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Abstract: The flexible job shop scheduling problem (FJSP) is an extension of the classical job shop
scheduling problem and one of the more well-known NP-hard problems. To get better global
optima of the FJSP, a novel hybrid whale optimization algorithm (HWOA) is proposed for solving
FJSP, in which minimizing the makespan is considered as the objective. Firstly, the uniformity and
extensiveness of the initial population distribution are increased with a good point set (GPS). Secondly,
a new nonlinear convergence factor (NCF) is proposed for coordinating the weight of global and local
search. Then, a new multi-neighborhood structure (MNS) is proposed, within which a total of three
new neighborhoods are used to search for the optimal solution from different directions. Finally, a
population diversity reception mechanism (DRM), which ensures to some extent that the population
diversity is preserved with iteration, is presented. Seven international benchmark functions are used
to test the performance of HWOA, and the results show that HWOA is more efficient. Finally, the
HWOA is applied to 73 FJSP and four Ra international instances of different scales and flexibility,
and the results further verify the effectiveness and superiority of the HWOA.

Keywords: whale optimization algorithm; flexible job shop scheduling problem; good point set;
nonlinear convergence factor; multi-neighborhood structure; diversity reception mechanism

1. Introduction

The scheduling problem is the rationalization of the allocation of limited resources
under certain constraints with the aim of achieving one or more target values to the satisfac-
tion of the operator. Job-shop scheduling is one of the most important issues in the planning
and operation of modern production and manufacturing systems, which is the key to the
operation of a manufacturing system and the heart of production planning and control [1].
Based on the development of economic globalization, manufacturing enterprises are bound
to face more and more severe competition. Therefore, a reasonable and effective produc-
tion scheduling solution is indispensable to raise enterprise competitiveness. Currently,
many companies still rely on experienced workers for production scheduling planning.
Although experience-based scheduling solves the problem of resource allocation in the
production process of manufacturing companies to a certain extent, the method relies too
much on personal experience and can only be used for some simple, small-scale production
scheduling problems. Furthermore, the global optimization scheduling plans cannot be
guaranteed. Therefore, in large-scale production tasks, such experience-dependent manual
scheduling is no longer effective. Meanwhile, traditional industrial production is updating
and striding forward in the direction of flexibility, digitalization and intelligence. Therefore,
it is essential to carry out the study on the flexible job shop scheduling problem.

The job-shop scheduling problem (JSP) is a typical NP-hard problem and is very
important in production scheduling management systems [2]. In 1959, Bowman et al. first
gave the definition of job shop scheduling [3]. For this problem, there are m machines

Machines 2022, 10, 618. https://doi.org/10.3390/machines10080618 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10080618
https://doi.org/10.3390/machines10080618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-6190-9734
https://doi.org/10.3390/machines10080618
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10080618?type=check_update&version=2


Machines 2022, 10, 618 2 of 33

and n jobs to be machined, where each job has one or more machining operations and is
machined in a fixed operation sequence. Each operation requires a designated machine,
and the machine is always available and can operate only one operation at a time without
interruption. The good decision is how the job sequence is determined under the idle
condition of the machines, which minimizes the makespan.

The flexible job-shop scheduling problem (FJSP) is an extension of the classic JSP [4]. In
1990, Bruker et al. first considered machine operation flexibility and proposed the concept
of flexible job shop scheduling [5]. On the basis of operation allocation, machine allocation
should also be considered. Each operation of a job can be operated on multiple machines,
and the operation time on each machine is not necessarily the same. Actual production
can be flexible according to the resource load situation. However, the increase in flexibility
causes the FJSP to become complex [6]. Therefore, FJSP is more difficult and more suited
to the actual needs of modern production than traditional JSP [7]. There are two general
methods for solving FJSP: Firstly, the exact algorithm can get an effective optimal solution
when it is used to solve small-scale problems. However, it is difficult to obtain the optimal
solution in an acceptable period of time for large-scale scheduling problems [8]. Secondly,
intelligent algorithms having good search ability are usually used to deal with complex
FJSP and can obtain the optimal solution in a reasonable time. Such algorithms generally
include genetic algorithms (GA), simulated annealing (SA), ant colony optimization (ACO),
particle swarm optimization (PSO), grey wolf optimization (GWO), etc.

Driss et al. proposed a new genetic algorithm, that adopted a new chromosome
representation method and different crossover and mutation strategies to solve the FJSP [9].
For example, Jiang et al. proposed a discrete grey wolf algorithm to solve FJSP, in which a
search operator based on crossover operation was designed, so that the algorithm could
work directly in the discrete domain, and an adaptive mutation method and variable
neighborhood search were utilized to enhance the search performance of the algorithm [10].
Xu et al. proposed a parallel adaptive hybrid immune algorithm (HIA) to solve FJSP,
where hybrid coding method, adaptive crossover operator, mutation operator based on
coding antibody method, and affinity calculation based on group matching were used.
Furthermore, a hybrid algorithm based on a simulated annealing algorithm was added to
avoid trapping in local optimum [11]. Caldeira et al. proposed an improved Jaya algorithm
to solve FSJP, in which an efficient initialization mechanism, local search technology and
acceptance criteria were introduced to improve the quality of the solution. The test on
203 benchmark instances proved that it was effective in solving the FJSP problem [12].
Wu et al. proposed a non-dominated sorting genetic algorithm optimization algorithm
for solving FJSP with energy consumption as the goal [13]. Zhang et al. designed a
machine selection method including a global selection strategy, a local selection strategy,
and a random selection strategy [14]. Kacem et al. proposed a local search algorithm
that comprehensively considered the size of machine load and operation load to solve
the machine allocation problem and then used a genetic algorithm to solve the operation
sequencing problem [15]. Li et al. proposed a new hybrid algorithm to solve the FJSP by
combining the powerful global search ability of GA with the efficient local search ability
of TS [16]. Zhang et al. proposed a quantum genetic algorithm and applied it to dual
resource-constrained FJSP [17]. Singh et al. introduced mutation factors to speed up
the convergence based on the particle swarm optimization algorithm and used a chaotic
mapping approach to generate initialization values [18]. Wang et al. used an improved ant
colony algorithm to optimize the FJSP, in which the initialization mechanism, pheromone
guidance mechanism, and node selection method were improved [19]. Cruz-Chávez et al.
proposed a simulated annealing algorithm which incorporated a new cooling mechanism
to accelerate convergence [20]. Gao et al. proposed an improved simulated degradation
algorithm to solve the FJSP, combining SA with PSO to improve the simulated annealing
operation and using the better particles to guide the search [21].

