input various-sized vectors. For a bin, the size and the stride of its sliding window are determined using Equations (6) and (7), respectively.


   win  =  ceil     d  In     d Out     



(6)






   str  =  floor     d  In     d Out     



(7)




where the “win” and the “str” represent the size and the stride of the sliding window, respectively. The “ceil(·)” and the “floor(·)” represent rounding up and rounding down, respectively.   d  I n    and   d  O u t    represent the sizes of the input vectors and the sizes of the output vectors, respectively. It is worth mentioning that the sizes of the input vectors are the same with the sizes of the vectors output by the feature extraction module.



Finally, four fixed-length vectors whose sizes are 64 × 1, 32 × 2, 16 × 4, and 8 × 8, respectively, are output by the four bins. Next, each vector is reshaped to 64 × 1 and connected to construct the final fixed-length feature vector of 256 dimensions. With the fixed-length feature vector, the generalizability of SPP-Transformer is achieved, enabling SPP-Transformer to be trained once using existing instances but be applied on different-sized DJSSPs instead of being trained instance-by-instance. The framework of the feature compression module in our work is shown in Figure 2.




3.2.3. Action Selection Module


The fixed-length vectors of 256 dimensions output by the feature compression module are further input to the action selection module, and the action selection module outputs the simple priority rules using the input fixed-length vectors. The action selection module of SPP-Transformer consists of 6 decoder layers, a linear transformation and a softmax function. And each decoder layer is similar to the encoder layer in the feature extraction module, but contains a third sub-layer to perform multi-head attention over the output of the feature compression module. Moreover, masking is added to the self-attention sub-layer combined with the fact that the output of the feature compression module is offset by one position to avoid paying attention to the subsequent position [41].



And we utilize the linear transformation and softmax function to convert the output of the final decoder layer to predicted next-token probabilities. The linear transformation is a single layer composed of 16 neurons, which is used to transform the vectors of 256 dimensions to the vectors of 8 dimensions since there are 8 candidate simple priority rules to be selected. And each dimension of the vector represents each simple priority rules, respectively. Moreover, the specific expression of the softmax function used in this paper is shown in Equation (8) below.


  Softmax   z v   =   e  z v     ∑  v = 1  8   e  z v      



(8)




where   v = 1 , 2 , . . . , 8  , and   z v   represents the value of each dimension of the 8 dimensions vectors, corresponding to one of the eight simple priority rules. The probability of being selected of each simple priority rule is calculated using Equation (8).





3.3. Training Procedure


SPP-Transformer is built with the feature extraction module, the feature compression module and the action selection module, and its framework is shown in Figure 3. A DJSSP instance represented by the disjunctive graph is input to SPP-Transformer, and the feature extraction module extracts the initial features in the disjunctive graph and turns them into feature vectors of different sizes. Then, the feature compression module compresses the different-sized feature vectors into fixed-length vectors, which are 256 dimensions. Finally, the action selection module further transforms the 256 dimensions vectors to 8 dimensions vectors using the linear transformation and selects a simple priority rule from eight candidate simple priority rules at each step using a softmax function.



DJSSP in this paper can be modelled as a multi-classification problem since a specific instance represented by the disjunctive graph is related to one of the eight simple priority rules. The softmax function shown in Equation (8) is used as the output unit. And the cross-entropy loss function as shown in Equation (9) is used to calculate the cross-entropy loss between the simple priority rule output by our model and the ground truth from the expert to train SPP-Transformer.


  L = −  1 N   ∑ c   ∑  v = 1  8   y  c v   log   p  c v     



(9)




where N represents the number of the total disjunctive graphs in the training dataset, v represents one of the eight simple priority rules, c represents each disjunctive graph,    y  c v   ∈  { 0 , 1 }    is the label representing whether the disjunctive graph c is related to the simple priority rule v, and   p  c v    represents the probability that the disjunctive graph c is related to the simple priory rule v.





4. Numerical Experiments


4.1. Experimental Setup


We conduct the experiment based on the gymjsp, a benchmark whose data is from the OR-Library. And OR-Library is a dataset of various Operational Research (OR) problems, including JSSP [42]. Moreover, we test SPP-Transoformer on the JSSP instances FT06, FT10, FT20, and LA01-20. The FT and LA instances are from different distributions, and the FT instances are proposed by Fisher and Henry [43], while the LA instances are proposed by Lawrence [44]. The FT and LA instances used in this paper are of different sizes, helping test if SPP-Transformer generalizes well on different-sized instances. The performance of SPP-Transformer significantly relies on the training samples. Therefore, the high-quality training samples from the expert whose solutions are viewed as optimal are required. The RL method named TOFA is the state-of-the-art method recently in solving DJSSP [45]. And the action selected by the TOFA agent at each step is one of the 8 simple priority rules, including FIFO, LIFO, MOR, LOR, LPT, SPT, LTPT, and STPT. We use the trained optimal TOFA agent to interact with the production environment and record the disjunctive graphs and the actions taken by the agent at each step. The collected disjunctive graphs are used as the original training data, and the collected actions are used as the training labels to obtain 100,000 training samples. To verify the generalizability of SPP-Transformer, we test SPP-Transformer on the different-sized instances without further training. And we randomly change the machine order and the processing time of a job to represent job rework or machine breakdown when testing the ability of SPP-Transformer to tackle dynamic events. Moreover, SPP-Transformer is a sequence-to-action model and deals with dynamic events by taking actions according to the current environment without extra measures. The hyperparameters used in this paper are shown in Table 2, and we test our model on the machine with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz and a single NVIDIA GeForce RTX 3090 GPU.




4.2. Performance Analysis


In this subsection, we compare SPP-transformer with simple priority rules, composite dispatching rules, meta-heuristic methods, and RL methods. The results are obtained and shown in Table 3.



We use “the number of machines × the number of jobs” to represent the size of each instance. Makespan is an important indicator in the production, which means the processing completion time, and the smaller makespan means better method performance. The “Opt” represents the optimal value obtained by TOFA. The best results obtained among these methods for comparison are highlighted in bold font. Further, the relative percentage deviation (RPD) of each method is calculated using Equation (10).