The WOA was proposed by Mirjalili et al. and is widely used in many fields, such
as facial recognition [22], power optimization [23], aerospace [24], shop scheduling [25],
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path planning [26], photovoltaic cells [27], fault diagnosis [28], etc. In the field of shop
scheduling, Abdel et al. studied the permutation flow shop scheduling problem using
WOA [29]. Liu et al. optimized the JSP using WOA and used the Lévy flight strategy and
DE strategy to improve the performance of WOA [30]. Luan et al. proposed a discrete
WOA to solve low-carbon FJSP, where a new coding mechanism to solve the allocation
of machines and operations and a hybrid variable neighborhood search to generate high-
quality populations were all used [31]. From the discussions above, the WOA algorithm has
received the growing attention of scholars because of its simple principle, fewer parameters
to be adjusted, and easy implementation. Furthermore, WOA has been proven by many
scholars that its convergence speed and convergence accuracy are higher than some clas-
sical group intelligence optimization algorithms. Therefore, WOA has been widely used
to solve continuous function optimization problems, but seldom in discrete combination
optimization problems, especially in FJSP. Thus, in this paper, a new hybrid whale optimiza-
tion algorithm (HWOA) is studied and adopted to solve the flexible job shop scheduling
problem, which is important to expand its application. Specifically as follows: Firstly,
according to the characteristics of the FJSP discrete combinatorial optimization problem,
the continuous values of the whale positions are mapped to the discrete value; secondly,
the good point set strategy is used to generate the uniformly distributed population in
the initial stage; thirdly, a multi-neighborhood structure is added to explore the depth of
the solution; finally, the population diversity reception mechanism is also used to ensure
population diversity with iteration.

The rest of the paper is organized as follows. Section 2 describes the definition of the
problem. Section 3 introduces the original whale optimization algorithm. Section 4, the
improved HWOA is proposed. Section 5 analyzes the solution results of HWOA on various
international benchmark instances of FJSP. Section 6 summarizes the conclusions of this
paper and presents the research direction of future work.

2. Problem Description

Flexible job shop scheduling can be described as: multiple jobs that need to be operated
on multiple machines, each with multiple operations. Compared to classic JSP, the number
of machines that can operate each operation of a job is no longer a fixed number of machines;
it can be operated by one or more machines [32]. Therefore, FJSP has two assignment tasks:
machine selection and operation sorting. Notations and abbreviations used in the article
are described in Table 1.

Table 1. Notations and abbreviations used in the article.

Symbols Description

n Total number of jobs
m Total number of machines
O Total number of operations
i Job serial number, i ∈ {1, 2, · · · , n}
li Number of operations for each job
j Operation serial number, j ∈ {1, 2, · · · , O}
k Machine serial number, k ∈ {1, 2, · · · , m}

Ek Number of operations assigned to machine k
Oi,j The jth operation of job i
Mi,j The set of available operation machines for the jth operation of job i
Pi,j,k The operation time required for the jth operation of job i on machine k
Si,j The start time of the operation of the jth operation of job i
Ci,j End time of the operation of the jth operation of job i
Ci Completion time of job i

Cmax Makespan

xi,j,k
Binary decision variable that specifies whether the jth operation of job

i is operated at machine k.
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Table 1. Cont.

Symbols Description

OS Operation sequence
MS Machine sequence
len The length of the core path set composed of core operations

GPS Good point set initialization
NCF Nonlinear convergence factor
MNS Multiple neighborhood structure
DRM Diversity receiving mechanism

MRPD Self-deviation percentage
Pro Relative lift percentage
LB Lower bound of test instances
UB Upper bound for test instances

RPD Deviation percentage

FJSP can be divided into two main categories:

(1) In the Total Flexible Job Shop Scheduling Problem (T-FJSP), any operation in any job
can choose any machine from all machines for operations, as shown in Table 2;

(2) Partial Flexible Job Shop Scheduling Problem (P-FJSP), where each operation of each
job can be operated by some of all the machines shown in Table 3.

Table 2. 3 × 4 Instance of T-FJSP.

Job Operation
Machine

M1 M2 M3 M4

i1
O11 6 3 7 3
O12 3 2 6 1

i2
O21 5 1 6 4
O22 3 6 3 7

i3
O31 2 7 1 2
O32 7 3 4 4

Table 3. 3 × 4 Instance of P-FJSP.

Job Operation
Machine

M1 M2 M3 M4

i1
O11 - 3 - 3
O12 3 2 - 1

i2
O21 - 1 - 4
O22 3 - 3 -

i3
O31 2 5 1 -
O32 - 3 4 -

In this study, the optimization objective is to minimize the makespan Cmax, which is
the minimum time required for all jobs to be machined. The mathematical model can be
described as follows:

minCmax = min max{C1, C2, · · · , CI} (1)

Si,j + xi,j,k·Pi,j,k < Si,j+1 (2)

m

∑
i=1

xi,j,k = 1 (3)

Ci ≤ Cmax (4)

Ci,j ≤ Si(j+1) (5)
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Si,j ≥ 0, Ci,j ≥ 0 (6)

Ek ≥ 1, Mi,j ≥ 1 (7)

where Equation (1) is the optimization objective function. Equation (2) indicates that the
preceding step of the current operation of the same job has been completed. Equation (3)
means that an operation can only be operated by one machine. Equation (4) ensures that
the completion time of any one job cannot exceed the total completion time. Equation (5)
requires that the completion time of the current job cannot be greater than the operation
starting time of the next operation of the job. Equation (6) guarantees that all parameter
variables cannot be negative. Equation (7) shows that each machine can operate at least
one operation of the job, with at least one machine available for each operation of the job.

3. Whale Optimization Algorithm

Mirjalili et al., Australian scholars, proposed WOA in 2016 [24]. It has been widely
used in many fields because of its simple principle, easy implementation, few parameters,
high convergence accuracy, and fast convergence. WOA focuses on solving optimization
problems by simulating the group hunting behaviors of humpback whales in nature,
such as the operation of searching, encircling, and chasing. During the search, each
whale has two behaviors to choose from, encircling and bubble net attacking. During the
process of encircling the prey, the whales choose to swim towards the best whale or one
selected randomly.

3.1. Encircling the Prey

In the WOA, the location of the target prey is unknown beforehand, so the current op-
timal whale individual is assumed to be the location of the target prey, and the other whale
individuals approach the optimal individual to form an encirclement. The mathematical
description of this behavior is described as:

→
X(t + 1) =

→
X∗(t)−

→
A·
→
D (8)

→
D = |

→
C ·
→
X∗(t)−

→
X(t)| (9)

→
A = 2a·→r − a (10)
→
C = 2·→r (11)

a = 2−
(

2t
tmax

)
(12)

where t represents the current iteration,
→
A,
→
C are the coefficient vectors, X∗ is the position

vector of the best individual obtained so far,
→
X is the position vector, |·| expresses the

absolute value,
→
r is a random vector within [0,1], a decreases linearly from 2 to 0 as the

number of iterations increases, and tmax indicates the maximum number of iterations.

3.2. Search for The Prey (Exploration Phase)

In the operation of encircling the prey, whales also have a certain probability to
approach other whales, and the mathematical formula for this behavior is as follows:

→
X(t + 1) =

−−−→
Xrand −

→
A·
→
D (13)

→
D = |

→
C ·
−−−→
Xrand −

→
X(t)| (14)

where
−−−→
Xrand is the position vector of any individual in the whales population.
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Whether an individual whale moves closer to the optimal individual position is

determined by the value of the control factor |
→
A|. The whale moves an individual at

random when |
→
A| > 1, position selection is shown in Figure 1; otherwise, the whale moves

closer to the optimal individual. The mathematical description is defined as:

→
X(t + 1) =


→
X∗(t)−

→
A·
→
D |

→
A| < 1

−−−→
Xrand −

→
A·
→
D |

→
A| ≥ 1

(15)

→
D =

|
→
C ·
→
X∗(t)−

→
X(t)| |

→
A| < 1

|
→
C ·
−−−→
Xrand −

→
X(t)| |

→
A| ≥ 1

(16)
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3.3. Bubble-Net Attacking (Exploitation Phase)

When hunting, whales swim in a circle and spew out bubbles to form a bubble net to
hunt prey, as in Figure 2. When forming a bubble net attack, the whale constantly updates
its position in a spiral motion. The mathematical model is described as:

→
X(t + 1) =

→
Dl ·ebl · cos(2πl) +

→
X∗(t) (17)

→
Dl = |

→
X∗(t)−

→
X(t)| (18)

where b is a constant used to define the shape of the spiral usually taken as 1, l is a random
number in [−1, 1].
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The probability that the whale swims in a spiral form to continuously reduce the
envelope is assumed to be P. Then the probability of enveloping its prey is 1− P, and
usually P is set to 0.5. The mathematical model is as follows:

→
X(t + 1) =


→
X∗(t)−

→
A·
→
D P < 0.5

→
Dl ·ebl · cos(2πl) +

→
X∗(t) P ≥ 0.5

(19)

The detailed principle of WOA is shown in Figure 3.
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4. Proposed HWOA
4.1. Encoding and Decoding

FJSP is a discrete combinatorial optimization problem, while WOA is an optimization
algorithm used to solve the continuous optimization problem. Therefore, to solve the
FJSP problem, WOA must be modified through a conversion mechanism. According
to the characteristics of the FJSP problem, the operation sequencing problem and the
machine assignment problem need to be ordered, so a two-layer coding approach including
operation sequence (OS) and machine sequence (MS) is used. The principle can be
described as follows: Firstly, generate the random numbers, of which the number is the
same as the number of operations O; secondly, the generated random numbers are mapped
from small to large, for instance, rand = [0.62, 0.31, 0.37, 0.92, 0.27, 0.15] and the mapping
sequence is rand′ = [6, 5, 2, 3, 1, 4], and the elements in the mapped rand’ are used as the
position index of the job number. Taking Table 2, described as 3 × 4 part of the flexible job
shop scheduling, there are 3 jobs. Each job has 2 operations, each operation by multiple
machinable machines, as an instance, of which encoding, and decoding are depicted in
Figures 4 and 5.
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As shown in Figures 4 and 5, six random numbers are generated, and the OS and
MS are determined based on the mapping sequence of the generated random numbers.
The OS is ordered as follows: the first operation of job 3, the second operation of job 3,
the first operation of job 1, the first operation of job 2, the second operation of job 1, and
the second operation of job 2. According to the order of operation, the table of available
operation machines for the current operation of the job is sequentially queried, and the
machine selected for the current operation of each job is deemed as MS.

Furthermore, decoding can be described as, step 1: Determine the operation time
required for each operation based on the operation sequencing table and the machine
selection table; step 2 determine the end time of every operation, which is determined by
the idle time and the processing time of the corresponding machine; and step 3 compare
the complete times of all the jobs, and the smallest complete time of the job is chosen as
the optimum.

4.2. Population Initialization

The quality of the initial population has a great impact on the performance of the
algorithm to solve the problem. The initial population of WOA is generally generated
randomly, which causes the initial population to be of low quality. Therefore, the theory of
good point set is introduced to generate a uniformly distributed initial population, which
effectively improves the diversity of the population and avoids premature convergence of
the algorithm to a certain extent and is defined mathematically as follows [33]:
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Let G be a unit cube in m-dimensional euclidean space, x = (x1, x2, · · · , xm) ∈ G, the
point set is expressed as:

Pn(k) =
{({

r(m)
1 ∗ k

}
,
{

r(m)
2 ∗ k

}
, · · ·

{
r(m)

n ∗ k
})

, k = 1, 2, · · · n
}

(20)

If the point set deviation satisfies:

ϕ(n) = C(r, ε)n−1+ε (21)

Then Pn(k) is said to be a good point-set, r is a good point:

rk = {2 cos(2πk/p)}, 1 ≤ k ≤ m (22)

In Equation (21), ε is an arbitrary positive number and C(r, ε) is only a constant related
to r, ε. In Equation (22), p is the smallest prime number that satisfies 2m + 3 ≤ p.

For the initial selection of the machine, a hybrid search strategy is used, of which 40%
is generated with reference to the greedy algorithm and 60% is generated randomly to avoid
falling into a local optimum during the iterations. Herein, taking the two-dimensional
scatter plots in Figure 6 as an instance, it can be seen that the initial positions of the
whale individuals initialized with the good point set are more uniformly distributed than
those with random distribution, which can effectively ensure the diversity of the initial
population solutions. The pseudo-code of the good point set initialization is described in
Algorithm 1.

Algorithm 1. The population is initialized by the good point set.

1.Let the population size be G.
2. for n = 1:G do
3. for k = 1:m do
4. P takes the smallest prime number that satisfies p ≥ 2m + 3
5. A matrix with n as rows, m as columns, and all elements in the columns as n
6. Calculate the rk value by Equation (22)
7. The initial population location P is calculated by Equation (20)
8. end for
9. end for
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4.3. Nonlinear Convergence Factor

For swarm intelligence algorithms, how to coordinate the global search and the local
search has a significant impact on the performance of the algorithm. The global search
mechanism ensures that the algorithm can explore more solution space during iteration,
thus avoiding falling into local optima. However, the local search mechanism ensures
that the algorithm can exploit the solution as much as possible and thus speeds up the
convergence of the algorithm. In the basic WOA, the global and local searches are mainly

coordinated by the parameter |
→
A|, and it can be seen from Equation (10) that the value of

|
→
A| is linearly related to the convergence factor a, so the value of a can affect the algorithm’s

global and local search. The value of a in the basic WOA decreases linearly from 2 to 0 as
the number of iterations increases. So, the parameter a leads to a slow convergence of the
algorithm, and it is easy to fall into a local optimum. In fact, the algorithms should have a
strong global search capability in the early search to ensure maintaining a faster convergence
rate, and in the later search, local search should be used to enhance the accuracy of the
solution. Based on the above analysis, it is necessary to introduce a nonlinear convergence
factor [34], whose mathematical expression is:

a = am(1 + cos(π ∗ (t− 1)/(tmax − 1))) (23)

where am is the initial value of the convergence factor a, tmax is the maximum number of
iterations, and t is the current number of iteration. Meantime, comparison of before and
after improvement of convergence factor a is depicted in Figure 7.
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From Figure 7, it can be seen that the improved nonlinear convergence factor a con-
verges more slowly in the early and late stages of the algorithm and more quickly in the
middle stage. Such a convergence approach can well coordinate the global search perfor-
mance of the algorithm in the early stage with the local search performance in the latter
stage and ensure the overall convergence speed of the algorithm.