  R P D =   A l g − O p t   O p t   × 100 %  



(10)







The “Alg” is the makespan obtained by each method on each instance. RPD reflects the distances between each method and the optimal method, and the smaller RPD means better method performance. Moreover, it can be seen from Equation (10) that the RPD is a negative value when the makespan obtained by the method is smaller than that obtained by TOFA, representing that this method even outperforms the state-of-the-art method. The average makespan and RPD of each method are shown in Table 3. Specifically, the “Makespan” and the “RPD” of the simple priority rules on each instance are, respectively, the average makespan and the average RPD of eight simple priority rules, including FIFO, LIFO, MOR, LOR, LPT, SPT, LTPT, and STPT. The “Makespan” and the “RPD” of the composite dispatching rules on each instance are, respectively, the average makespan and the average RPD of four composite dispatching rules, including MOR+LPT, LOR+SPT, FCFS∗S, and SI/Q. The “Makespan” and the “RPD” of meta-heuristic methods on each instance are, respectively, the average makespan and the average RPD of three meta-heuristic methods, including GA, DE, and GWO. The “Makespan” and the “RPD” of RL methods on each instance are, respectively, the average makespan and the average RPD of three RL methods, including DQN, Rainbow, and PPO. MOR+LPT means processing the job with the most remaining operations and the longest processing time first, but LOR+SPT means processing the job with the least remaining operations and the shortest processing time first. FCFS∗S means setting a specific value in advance, and if the number of waiting jobs is more than this value, using SPT; otherwise, using FIFO. SI/Q means using SPT mainly, but if the job in the queue is joining the queue of the next machine and the queue it will join beyond a specific length, this job is selected first. GA is a traditional meta-heuristic method to solve JSSP, while DE and GWO are relatively novel meta-heuristic methods. Rainbow is an extension of traditional DQN and performs well on atari games [46], and PPO is an effective policy gradient RL method [47]. The detailed results of each simple priority rule, each composite dispatching rule, each meta-heuristic method, and each RL method are listed in Appendix A.



And we depict the average RPD of each method to clearly show the differences between them. The result is shown in Figure 4.



The red dotted line represents the average RPD of SPP-Transformer and it can be found that the average RPDs of the other 18 methods are above the red dotted line, representing that the average RPDs of the other 18 methods are larger than that of SPP-Transformer and SPP-Transformer outperforms the other 18 methods. Moreover, it can be found from Table 3 that the RPDs of SPP-Transformer on LA08-09, LA13, LA15-17, LA19-20 are negative, representing that SPP-Transformer even gets better results than the optimal solutions on these instances. The makespan of SPP-Transformer is 11.67% smaller than the average makespan of the other 18 methods. Specifically, the makespan of SPP-Transformer is 14.30% smaller than the average makespan of all dispatching rules, including simple priority rules and composite dispatching rules, representing that SPP-Transformer can select the effective dispatching rule at different steps according to the current environment. Moreover, MOR outperforms the other 17 methods except SPP-Transformer. The performances of other dispatching rules vary widely on different instances, reflecting that there is no dispatching rule that can always perform well under any situation. Thus, the dynamic selection of dispatching rules is needed. The composite dispatching rules do not achieve the best result among all dispatching rules, which shows that combining different simple priority rules to construct an effective composite dispatching rule is not easy and requires domain knowledge. The makespan of SPP-Transformer is 16.99% smaller than the average makespan of meta-heuristic methods, representing that SPP-Transformer can effectively deal with the dynamic events without extra measures while meta-heuristic methods always need to reschedule the jobs when dynamic events occur. Both SPP-Transformer and RL methods select dispatching rules at different steps, but the makespan of SPP-Transformer is 13.82% smaller than the average makespan of RL methods, representing that SPP-Transformer can select the more effective dispatching rules than RL methods.



And Figure 5, Figure 6 and Figure 7 are the Gantt charts that represent the scheduling schemes obtained by SPP-Transformer to solve FT06, LA01, and LA20, respectively.



The rectangles with different colours represent the different jobs, the horizontal axis represents the processing time, the vertical axis represents the different machines, and the   C max   is related to the minimum makespan. The closer the rectangular areas are, the more balanced the load of the machine and the better the scheduling effect [48]. It can be found that the rectangles in the three Gantt charts are relatively close, reflecting that our model realizes satisfactory scheduling. The above analyses prove that using an end-to-end transformer to solve DJSSP is feasible and rather effective.




4.3. Data Ablation


Transformer-based models are known to require large amounts of data for training [49] and we verify the dependence of SPP-Transformer on the scale of datasets by doing the experiment that trains SPP-Transformer on different scale datasets. We randomly sample 1000 and 10,000 samples from the original dataset containing 100,000 samples to build two new subsets. For simplicity, other hyperparameters are kept fixed except for the scales of the training datasets. The line chart is depicted to show the RPD of each SPP-Transformer on each instance more clearly, as shown in Figure 8. And “ours-100000”, “ours-10000”, and “ours-1000” represent the SPP-Transformer trained on the 100,000, 10,000, and 1000 samples datasets, respectively. The detailed results of each model are listed in Appendix B.



It can be found that except for the RPD on LA04, LA05, LA07, and LA14 being relatively closer, the performances of the three SPP-Transformers on other instances are still significantly different. Moreover, “ours-100000” performs best among the three models and its performance is even better than the optimal solutions on some instances, reflecting that a larger dataset helps improve the performance of SPP-Transformer. The fact that the improvement between “ours-100000” and “ours-10000” is more significant than that between “ours-10000” and “ours-1000” reasonably explains that the larger dataset can better improve the performance of the model, which provides a gist for us to further improve the performance of SPP-Transformer.