4.4. Multi-Neighborhood Structure

A new multi-neighborhood structure for FJSP is proposed in which there are three
new neighborhoods, N1, N2, and N3, and the optimization of FJSP is carried out from
different directions.

Neighborhood structure N1: the scheduling solution is optimized in terms of dif-
ferent selection pairings of machines, and the machine selection is updated by a gene
mutation mechanism.
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Neighborhood structure N2: The scheduling solution is optimized in terms of the
operation update mechanism, and a perturbation mechanism is proposed to disturb, in
part, the position of whale individuals and avoid falling into a local optimum.

Neighborhood structure N3: Enhancing local search capability makes it easier for
HWOA to break through the local optimum limit and lock the core operation for updating
as the iteration proceeds.

4.4.1. Neighborhood Structure N1

During each iteration, the excellent machine-set gene sequences in the parent are
retained to execute the machine gene mutation mechanism to obtain an alternative for the
offspring. Let the set of parent machines be Mi = (M1, M2, · · · , Mn). Selection operation:
b mutation points are selected from Mi after each iteration. The value of b decreases with the
number of iterations. Machine gene mutation operation: for the selected b mutation points,
the available operation machine set Mi,j of the current operation is obtained and a new
available operation machine set is generated from Mi,j. The new operation machine set is
M′i =

(
x′i1, x′i2, · · · , x′in

)
. The machine mutation operation is shown in Figures 8 and 9, and

the Gantt chart is shown in Figure 10. The available processing machines and processing
times of each operation for each job are shown in Table 2. The meanings represented by the
symbols Oi,j, Mi,j in the figure are described in Table 3.

Machines 2022, 10, x FOR PEER REVIEW 11 of 35 
 

 

4.4.1. Neighborhood Structure N1 
During each iteration, the excellent machine-set gene sequences in the parent are 

retained to execute the machine gene mutation mechanism to obtain an alternative for the 
offspring. Let the set of parent machines be 𝑀 = (𝑀ଵ,  𝑀ଶ, ⋯ ,  𝑀). Selection operation: 𝑏 
mutation points are selected from 𝑀 after each iteration. The value of b decreases with 
the number of iterations. Machine gene mutation operation: for the selected 𝑏 mutation 
points, the available operation machine set 𝑀, of the current operation is obtained and 
a new available operation machine set is generated from 𝑀,. The new operation machine 
set is 𝑀ᇱ = (𝑥ଵᇱ ,  𝑥ଶᇱ , ⋯ ,  𝑥ᇱ ). The machine mutation operation is shown in Figures 8 and 
9, and the Gantt chart is shown in Figure 10. The available processing machines and 
processing times of each operation for each job are shown in Table 2. The meanings 
represented by the symbols 𝑂,, 𝑀, in the figure are described in Table 3. 

 
Figure 8. Parental machine genes. 

 
Figure 9. Machine gene after mutation. 

Figure 8. Parental machine genes.

Machines 2022, 10, x FOR PEER REVIEW 11 of 35 
 

 

4.4.1. Neighborhood Structure N1 
During each iteration, the excellent machine-set gene sequences in the parent are 

retained to execute the machine gene mutation mechanism to obtain an alternative for the 
offspring. Let the set of parent machines be 𝑀 = (𝑀ଵ,  𝑀ଶ, ⋯ ,  𝑀). Selection operation: 𝑏 
mutation points are selected from 𝑀 after each iteration. The value of b decreases with 
the number of iterations. Machine gene mutation operation: for the selected 𝑏 mutation 
points, the available operation machine set 𝑀, of the current operation is obtained and 
a new available operation machine set is generated from 𝑀,. The new operation machine 
set is 𝑀ᇱ = (𝑥ଵᇱ ,  𝑥ଶᇱ , ⋯ ,  𝑥ᇱ ). The machine mutation operation is shown in Figures 8 and 
9, and the Gantt chart is shown in Figure 10. The available processing machines and 
processing times of each operation for each job are shown in Table 2. The meanings 
represented by the symbols 𝑂,, 𝑀, in the figure are described in Table 3. 

 
Figure 8. Parental machine genes. 

 
Figure 9. Machine gene after mutation. Figure 9. Machine gene after mutation.



Machines 2022, 10, 618 12 of 33
Machines 2022, 10, x FOR PEER REVIEW 12 of 35 
 

 

  
(a) (b) 

Figure 10. (a) Primitive Gantt chart; (b) Variant Gantt chart. 

4.4.2. Neighborhood Structure N2 
The initial population generated by using the good point set can fully ensure the 

diversity of the population in the early stage. However, in the late stage of the algorithm, 
the population diversity would be reduced due to the convergence of population 
individuals. Thus, the neighborhood structure N2 is designed as a perturbation to increase 
the population diversity. Let the population be 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 = (𝑋ଵ,  𝑋ଶ, ⋯ , 𝑋ே) , the whale 
individuals be 𝑋 = (𝑥ଵ,  𝑥ଶ, ⋯ ,  𝑥) , and the adaptive interference probability be 𝑝 . 
Generate a random number 𝑟 during each iteration. If 𝑟 < 𝑝 a disturbance operation is 
generated in this iteration, it generates a random perturbation factor 𝛽 in the interval [0,10]  to disturb the selected elements and generate a new individual  𝑋ᇱ =(𝑥ଵᇱ , 𝑥ଶᇱ , ⋯ , 𝑥ᇱ ), as shown in Figure 11. Which is mathematically described as follows: 𝑋ᇱ = ൜  𝛽 ∗ 𝑥    , 𝑟 < 𝑝  𝑥         , 𝑟 > 𝑝   (24) 𝑝 = 𝑡 2 ∗ 𝑡௫⁄    (25) 

As shown in Figure 11, the perturbation operation occurs when 𝑟 < 𝑝, the number 
of perturbations 𝑧 = 1, the perturbation position 𝑘 = 4, and the random perturbation 
factor 𝛽 = 2. The number of perturbations and position of perturbations are determined 
randomly. 

  
(a) (b) 

Figure 11. (a) Primitive Operation; (b) Disturbance Operation. 

4.4.3. Neighborhood Structure N3 
To enhance the local search capability of the algorithm, N3 uses the core operation 

across-machine gene reinforcement mechanism. Firstly, the sequence is determined which 
consumes the most time from the first operation to the last operation, as the start and end 

Figure 10. (a) Primitive Gantt chart; (b) Variant Gantt chart.

4.4.2. Neighborhood Structure N2

The initial population generated by using the good point set can fully ensure the
diversity of the population in the early stage. However, in the late stage of the algorithm,
the population diversity would be reduced due to the convergence of population indi-
viduals. Thus, the neighborhood structure N2 is designed as a perturbation to increase
the population diversity. Let the population be Popsize = (X1, X2, · · · , XN), the whale
individuals be Xi = (xi1, xi2, · · · , xin), and the adaptive interference probability be p.
Generate a random number r during each iteration. If r < p a disturbance operation is
generated in this iteration, it generates a random perturbation factor β in the interval [0, 10]
to disturb the selected elements and generate a new individual X′i =

(
x′i1, x′i2, · · · , x′in

)
, as

shown in Figure 11. Which is mathematically described as follows:

X′i =
{

β ∗ xk , r < p
xin , r > p

(24)

p = t/2 ∗ tmax (25)
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As shown in Figure 11, the perturbation operation occurs when r < p, the number of
perturbations z = 1, the perturbation position k = 4, and the random perturbation factor β = 2.
The number of perturbations and position of perturbations are determined randomly.

4.4.3. Neighborhood Structure N3

To enhance the local search capability of the algorithm, N3 uses the core operation
across-machine gene reinforcement mechanism. Firstly, the sequence is determined which
consumes the most time from the first operation to the last operation, as the start and end
of core operations. Secondly, between the starting operation and the ending operation,
starting from the ending operation and moving forward to find the operation sequence
that is closely connected to the previous operation. Finally, all the operations found in the
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sequence can neither be advanced nor postponed until the starting operation is stopped, so
that a core operation path is found. This means that any change to the sequence in the core
operation would affect the makespan of the operation as well. To explain the neighborhood
structure N3 in detail, Table 4 FJSP is taken as an instance, and the results are shown in
Figures 12 and 13.

Table 4. 3 × 3 Instance of P-FJSP.

Job Operation
Machine

M1 M2 M3

i1
O11 - 3 3
O12 3 2 1

i2
O21 1 4
O22 3 - 3

i3
O31 2 5 1
O32 - 3 4
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As shown in Figure 12, the gray part is the core operation, which is from the last gray
part to the first gray part. It can be seen that any change in the arrangement of the core
operation would directly affect the makespan. Adopting the core operation across-machine
gene reinforcement mechanism, the core operation is reinforced with machine genes one
by one without prolonging the makespan. During the execution of machine gene mutation
operations in the core operation, only operations that produce positive optimization are
retained, and the set of machine genes in the core operation is continuously enhanced. For
sequences with reduced makespans due to machine set gene changes, which are preserved
in the next generation. As shown in Figures 12 and 13, the set of core operations before
updating are (O11, O31, O32), with a makespan of 12, and the set of core operations after
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updating are (O11, O12, O22), with a makespan of 9. The pseudo-code of the core operation,
across-machine gene reinforcement mechanism, is described in Algorithm 2.

Algorithm 2. Core operation across-machine gene reinforcement mechanism.

1. Let the current core operation arrangement code be OSi,j, the machine arrangement code be
MSi,j,k, the length of the core path set composed of core operations be len, and the fitness function
be F
2. for i = 1 : len
3. Select the i operation on the core path, and the set composed of its operation set OSi,j and
machine set MSi,j,k is denoted as Si.
4. The across-machine gene reinforcement operation is performed on MSi,j,k, and the newly
generated machine set is noted as machinei,j,k, and the set of newly generated machine set and
operation set is noted as Upsi
5. if F(Upsi) < F(Si)
6. MSi,j,k = machinei,j,k
7. end if
8. end for

4.5. Diversity Reception Mechanism

By using the diversity reception mechanism, the algorithm can accept poor individuals
to improve the population diversity, which effectively avoid falling into local optimum. Its
mathematical description is as follows.

P =

{
1, fn ≤ fo

5 ∗ (( fn − fo)/ fo), fn > fo
(26)

where fn is the fitness value of newly generated individuals in the current generation and
fo is the fitness value of individuals in the previous generation. When P = 1, the newly
generated superior whale individual is received completely. Otherwise, a random number
q ∈ [0, 0.5] is generated, and if P < q the newly generated inferior whale individual is
received. The pseudo-code of HWOA is described in Algorithm 3.

Algorithm 3. HWOA.

1. Initialize the parameters and population
2. Calculate the fitness value and save the optimal individual position
3. while t < tmax do
4. for i = 1 : N do
5. Calculate the value of A according to Equation (10), the value of C according to
Equation (11) and the value of the nonlinear convergence factor a according to Equation (23)
6. Generate a random number P within [0, 1]
7. if P ≥ 0.5 do
8. if |A| ≥ 1 do
9. Update individual whale positions according to Equation (8)
10. else if
11. Update individual whale positions according to Equation (13)
12. end if
13. else if
14. Update individual whale positions according to Equation (17)
15. end if
16. end for
17. Perform multi-neighborhood structure updates and retain the resulting improved solutions
18. Carry out the diversity reception mechanism
19. Update the optimal individual position
20. t = t + 1
21. end while
22. end
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5. Experimental Analysis
5.1. Benchmark Functions Test

In order to verify the performance of HWOA, we chose 7 classic benchmark functions
to test [35]. We list the functions in Table 5. Seven benchmark function tools have the fol-
lowing four characteristics: single mode function, multimode function, separable function,
integral function, and to US, MS, the US, and UN tag in Table 5.

Table 5. Details of benchmark functions.

Name Function C Search Range Min

Sphere f1(x) = ∑D
i=1 x2

i US [−100, 100] 0

Sumsquare f2(x) = ∑D
i=1 ix2

i US [−10, 10] 0

Schwefel2.22 f3(x) = ∑D
i=1|xi|+ ∏D

i=1|xi| UN [−10, 10] 0

Rosenbrock f4(x) = ∑D−1
i=1

{
100·

(
xi+1 − x2

i
)2

+ (1− xi)
2
}

UN [−5, 10] 0

Rastrigin f5(x) = ∑D
i=1[x

2
i − 100 cos(2πxi)] + 10D MS [−5.12, 5.12] 0

Ackley f6(x) = −20 exp(−0.2
√

1
D ∑D

i=1 x2
i − exp

(
1
D ∑D

i=1 cos(2πxi)
)
+ 20 + e MN [−32, 32] 0

Levy f7(x) = ∑D−1
i=1 (xi − 1)2∣∣1 + sin2(3πxi+1)

∣∣+ sin2(3πx1) + |xD−1|
[
1 + sin2(3πxD)

]
MN [−10, 10] 0

The computer used in this study is: Windows 10 operating system and an Intel
Pentium Gold G5420 CPU, with a frequency of 3.80 GHZ, and 8 GB of RAM memory using
the MATLAB programming language to realize the following test.