5. Conclusions


This paper introduces an end-to-end transformer-based deep learning model called SPP-Transformer to solve DJSSP of different sizes. SPP-Transformer is constructed by a feature extraction module, a feature compression module, and an action selection module. Firstly, a DJSSP instance represented by the disjunctive graph is input to the feature extraction module, and the feature extraction module extracts the features in the disjunctive graph and transforms them into various-sized feature vectors. Then, the feature compression module compresses the various-sized feature vectors into the fixed-length vectors. Finally, the action selection module selects the simple priority rule to schedule the job at each step to complete the scheduling. The experimental results show that the makespan of SPP-Transformer is 11.67% smaller than the average makespan of dispatching rules, meta-heuristic methods, and RL methods. Specifically, the makespan of SPP-Transformer is 14.30% smaller than the average makespan of dispatching rules, 16.99% smaller than the average makespan of meta-heuristic methods, and 13.82% smaller than the average makespan of RL methods. The experimental results prove that SPP-Transformer can generalize well on different-sized JSSP instances and effectively deal with dynamic events. Moreover, it is also proved that a larger training dataset improves the performance of SPP-Transformer. However, the training time of SPP-Transformer is relatively long since there are lots of parameters in SPP-Transformer and collecting enough data is not easy since it needs a large dataset, which should be further solved. And the dynamic events considered in this paper are limited, which can be further improved. To the best of our knowledge, this is the first study of an end-to-end transformer in DJSSP, providing a paradigm for future research on deep learning in DJSSP. Using the disjunctive graphs as input and dispatching rules as output, further research can be conducted to explore other end-to-end deep learning-based methods besides the transformer-based methods to solve DJSSP.
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Table A1. The comparison between simple priority rules and SPP-Transformer on makespan.






Table A1. The comparison between simple priority rules and SPP-Transformer on makespan.





	
Instance

	
Size

	
Opt

	
Methods




	
FIFO

	
LIFO

	
LOR

	
LPT

	
LTPT

	
MOR

	
SPT

	
STPT

	
SPP-Transformer






	
FT06

	
6 × 6

	
59

	
65

	
70

	
68

	
77

	
68

	
59

	
88

	
83

	
59




	
FT10

	
10 × 10

	
1002

	
1230

	
1201

	
1352

	
1295

	
1190

	
1163

	
1074

	
1262

	
1180




	
FT20

	
5 × 20

	
1205

	
1658

	
1304

	
1487

	
1631

	
1495

	
1601

	
1267

	
1309

	
1231




	
LA01

	
5 × 10

	
666

	
848

	
772

	
941

	
822

	
835

	
763

	
751

	
933

	
699




	
LA02

	
5 × 10

	
684

	
821

	
799

	
982

	
990

	
881

	
812

	
821

	
761

	
716




	
LA03

	
5 × 10

	
615

	
734

	
765

	
758

	
825

	
696

	
726

	
672

	
811

	
651




	
LA04

	
5 × 10

	
615

	
737

	
827

	
745

	
818

	
887

	
706

	
711

	
874

	
670




	
LA05

	
5 × 10

	
593

	
593

	
681

	
704

	
693

	
658

	
593

	
610

	
677

	
593




	
LA06

	
5 × 15

	
926

	
1014

	
1246

	
1095

	
1125

	
1098

	
926

	
1200

	
1012

	
926




	
LA07

	
5 × 15

	
920

	
1105

	
1156

	
1137

	
1069

	
1025

	
1001

	
1034

	
1105

	
956




	
LA08

	
5 × 15

	
866

	
982

	
1101

	
995

	
1035

	
952

	
925

	
942

	
995

	
863




	
LA09

	
5 × 15

	
952

	
1011

	
1089

	
1149

	
1183

	
1304

	
951

	
1045

	
1220

	
951




	
LA10

	
5 × 15

	
958

	
1035

	
1132

	
1032

	
1132

	
1033

	
958

	
1049

	
1312

	
958




	
LA11

	
5 × 20

	
1222

	
1229

	
1488

	
1586

	
1467

	
1416

	
1222

	
1473

	
1446

	
1222




	
LA12

	
5 × 20

	
1039

	
1039

	
1329

	
1295

	
1240

	
1126

	
1039

	
1203

	
1358

	
1039




	
LA13

	
5 × 20

	
1151

	
1160

	
1519

	
1320

	
1230

	
1252

	
1150

	
1275

	
1267

	
1150




	
LA14

	
5 × 20

	
1292

	
1321

	
1505

	
1567

	
1434

	
1419

	
1292

	
1427

	
1646

	
1292




	
LA15

	
5 × 20

	
1336

	
1471

	
1519

	
1598

	
1612

	
1394

	
1436

	
1339

	
1632

	
1321




	
LA16

	
10 × 10

	
1108

	
1297

	
1306

	
1119

	
1229

	
1165

	
1108

	
1156

	
1268

	
1074




	
LA17

	
10 × 10

	
844

	
908

	
987

	
948

	
1082

	
993

	
844

	
924

	
1120

	
812




	
LA18

	
10 × 10

	
942

	
1057

	
1178

	
1154

	
1114

	
1198

	
942

	
981

	
1111

	
942




	
LA19

	
10 × 10

	
952

	
1062

	
992

	
1004

	
1062

	
1004

	
1088

	
940

	
981

	
935




	
LA20

	
10 × 10

	
1026

	
1243

	
1092

	
1207

	
1272

	
1086

	
1130

	
1000

	
1201

	
979




	
Average

	

	
912

	
1027

	
1089

	
1098

	
1106

	
1051

	
975

	
999

	
1104

	
923
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Table A2. The comparison between simple priority rules and SPP-Transformer on RPD (%).






Table A2. The comparison between simple priority rules and SPP-Transformer on RPD (%).