In order to verify the superiority of HWOA, we compared it with the following
seven algorithms: WOA, MFO, GWO, SCA, MWO, DA, and SSA. In order to ensure the
fairness of the experiment, we set up the same experimental parameters and adopted three
dimensions to test: dimension D = 30, 50, and 100. To reduce the influence of randomness,
each algorithm was run 30 times independently.

5.2. Performance Evaluation Compared with Other Algorithms

The results obtained by HWOA, and the other seven algorithms are listed in Tables 6–8.
Table 6 shows the results of the maximum iteration tmax = 500 obtained by HWOA and
the other seven algorithms under 30 dimensions. Table 7 shows the results of tmax = 2000
obtained by HWOA and the other seven algorithms under 50 dimensions. Table 8 shows
the results of tmax = 8000 obtained by HWOA and the other seven algorithms under
100 dimensions. Min is the minimum value obtained from the eight algorithms, Mean
is the mean value obtained by each algorithm independently running at 30, Std is the
benchmark deviation obtained by each algorithm independently running at 30, and Sig is
the Wilcoxon signed-rank test. Analysis is conducted under the significance level of 0.05.
The results are marked as “+/=/−”, corresponding to HWOA superior, equal, and worse
than the comparison algorithm, respectively. The convergence curves of the algorithm in
three dimensions are shown in Figure 14.
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Table 6. Comparison of results for 30-dimension benchmark functions.

Algorithm f1 f2 f3 f4 f5 f6 f7

HWOA
Min 3.42 × 10−132 6.04 × 10−132 2.61 × 10−78 2.62 × 101 0 8.88 × 10−16 2.68 × 10−2

Mean 2.22 × 10−120 4.45 × 10−120 2.29 × 10−71 2.68 × 101 0 3.14 × 10−15 1.40 × 10−1

Std 1.13 × 10−119 2.41 × 10−119 7.84 × 10−71 2.36 × 10−1 0 1.98 × 10−15 1.08 × 10−1

WOA
Mean 1.44 × 10−72 4.41 × 10−78 1.17 × 10−50 2.79 × 101 1.89 × 10−15 3.85 × 10−15 5.19 × 10−1

Std 7.22 × 10−72 1.58 × 10−77 2.77 × 10−50 4.79 × 10−1 1.04 × 10−14 2.48 × 10−15 2.08 × 10−1

sig + + + + + = +

MFO
Mean 2.34 × 103 6.04 × 102 3.64 × 101 5.35 × 106 1.59 × 102 1.46 × 101 2.24 × 102

Std 5.04 × 103 8.47 × 102 1.99 × 101 2.03 × 107 4.07 × 101 7.66 1.09 × 103

sig + + + + + + +

GWO
Mean 1.65 × 10−27 2.44 × 10−28 1.08 × 10−16 2.70 × 101 2.88 1.05 × 10−13 6.53 × 10−1

Std 3.22 × 10−27 3.80 × 10−28 6.52 × 10−17 7.85 × 10−1 4.25 1.97 × 10−14 1.98 × 10−1

sig + + + + + + +

SCA
Mean 1.11 × 101 2.12 2.23 × 10−2 6.33 × 104 2.64 × 101 1.45 × 101 1.13 × 105

Std 3.32 × 101 4.69 3.06 × 10−2 1.34 × 105 3.38 × 101 8.95 2.79 × 105

sig + + + + + + +

MVO
Mean 1.31 × 10 1.40 1.25 × 101 4.76 × 102 1.27 × 102 1.54 2.19 × 10−1

Std 3.71 × 10−1 1.55 3.48 × 101 7.71 × 102 3.37 × 101 4.48 × 10−1 1.57 × 10−1

sig + + + + + + +

DA
Mean 1.69 × 103 2.39 × 102 1.60 × 101 3.10 × 105 1.67 × 102 1.09 × 101 3.23 × 105

Std 6.59 × 102 1.95 × 102 5.52 3.06 × 105 3.77 × 101 1.90 3.98 × 105

sig + + + + + + +

SSA
Mean 4.79 × 10−7 1.83 1.46 1.69 × 102 5.04 × 101 2.75 1.37 × 101

Std 1.14 × 10−6 1.54 1.02 2.63 × 102 1.38 × 101 6.48 × 10−1 1.54 × 101

sig + + + + + + +

The best results are highlighted in boldface.

Table 7. Comparison of results for 50-dimension benchmark functions.

Algorithm f1 f2 f3 f4 f5 f6 f7

HWOA
Min 0 0 2.17 × 10−310 2.34 × 10−2 0 8.88 × 10−16 9.69 × 10−4

Mean 0 0 4.92 × 10−295 4.76 × 10−1 0 3.02 × 10−15 7.16 × 10−2

Std 0 0 0 4.90 × 10−1 0 2.57 × 10−15 1.01 × 10−1

WOA
Mean 9.86 × 10−305 2.47 × 10−300 2.26 × 10−209 4.67 × 101 1.89 × 10−15 4.32 × 10−15 2.00 × 10−1

Std 0 0 0 6.10 × 10−1 1.04 × 10−14 2.72 × 10−15 1.33 × 10−1

sig + + + + + = +

MFO
Mean 8.00 × 103 2.19 × 103 6.97 × 101 1.07 × 107 2.96 × 102 1.89 × 101 2.73 × 107

Std 8.47 × 103 1.93 × 103 3.59 × 101 2.77 × 107 4.65 × 101 2.85 × 100 1.04 × 108

sig + + + + + + +

GWO
Mean 1.70 × 10−91 7.22 × 10−92 1.28 × 10−53 4.68 × 101 1.89 × 10−15 1.58 × 10−14 1.69 × 10

Std 4.06 × 10−91 2.82 × 10−91 1.73 × 10−53 7.93 × 10−1 1.04 × 10−14 2.54 × 10−15 2.88 × 10−1

sig + + + + + + +

SCA
Mean 1.58 × 10−1 9.18 × 10−2 1.45 × 10−5 2.81 × 105 4.58 × 101 1.73 × 101 3.67 × 105

Std 3.33 × 10−1 2.64 × 10−1 4.26 × 10−5 1.19 × 106 3.91 × 101 7.02 × 10 1.29 × 106

sig + + + + + + +

MVO
Mean 6.06 × 10−1 3.00 × 10 1.47 × 101 4.51 × 102 2.25 × 102 1.61 × 10 1.98 × 10−1

Std 1.54 × 10−1 2.44 × 10 4.47 × 101 6.51 × 102 4.70 × 101 5.53 × 10−1 1.38 × 10−1

sig + + + + + + +

DA
Mean 2.78 × 103 5.71 × 102 2.64 × 101 4.02 × 105 2.98 × 102 9.83 × 10 1.61 × 105

Std 1.17 × 103 2.44 × 102 8.71 × 10 2.53 × 105 5.00 × 101 1.16 × 10 1.65 × 105

sig + + + + + + +

SSA
Mean 3.08 × 10−8 7.72 × 10−1 2.34 × 10 1.04 × 102 1.01 × 102 2.75 × 10 3.99 × 101

Std 5.12 × 10−9 1.01 × 10 1.40 × 10 7.38 × 101 2.44 × 101 6.67 × 10−1 2.93 × 101

sig + + + + + + +

The best results are highlighted in boldface.
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Table 8. Comparison of results for 100-dimension benchmark functions.