	
Instance

	
Size

	
Methods




	
FIFO

	
LIFO

	
LOR

	
LPT

	
LTPT

	
MOR

	
SPT

	
STPT

	
SPP-Transformer






	
FT06

	
6 × 6

	
10.17

	
18.64

	
15.25

	
30.51

	
15.25

	
0

	
49.15

	
40.68

	
0




	
FT10

	
10 × 10

	
22.75

	
19.86

	
34.93

	
29.24

	
18.76

	
16.07

	
7.19

	
25.95

	
17.76




	
FT20

	
5 × 20

	
37.59

	
8.22

	
23.4

	
35.35

	
24.07

	
32.86

	
5.15

	
8.63

	
2.16




	
LA01

	
5 × 10

	
27.33

	
15.92

	
41.29

	
23.42

	
25.38

	
14.56

	
12.76

	
40.09

	
4.95




	
LA02

	
5 × 10

	
20.03

	
16.81

	
43.57

	
44.74

	
28.8

	
18.71

	
20.03

	
11.26

	
4.68




	
LA03

	
5 × 10

	
19.35

	
24.39

	
23.25

	
34.15

	
13.17

	
18.05

	
9.27

	
31.87

	
5.85




	
LA04

	
5 × 10

	
19.84

	
34.47

	
21.14

	
33.01

	
44.23

	
14.8

	
15.61

	
42.11

	
8.94




	
LA05

	
5 × 10

	
0

	
14.84

	
18.72

	
16.86

	
10.96

	
0

	
2.87

	
14.17

	
0




	
LA06

	
5 × 15

	
9.5

	
34.56

	
18.25

	
21.49

	
18.57

	
0

	
29.59

	
9.29

	
0




	
LA07

	
5 × 15

	
20.11

	
25.65

	
23.59

	
16.2

	
11.41

	
8.8

	
12.39

	
20.11

	
3.91




	
LA08

	
5 × 15

	
13.39

	
27.14

	
14.9

	
19.52

	
9.93

	
6.81

	
8.78

	
14.9

	
−0.35




	
LA09

	
5 × 15

	
6.2

	
14.39

	
20.69

	
24.26

	
36.97

	
−0.11

	
9.77

	
28.15

	
−0.11




	
LA10

	
5 × 15

	
8.04

	
18.16

	
7.72

	
18.16

	
7.83

	
0

	
9.5

	
36.95

	
0




	
LA11

	
5 × 20

	
0.57

	
21.77

	
29.79

	
20.05

	
15.88

	
0

	
20.54

	
18.33

	
0




	
LA12

	
5 × 20

	
0

	
27.91

	
24.64

	
19.35

	
8.37

	
0

	
15.78

	
30.7

	
0




	
LA13

	
5 × 20

	
0.78

	
31.97

	
14.68

	
6.86

	
8.77

	
−0.09

	
10.77

	
10.08

	
−0.09




	
LA14

	
5 × 20

	
2.24

	
16.49

	
21.28

	
10.99

	
9.83

	
0

	
10.45

	
27.4

	
0




	
LA15

	
5 × 20

	
10.1

	
13.7

	
19.61

	
20.66

	
4.34

	
7.49

	
0.22

	
22.16

	
−1.12




	
LA16

	
10 × 10

	
17.06

	
17.87

	
0.99

	
10.92

	
5.14

	
0

	
4.33

	
14.44

	
−3.07




	
LA17

	
10 × 10

	
7.58

	
16.94

	
12.32

	
28.2

	
17.65

	
0

	
9.48

	
32.7

	
−3.79




	
LA18

	
10 × 10

	
12.21

	
25.05

	
22.51

	
18.26

	
27.18

	
0

	
4.14

	
17.94

	
0




	
LA19

	
10 × 10

	
11.55

	
4.2

	
5.46

	
11.55

	
5.46

	
14.29

	
−1.26

	
3.05

	
−1.79




	
LA20

	
10 × 10

	
21.15

	
6.43

	
17.64

	
23.98

	
5.85

	
10.14

	
−2.53

	
17.06

	
−4.58




	
Average

	

	
12.94

	
19.8

	
20.68

	
22.51

	
16.25

	
7.06

	
11.48

	
22.52

	
1.45
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Table A3. The comparison between composite dispatching rules and SPP-Transformer on makespan.






Table A3. The comparison between composite dispatching rules and SPP-Transformer on makespan.





	
Instance

	
Size

	
Opt

	
Methods




	
LOR+SPT

	
MOR+LPT

	
FCFS∗S

	
SI/Q

	
SPP-Transformer






	
FT06

	
6 × 6

	
59

	
85

	
68

	
78

	
84

	
59




	
FT10

	
10 × 10

	
1002

	
1100

	
1284

	
1176

	
1114

	
1180




	
FT20

	
5 × 20

	
1205

	
1280

	
1616

	
1358

	
1279

	
1231




	
LA01

	
5 × 10

	
666

	
761

	
818

	
869

	
775

	
699




	
LA02

	
5 × 10

	
684

	
796

	
952

	
773

	
778

	
716




	
LA03

	
5 × 10

	
615

	
745

	
807

	
770

	
711

	
651




	
LA04

	
5 × 10

	
615

	
703

	
865

	
722

	
698

	
670




	
LA05

	
5 × 10

	
593

	
620

	
668

	
623

	
623

	
593




	
LA06

	
5 × 15

	
926

	
1182

	
1122

	
1022

	
1171

	
926




	
LA07

	
5 × 15

	
920

	
1021

	
1087

	
1082

	
1023

	
956




	
LA08

	
5 × 15

	
866

	
959

	
1086

	
902

	
958

	
863




	
LA09

	
5 × 15

	
952

	
1122

	
1178

	
1015

	
1060

	
951




	
LA10

	
5 × 15

	
958

	
1090

	
1116

	
1041

	
1077

	
958




	
LA11

	
5 × 20

	
1222

	
1494

	
1471

	
1318

	
1435

	
1222




	
LA12

	
5 × 20

	
1039

	
1214

	
1245

	
1168

	
1227

	
1039




	
LA13

	
5 × 20

	
1151

	
1338

	
1278

	
1234

	
1289

	
1150




	
LA14

	
5 × 20

	
1292

	
1518

	
1405

	
1426

	
1463

	
1292




	
LA15

	
5 × 20

	
1336

	
1356

	
1596

	
1429

	
1366

	
1321




	
LA16

	
10 × 10

	
1108

	
1255

	
1219

	
1144

	
1181

	
1074




	
LA17

	
10 × 10

	
844

	
956

	
1074

	
1001

	
944

	
812




	
LA18

	
10 × 10

	
942

	
998

	
1099

	
1029

	
998

	
942




	
LA19

	
10 × 10

	
952

	
950

	
1068

	
963

	
957

	
935




	
LA20

	
10 × 10

	
1026

	
1022

	
1210

	
1223

	
1023

	
979




	
Average

	

	
912

	
1025

	
1101

	
1016

	
1010

	
923
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Table A4. The comparison between composite dispatching rules and SPP-Transformer on RPD (%).
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Instance

	
Size

	
Methods




	
LOR+SPT

	
MOR+LPT

	
FCFS∗S

	
SI/Q

	
SPP-Transformer






	
FT06

	
6 × 6

	
44.07

	
15.25

	
32.2

	
42.37

	
0




	
FT10

	
10 × 10

	
9.78

	
28.14

	
17.37

	
11.18

	
17.76




	
FT20

	
5 × 20

	
6.22

	
34.11

	
12.7

	
6.14

	
2.16




	
LA11

	
5 × 10

	
14.26

	
22.82

	
30.48

	
16.37

	
4.95




	
LA12

	
5 × 10

	
16.37

	
39.18

	
13.01

	
13.74

	
4.68




	
LA13

	
5 × 10

	
21.14

	
31.22

	
25.2

	
15.61

	
5.85




	
LA14

	
5 × 10

	
14.31

	
40.65

	
17.4

	
13.5

	
8.94




	
LA15

	
5 × 10

	
4.55

	
12.65

	
5.06

	
5.06

	
0




	
LA16

	
5 × 15

	
27.65

	
21.17

	
10.37

	
26.46

	
0




	
LA17

	
5 × 15

	
10.98

	
18.15

	
17.61

	
11.2

	
3.91




	
LA18

	
5 × 15

	
10.74

	
25.4

	
4.16

	
10.62

	
−0.35




	
LA19

	
5 × 15

	
17.86

	
23.74

	
6.62

	
11.34

	
−0.11




	
LA10

	
5 × 15

	
13.78

	
16.49

	
8.66

	
12.42

	
0




	
LA11

	
5 × 20

	
22.26

	
20.38

	
7.86

	
17.43

	
0




	
LA12

	
5 × 20

	
16.84

	
19.83

	
12.42

	
18.09

	
0




	
LA13

	
5 × 20

	
16.25

	
11.03

	
7.21

	
11.99

	
−0.09




	
LA14

	
5 × 20

	
17.49

	
8.75

	
10.37

	
13.24

	
0




	
LA15

	
5 × 20

	
1.5

	
19.46

	
6.96

	
2.25

	
−1.12




	
LA16

	
10 × 10

	
13.27

	
10.02

	
3.25

	
6.59

	
−3.07




	
LA17

	
10 × 10

	
13.27

	
27.25

	
18.6

	
11.85

	
−3.79




	
LA18

	
10 × 10

	
5.94

	
16.67

	
9.24

	
5.94

	
0




	
LA19

	
10 × 10

	
−0.21

	
12.18

	
1.16

	
0.53

	
−1.79




	
LA20

	
10 × 10

	
−0.39

	
17.93

	
19.2

	
−0.29

	
−4.58




	
Average

	

	
13.82

	
21.41

	
12.92

	
12.33

	
1.45
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Table A5. The comparison between meta-heuristic methods and SPP-Transformer on makespan.






Table A5. The comparison between meta-heuristic methods and SPP-Transformer on makespan.





	
Instance

	
Size

	
Opt

	
Methods




	
GA

	
DE

	
GWO

	
SPP-Transformer






	
FT06

	
6 × 6

	
59

	
58

	
60

	
59

	
59




	
FT10

	
10 × 10

	
1002

	
1331

	
1312

	
1219

	
1180




	
FT20

	
5 × 20

	
1205

	
1634

	
1635

	
1564

	
1231




	
LA01

	
5 × 10

	
666

	
782

	
769

	
727

	
699




	
LA02

	
5 × 10

	
684

	
821

	
805

	
768

	
716




	
LA03

	
5 × 10

	
615

	
737

	
731

	
696

	
651




	
LA04

	
5 × 10

	
615

	
736

	
728

	
681

	
670




	
LA05

	
5 × 10

	
593

	
633

	
616

	
599

	
593




	
LA06

	
5 × 15

	
926

	
1040

	
1025

	
982

	
926




	
LA07

	
5 × 15

	
920

	
1085

	
1068

	
1014

	
956




	
LA08

	
5 × 15

	
866

	
1045

	
1024

	
974

	
863




	
LA09

	
5 × 15

	
952

	
1094

	
1063

	
1021

	
951




	
LA10

	
5 × 15

	
958

	
1048

	
1020

	
985

	
958




	
LA11

	
5 × 20

	
1222

	
1400

	
1371

	
1330

	
1222




	
LA12

	
5 × 20

	
1039

	
1195

	
1182

	
1133

	
1039




	
LA13

	
5 × 20

	
1151

	
1335

	
1312

	
1261

	
1150




	
LA14

	
5 × 20

	
1292

	
1377

	
1352

	
1321

	
1292




	
LA15

	
5 × 20

	
1336

	
1527

	
1498

	
1449

	
1321




	
LA16

	
10 × 10

	
1108

	
1238

	
1206

	
1138

	
1074




	
LA17

	
10 × 10

	
844

	
1072

	
1032

	
947

	
812




	
LA18

	
10 × 10

	
942

	
1149

	
1109

	
1040

	
942




	
LA19

	
10 × 10

	
952

	
1182

	
1142

	
1066

	
935




	
LA20

	
10 × 10

	
1026

	
1235

	
1185

	
1118

	
979




	
Average

	