Algorithm f1 f2 f3 f4 f5 f6 f7

HWOA
Min 0 0 0 2.22 × 10−2 0 8.88 × 10−16 4.47 × 10−4

Mean 0 0 0 3.10 × 10−1 0 2.31 × 10−15 1.96 × 10−2

Std 0 0 0 2.40 × 10−1 0 2.40 × 10−15 3.48 × 10−2

WOA
Mean 0 0 0 9.50 × 101 0 3.73 × 10−15 2.76 × 10−2

Std 0 0 0 3.54 × 10−1 0 2.54 × 10−15 3.94 × 10−2

sig = = = + = + +

MFO
Mean 1.95 × 104 1.47 × 104 1.25 × 102 4.58 × 107 6.40 × 102 1.99 × 101 1.39 × 108

Std 1.61 × 104 7.70 × 103 5.56 × 101 6.95 × 107 7.41 × 101 1.39 × 10−1 2.45 × 108

sig + + + + + + +

GWO
Mean 1.98 × 10−265 8.93 × 10−266 3.26 × 10−156 9.72 × 101 0 1.51 × 10−14 5.71

Std 0 0 0 7.60 × 10−1 0 1.87 × 10−15 3.36 × 10−1

sig + + + + = + +

SCA
Mean 1.84 × 102 5.11 × 101 4.13 × 10−7 4.21 × 106 1.03 × 102 1.94 × 101 2.10 × 107

Std 2.70 × 102 1.19 × 102 1.82 × 10−6 5.18 × 106 6.26 × 101 4.38 2.58 × 107

sig + + + + + + +

MVO
Mean 6.05 × 10−1 1.04 × 101 7.14 × 104 4.12 × 102 5.81 × 102 4.07 1.13

Std 1.10 × 10−1 5.81 3.90 × 105 6.34 × 102 8.02 × 101 6.19 2.73
sig + + + + + + +

DA
Mean 3.08 × 103 1.68 × 103 4.46 × 101 4.45 × 105 6.17 × 102 8.11 1.17 × 105

Std 1.36 × 103 7.42 × 102 1.66 × 101 3.44 × 105 1.49 × 102 1.93 2.29 × 105

sig + + + + + + +

SSA
Mean 8.03 × 10−8 1.49 6.24 1.81 × 102 2.06 × 102 3.78 1.27 × 102

Std 8.91 × 10−9 1.79 3.27 1.61 × 102 4.48 × 101 7.02 × 10−1 2.63 × 101

sig + + + + + + +

The best results are highlighted in boldface.

As can be seen in Tables 6–8, HWOA outperforms the other seven algorithms in
both mean results and standard deviation at 30- and 50-dimensions, and in the Wilcoxon
signed-rank test results, HWOA and WOA achieve the same performance results in the
benchmark function f6, but the other six criterion functions, and our proposed HWOA
in the Wilcoxon signed-rank test results all outperformed the other algorithms, and at 50-
dimensions, HWOA found the optimal values in the benchmark functions f1, f2, and f5.
In 100 dimensions, HWOA finds the optimal values in the benchmark functions f1, f2, f3,
and f5. Although WOA also finds the optimal values in the benchmark functions f1, f2, f3,
and f5, it can be seen from the data in Tables 6–8 and Figure 14 that the proposed HWOA
outperforms the other seven algorithms in terms of convergence speed for different dimen-
sions. These results show that HWOA shows strong robustness for different dimensional
problems and also proves the superiority of our proposed HWOA algorithm.
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5.3. Application to Flexible Job Shop Scheduling
5.3.1. Experimental Settings

The parameters of HWOA are set as follows: population size of 100, vector dimension
n , spiral coefficient b = 1, maximum number of iterations tmax = 500, and am = 1.

In order to verify the feasibility and effectiveness of the HWOA, four sets of inter-
nationally known instances and a set of randomly generated instances are selected. The
first set of FJSP instances proposed by Brandimate [36] includes 10 representative FJSP
problems, named Mk01-Mk10, which are one of the standard instances for studying FJSP at
present. The second set of FJSP instances proposed by Kacem [15] contains five instances of
FJSP of different sizes. The third set of instances is the Fattahin instances, which consists
of a total of 18 small and medium-sized FJSPs. The fourth set of instances is the Hurink
base instance (vdata) with a high degree of flexibility, which has 40 FJSPs of different sizes.
The fifth group is the randomly generated FJSP instances, with four large-scale FJSPs. The
values of the instance data obey a uniform distribution within a certain range, the number
of operations for each job is the same, the available operation machines are randomly
generated within the total number of machines, and the operation corresponding time is
generated within [1, 100]. In order to eliminate the randomness in the experimental process,
multiple tests are conducted on each instance.
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5.3.2. Strategy Validity Verification

Four strategies are used to improve the efficiency of the HWOA algorithm for FJSP,
which include good point set initialization (GPS), nonlinear convergence factor (NCF),
multiple neighborhood structure (MNS), and diversity receiving mechanism (DRM). The
strategy of adding GPS and NCF in WOA is named HWOA-1, the policy of adding N1
and N2 neighborhoods in HWOA-1 is named HWOA-2, and the approach of adding N3
neighborhoods in HWOA-2 is named HWOA. HWOA-1, HWOA-2, and HWOA all contain
DRM in the three algorithms. For a fair comparison, each algorithm has 10 dependent runs
for each trial. LB and UB are the lower and upper limits of the test case, respectively. Cmin
is the minimum value of each algorithm in 10 runs, and Cmean is the mean value. Omin is
the minimum value of all algorithms compared in 10 runs, MPRD is the relative deviation
percentage of Omin, which is calculated as in Equation (27), and the relative lift percentage
Pro is calculated by Equation (28).

MRPD =
Cmin −Omin

Omin
× 100 (27)

Pro =
Oar− Crr

Oar
× 100% (28)

where Crr and Oar are the best values obtained in 10 runs by HWOA and the original
WOA, respectively.

As for the data in Table 9, the first column is the name of the instance, the second
column is the size of the instance, the third column is the internationally published optimal
lower bound for the instance, and the fourth column is the internationally published upper
bound for the solution of the instance.

Table 9. BRdata Instance Verification.