	
912

	
1076

	
1054

	
1004

	
923
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Table A6. The comparison between meta-heuristic methods and SPP-Transformer on RPD (%).
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Instance

	
Size

	
Methods




	
GA

	
DE

	
GWO

	
SPP-Transformer






	
FT06

	
6 × 6

	
−1.69

	
1.69

	
0

	
0




	
FT10

	
10 × 10

	
32.83

	
30.94

	
21.66

	
17.76




	
FT20

	
5 × 20

	
35.6

	
35.68

	
29.79

	
2.16




	
LA01

	
5 × 10

	
17.42

	
15.47

	
9.16

	
4.95




	
LA02

	
5 × 10

	
20.03

	
17.69

	
12.28

	
4.68




	
LA03

	
5 × 10

	
19.84

	
18.86

	
13.17

	
5.85




	
LA04

	
5 × 10

	
19.67

	
18.37

	
10.73

	
8.94




	
LA05

	
5 × 10

	
6.75

	
3.88

	
1.01

	
0




	
LA06

	
5 × 15

	
12.31

	
10.69

	
6.05

	
0




	
LA07

	
5 × 15

	
17.93

	
16.09

	
10.22

	
3.91




	
LA08

	
5 × 15

	
20.67

	
18.24

	
12.47

	
−0.35




	
LA09

	
5 × 15

	
14.92

	
11.66

	
7.25

	
−0.11




	
LA10

	
5 × 15

	
9.39

	
6.47

	
2.82

	
0




	
LA11

	
5 × 20

	
14.57

	
12.19

	
8.84

	
0




	
LA12

	
5 × 20

	
15.01

	
13.76

	
9.05

	
0




	
LA13

	
5 × 20

	
15.99

	
13.99

	
9.56

	
−0.09




	
LA14

	
5 × 20

	
6.58

	
4.64

	
2.24

	
0




	
LA15

	
5 × 20

	
14.3

	
12.13

	
8.46

	
−1.12




	
LA16

	
10 × 10

	
11.73

	
8.84

	
2.71

	
−3.07




	
LA17

	
10 × 10

	
27.01

	
22.27

	
12.2

	
−3.79




	
LA18

	
10 × 10

	
21.97

	
17.73

	
10.4

	
0




	
LA19

	
10 × 10

	
24.16

	
19.96

	
11.97

	
−1.79




	
LA20

	
10 × 10

	
20.37

	
15.5

	
8.97

	
−4.58




	
Average

	

	
17.28

	
15.08

	
9.61

	
1.45
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Table A7. The comparison between RL methods and SPP-Transformer on makespan.
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Instance

	
Size

	
Opt

	
Methods




	
DQN

	
Rainbow

	
PPO

	
SPP-Transformer






	
FT06

	
6 × 6

	
59

	
65

	
63

	
67

	
59




	
FT10

	
10 × 10

	
1002

	
1289

	
1235

	
1341

	
1180




	
FT20

	
5 × 20

	
1205

	
1463

	
1378

	
1479

	
1231




	
LA01

	
5 × 10

	
666

	
785

	
935

	
759

	
699




	
LA02

	
5 × 10

	
684

	
809

	
804

	
851

	
716




	
LA03

	
5 × 10

	
615

	
750

	
742

	
713

	
651




	
LA04

	
5 × 10

	
615

	
684

	
812

	
779

	
670




	
LA05

	
5 × 10

	
593

	
592

	
660

	
634

	
593




	
LA06

	
5 × 15

	
926

	
984

	
1066

	
963

	
926




	
LA07

	
5 × 15

	
920

	
1035

	
991

	
1034

	
956




	
LA08

	
5 × 15

	
866

	
1014

	
964

	
1125

	
863




	
LA09

	
5 × 15

	
952

	
1010

	
1121

	
987

	
951




	
LA10

	
5 × 15

	
958

	
978

	
1045

	
1021

	
958




	
LA11

	
5 × 20

	
1222

	
1283

	
1480

	
1314

	
1222




	
LA12

	
5 × 20

	
1039

	
1123

	
1204

	
1121

	
1039




	
LA13

	
5 × 20

	
1151

	
1198

	
1300

	
1243

	
1150




	
LA14

	
5 × 20

	
1292

	
1283

	
1290

	
1324

	
1292




	
LA15

	
5 × 20

	
1336

	
1390

	
1393

	
1516

	
1321




	
LA16

	
10 × 10

	
1108

	
1102

	
1183

	
1179

	
1074




	
LA17

	
10 × 10

	
844

	
894

	
900

	
987

	
812




	
LA18

	
10 × 10

	
942

	
993

	
1147

	
1123

	
942




	
LA19

	
10 × 10

	
952

	
963

	
958

	
1146

	
935




	
LA20

	
10 × 10

	
1026

	
1047

	
1183

	
1178

	
979




	
Average

	

	
912

	
988

	
1037

	
1038

	
923
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Table A8. The comparison between RL methods and SPP-Transformer on RPD (%).
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Instance

	
Size

	
Methods




	
DQN

	
Rainbow

	
PPO

	
SPP-Transformer






	
FT06

	
6 × 6

	
10.17

	
6.78

	
13.56

	
0




	
FT10

	
10 × 10

	
28.64

	
23.25

	
33.83

	
17.76




	
FT20

	
5 × 20

	
21.41

	
14.36

	
22.74

	
2.16




	
LA01

	
5 × 10

	
17.87

	
40.39

	
13.96

	
4.95




	
LA02

	
5 × 10

	
18.27

	
17.54

	
24.42

	
4.68




	
LA03

	
5 × 10

	
21.95

	
20.65

	
15.93

	
5.85




	
LA04

	
5 × 10

	
11.22

	
32.03

	
26.67

	
8.94




	
LA05

	
5 × 10

	
−0.17

	
11.3

	
6.91

	
0




	
LA06

	
5 × 15

	
6.26

	
15.12

	
4

	
0




	
LA07

	
5 × 15

	
12.5

	
7.72

	
12.39

	
3.91




	
LA08

	
5 × 15

	
17.09

	
11.32

	
29.91

	
−0.35




	
LA09

	
5 × 15

	
6.09

	
17.75

	
3.68

	
−0.11




	
LA10

	
5 × 15

	
2.09

	
9.08

	
6.58

	
0




	
LA11

	
5 × 20

	
4.99

	
21.11

	
7.53

	
0




	
LA12

	
5 × 20

	
8.08

	
15.88

	
7.89

	
0




	
LA13

	
5 × 20

	
4.08

	
12.95

	
7.99

	
−0.09




	
LA14

	
5 × 20

	
−0.7

	
−0.15

	
2.48

	
0




	
LA15

	
5 × 20

	
4.04

	
4.27

	
13.47

	
−1.12




	
LA16

	
10 × 10

	
−0.54

	
6.77

	
6.41

	
−3.07




	
LA17

	
10 × 10

	
5.92

	
6.64

	
16.94

	
−3.79




	
LA18

	
10 × 10

	
5.41

	
21.76

	
19.21

	
0




	
LA19

	
10 × 10

	
1.16

	
0.63

	
20.38

	
−1.79




	
LA20

	
10 × 10

	
2.05

	
15.3

	
14.81

	
−4.58




	
Average

	

	
9.04

	
14.45

	
14.42

	
1.45
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Table A9. The comparison between different SPP-Transformers on makespan.
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Instance

	
Size

	
Opt

	
Methods




	
Ours-1000

	
Ours-10000

	
Ours-100000






	
FT06

	
6 × 6

	
59

	
67

	
59

	
59




	
FT10

	
10 × 10

	
1002

	
1347

	
1206

	
1180




	
FT20

	
5 × 20

	
1205

	
1414

	
1313

	
1231




	
LA01

	
5 × 10

	
666

	
787

	
706

	
699




	
LA02

	
5 × 10

	
684

	
755

	
741

	
716




	
LA03

	
5 × 10

	
615

	
688

	
699

	
651




	
LA04

	
5 × 10

	
615

	
688

	
690

	
670




	
LA05

	
5 × 10

	
593

	
602

	
597

	
593




	
LA06

	
5 × 15

	
926

	
988

	
1005

	
926




	
LA07

	
5 × 15

	
920

	
975

	
978

	
956




	
LA08

	
5 × 15

	
866

	
937

	
883

	
863




	
LA09

	
5 × 15

	
952

	
1007

	
951

	
951




	
LA10

	
5 × 15

	
958

	
1033

	
956

	
958




	
LA11

	
5 × 20

	
1222

	
1317

	
1425

	
1222




	
LA12

	
5 × 20

	
1039

	
1180

	
1055

	
1039




	
LA13

	
5 × 20

	
1151

	
1217

	
1207

	
1150




	
LA14

	
5 × 20

	
1292

	
1296

	
1292

	
1292




	
LA15

	
5 × 20

	
1336

	
1374

	
1355

	
1321




	
LA16

	
10 × 10

	
1108

	
1131

	
1127

	
1074




	
LA17

	
10 × 10

	
844

	
904

	
904

	
812




	
LA18

	
10 × 10

	
942

	
996

	
984

	
942




	
LA19

	
10 × 10

	
952

	
969

	
963

	
935




	
LA20

	
10 × 10

	
1026

	
1020

	
1015

	
979




	
Average

	

	
912

	
988

	
1037

	
923
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Table A10. The comparison between different SPP-Transformers on RPD (%).
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Instance

	
Size

	
Methods




	
Ours-1000

	
Ours-10000

	
Ours-100000






	
FT06

	
6 × 6

	
13.56

	
0

	
0




	
FT10

	
10 × 10

	
34.43

	
20.36

	
17.76




	
FT20

	
5 × 20

	
17.34

	
8.96

	
2.16




	
LA01

	
5 × 10

	
18.17

	
6.01

	
4.95




	
LA02

	
5 × 10

	
10.38

	
8.33

	
4.68




	
LA03

	
5 × 10

	
11.87

	
13.66

	
5.85




	
LA04

	
5 × 10

	
11.87

	
12.2

	
8.94




	
LA05

	
5 × 10

	
1.52

	
0.67

	
0




	
LA06

	
5 × 15

	
6.7

	
8.53

	
0




	
LA07

	
5 × 15

	
5.98

	
6.3

	
3.91




	
LA08

	
5 × 15

	
8.2

	
1.96

	
−0.35




	
LA09

	
5 × 15

	
5.78

	
−0.11

	
−0.11




	
LA10

	
5 × 15

	
7.83

	
−0.21

	
0




	
LA11

	
5 × 20

	
7.77

	
16.61

	
0




	
LA12

	
5 × 20

	
13.57

	
1.54

	
0




	
LA13

	
5 × 20

	
5.73

	
4.87

	
−0.09




	
LA14

	
5 × 20

	
0.31

	
0

	
0




	
LA15

	
5 × 20

	
2.84

	
1.42

	
−1.12




	
LA16

	
10 × 10

	
2.08

	
1.71

	
−3.07




	
LA17

	
10 × 10

	
7.11

	
7.11

	
−3.79




	
LA18

	
10 × 10

	
5.73

	
4.46

	
0




	
LA19

	
10 × 10

	
1.79

	
1.16

	
−1.79




	
LA20

	
10 × 10

	
−0.58

	
−1.07

	
−4.58




	
Average

	

	
8.69

	
5.41

	
1.45
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Figure 1. An example of JSSP intance and its solution representing by the disjunctive graphs. 
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Figure 2. The framework of the feature compression module. 






Figure 2. The framework of the feature compression module.



[image: Machines 10 00573 g002]







[image: Machines 10 00573 g003 550] 





Figure 3. The whole framework of SPP-Transormer. 
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Figure 4. The average PRD(%) of each method on each instance. 
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Figure 5. The Gantt chart of FT06. 
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Figure 6. The Gantt chart of LA01. 
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Figure 7. The Gantt chart of LA20. 
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Figure 8. The RPD of each SPP-Transformer on each instance. 
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Table 1. DJSSP specific parameters table.
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	Parameters
	Description





	i
	index of jobs,   i = 1 , 2 , … , n  



	j
	index of operations of a job,   j = 1 , 2 , … , h  



	m
	the number of machines



	   C max   
	the maximum completion time of all jobs



	   s  i j    
	the start time of operation   O  i j   



	   e  i j    
	the end time of operation   O  i j   



	   e   i ′   j ′     
	the end time of operation   O   i ′   j ′    



	   p  i j    
	the processing time of operation   O  i j   



	T
	the maximum total number of all planned operations at the current time
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Table 2. List of hyperparameters and their values.
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	Hyperparameter
	Value





	Number of encoder layers
	6



	Number of decoder layers
	6



	Number of feed-forward network layers
	1



	Random rate f
	0.1



	   S w i t c h   
	True



	Number of heads
	8



	Number of training epochs
	10,000



	Number of test epochs
	100



	Optimizer
	Adam



	Mini-batch size
	128



	Dropout rate
	0.1
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Table 3. The comparison between each method on makespan and RPD (%).
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Instance

	
Size

	
Opt

	
Methods




	
Simple Priority Rules

	
Composite Dispatching Rules

	
Meta-Heuristic Methods

	
RL Methods

	
SPP-Transformer




	
Makespan

	
RPD

	
Makespan

	
RPD

	
Makespan

	
RPD

	
Makespan

	
RPD

	
Makespan

	
RPD






	
FT06

	
6 × 6

	
59

	
72

	
22.46

	
79

	
33.47

	
59

	
0

	
65

	
10.17

	
59

	
0




	
FT10

	
10 × 10

	
1002

	
1221

	
21.84

	
1169

	
16.62

	
1287

	
28.48

	
1288

	
28.57

	
1180

	
17.76




	
FT20

	
5 × 20

	
1205

	
1469

	
21.91

	
1383

	
14.79

	
1611

	
33.69

	
1440

	
19.5

	
1231

	
2.16




	
LA01

	
5 × 10

	
666

	
833

	
25.09

	
806

	
20.98

	
759

	
14.02

	
826

	
24.07

	
699

	
4.95




	
LA02

	
5 × 10

	
684

	
858

	
25.49

	
825

	
20.58

	
798

	
16.67

	
821

	
20.08

	
716

	
4.68




	
LA03

	
5 × 10

	
615

	
748

	
21.69

	
758

	
23.29

	
721

	
17.29

	
735

	
19.51

	
651

	
5.85




	
LA04

	
5 × 10

	
615

	
788

	
28.15

	
747

	
21.47

	
715

	
16.26

	
758

	
23.31

	
670

	
8.94




	
LA05

	
5 × 10

	
593

	
651

	
9.8

	
634

	
6.83

	
616

	
3.88

	
629

	
6.01

	
593

	
0




	
LA06

	
5 × 15

	
926

	
1090

	
17.66

	
1124

	
21.41

	
1016

	
9.68

	
1004

	
8.46

	
926

	
0




	
LA07

	
5 × 15

	
920

	
1079

	
17.28

	
1053

	
14.49

	
1056

	
14.75

	
1020

	
10.87

	
956

	
3.91




	
LA08

	
5 × 15

	
866

	
991

	
14.42

	
976

	
12.73

	
1014

	
17.13

	
1034

	
19.44

	
863

	
−0.35




	
LA09

	
5 × 15

	
952

	
1119

	
17.54

	
1094

	
14.89

	
1059

	
11.28

	
1039

	
9.17

	
951

	
−0.11




	
LA10

	
5 × 15

	
958

	
1085

	
13.3

	
1081

	
12.84

	
1018

	
6.23

	
1015

	
5.92

	
958

	
0




	
LA11

	
5 × 20

	
1222

	
1416

	
15.87

	
1430

	
16.98

	
1367

	
11.87

	
1359

	
11.21

	
1222

	
0




	
LA12

	
5 × 20

	
1039

	
1204

	
15.84

	
1214

	
16.8

	
1170

	
12.61

	
1149

	
10.62

	
1039

	
0




	
LA13

	
5 × 20

	
1151

	
1272

	
10.48

	
1285

	
11.62

	
1303

	
13.18

	
1247

	
8.34

	
1150

	
−0.09




	
LA14

	
5 × 20

	
1292

	
1451

	
12.34

	
1453

	
12.46

	
1350

	
4.49

	
1299

	
0.54

	
1292

	
0




	
LA15

	
5 × 20

	
1336

	
1500

	
12.29

	
1437

	
7.54

	
1491

	
11.63

	
1433

	
7.26

	
1321

	
−1.12




	
LA16

	
10 × 10

	
1108

	
1206

	
8.84

	
1200

	
8.28

	
1194

	
7.76

	
1155

	
4.21

	
1074

	
−3.07




	
LA17

	
10 × 10

	
844

	
976

	
15.61

	
994

	
17.74

	
1017

	
20.49

	
927

	
9.83

	
812

	
−3.79




	
LA18

	
10 × 10

	
942

	
1092

	
15.91

	
1031

	
9.45

	
1099

	
16.7

	
1088

	
15.46

	
942

	
0




	
LA19

	
10 × 10

	
952

	
1017

	
6.79

	
985

	
3.42

	
1130

	
18.7

	
1022

	
7.39

	
935

	
−1.79




	
LA20

	
10 × 10

	
1026

	
1154

	
12.47

	
1120

	
9.11

	
1179

	
14.95

	
1136

	
10.72

	
979

	
−4.58




	
Average

	

	
912

	
1056

	
16.66

	
1038

	
15.12

	
1045

	
13.99

	
1021

	
12.64

	
923

	
1.45
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