BRdata n ×m LB UB
WOA HWOA-1 HWOA-2 HWOA

Cmin Cmean Cmin Cmean Cmin Cmean Cmin Cmean

MK01 10 × 6 36 42 42 45.7 42 44.3 40 41.8 40 41.3
MK02 10 × 6 24 32 33 39.9 33 36.5 27 28.4 26 27.5
MK03 15 × 8 204 211 231 235.1 223 228.3 204 213.1 204 207.4
MK04 15 × 8 48 81 73 76.3 73 74.7 64 67.3 62 63.8
MK05 15 × 4 168 186 175 181.5 175 181.9 173 177.3 173 174.5
MK06 10 × 15 33 86 98 101.7 98 100.7 65 69.5 62 65.4
MK07 20 × 5 133 157 154 158.7 155 160.7 145 147.6 143 145.2
MK08 20 × 10 523 523 531 541.8 531 539.3 523 526.1 523 523
MK09 20 × 10 299 369 379 392.5 383 391.5 312 327.9 310 319.9
MK10 20 × 15 165 296 271 302.4 265 296.5 224 233.3 216 220.3

The best results are highlighted in boldface.

From Table 9, it can be seen that the HWOA algorithm shows superior capability in
the BRdata standard instance, and all the results are better than those of WOA, HWOA-1,
and HWOA-2. Although some of the results do not reach the lower limit of the instance,
they are within reasonable limits. HWOA-1 and WOA obtain the same minimum value
Cmin in MK02, MK04, MK06, MK09, and MK10, but the overall results of HWOA-1 are
better than those of WOA under the synergistic effect of GN and NCF strategies.

From Figure 15, it can be concluded that HWOA achieves a better solution in the
MK01 instance compared to WOA and HWOA-1, and converges to a superior solution
earlier compared to HWOA-2. In Figure 16, it can be seen that the mean value obtained by
HWOA-1 with GPS and NCF strategies for solving the BRdata standard instance is superior
to those obtained by WOA. HWOA-2, with the addition of N1 and N2 neighborhood
structures, has significantly better results than WOA and HWOA-1. Furthermore, the
HWOA algorithm with the addition of the N3 neighborhood structure strategy does have
the best results relative to the other three algorithms.
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It can be seen in Table 10 that the HWOA algorithm achieves the best results for
15 international benchmark instances of different sizes. For the five international benchmark
instances of Kacem and the 10 international benchmark instances of BRdata, the percentage
improvement of the results obtained by HWOA relative to those obtained by WOA reaches
16.19%, HWOA-2 14.81%, and HWOA-1 2.95%, all of which show an improvement.

Table 10. Comparison of four algorithms.

Kacem,
BRdata n ×m LB

WOA HWOA-1 HWOA-2 HWOA

MPRD Pro(%) MPRD Pro(%) MPRD Pro(%) MPRD Pro(%)

Kac01 4 × 5 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Kac02 8 × 8 14 57.14 0.00 14.28 27.27 0.00 36.36 0.00 36.36
Kac03 10 × 7 11 27.27 0.00 27.27 0.00 0.00 21.42 0.00 21.42
Kac04 10 × 10 7 14.28 0.00 0.00 12.50 0.00 12.50 0.00 12.50
Kac05 15 × 10 11 27.27 0.00 27.27 0.00 9.09 14.28 0.00 21.42
MK01 10 × 6 36 5.00 0.00 5.00 0.00 0.00 4.76 0.00 4.76
MK02 10 × 6 24 26.92 0.00 26.92 0.00 3.84 18.18 0.00 21.21
MK03 15 × 8 204 13.23 0.00 9.31 3.46 0.00 11.68 0.00 11.68
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Table 10. Cont.

Kacem,
BRdata n ×m LB

WOA HWOA-1 HWOA-2 HWOA

MPRD Pro(%) MPRD Pro(%) MPRD Pro(%) MPRD Pro(%)

MK04 15 × 8 48 17.74 0.00 17.74 0.00 3.22 12.32 0.00 15.06
MK05 15 × 4 168 1.15 0.00 1.15 0.00 0.00 1.14 0.00 1.14
MK06 10 × 15 33 58.06 0.00 58.06 0.00 4.83 33.67 0.00 36.73
MK07 20 × 5 133 7.69 0.00 8.39 −0.64 1.39 5.84 0.00 7.14
MK08 20 × 10 523 1.53 0.00 1.53 0.00 0.00 15.06 0.00 15.06
MK09 20 × 10 299 22.25 0.00 19.06 −1.05 0.64 17.67 0.00 18.20
MK10 20 × 15 165 25.46 0.00 22.68 2.21 3.70 17.34 0.00 20.29
Mean - - 20.33 0.00 15.91 2.95 1.78 14.81 0.00 16.19

We show two Gantt charts for solving the Kacem instance and the BRdata instance
using HWOA in Figures 17 and 18, respectively. These two instances are the Kacem03
instance and the MK10 instance, with problem sizes of 10 machines, seven jobs, and
15 machines, 20 jobs, respectively.
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5.3.3. Performance Verification

In the following tests, the HWOA is compared with several algorithms from the litera-
ture on different international benchmark instances. In addition to the comparison with the
better solutions obtained by each algorithm, the RPD tests on the results of the different
algorithms for all instances are also performed, which is calculated by Equation (29), where
LB is the lower limit of the test instance and Cmin is the minimum makespan of the instance
obtained from multiple runs of the current algorithm.

RPD =
Cmin − LB

LB
× 100 (29)

In order to minimize the influence of the randomness of the algorithm, the following
comparison experiments were repeated over 20 runs.

Comparison Experiment 1

To further validate the performance of the HWOA, a set of FJSP instances proposed by
Brandimate are used in Experiment 1, which has a total of 10 medium-sized FJSPs. Algo-
rithms were introduced by several scholars for comparison, such as OPSO [6], PPSO [37],
KBACO [38], Heuristic [39], IWOA [40], and NIMASS [41]. The results are presented in
Tables 11 and 12.

As can be seen from Table 11, HWOA achieves optimal solutions for five of the
10 instances compared with the other six algorithms, and the remaining five achieve
suboptimal solutions, which is excellent overall. As for the PRD in Table 12, it can be
concluded that the HWOA proposed in this paper has the smallest overall mean PRD
value among the results obtained by the seven algorithms, which can also be seen in that
the international known lower bound solutions are found in MK03 and MK08, and the
deviations of the better solutions found by HWOA from the internationally known lower
bound solutions of the four instances of MK02, MK05, MK07, and MK09 are also small, at
between 2% and 9%. A BRdata instances box plot of HWOA and the other six algorithms is
shown in Figure 19.
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Table 11. Comparison of different algorithms in BRdata.

BRdata n ×m
OPSO PPSO KBACO Heuristic IWOA NIMASS HWOA

Cmin Cmin Cmin Cmin Cmin Cmin Cmin

MK01 10 × 6 41 40 39 42 40 40 40
MK02 10 × 6 26 29 29 28 26 28 26
MK03 15 × 8 207 204 204 204 204 204 204
MK04 15 × 8 65 66 65 75 60 65 62
MK05 15 × 4 171 175 173 179 175 177 173
MK06 10 × 15 61 77 67 69 63 67 62
MK07 20 × 5 173 145 144 149 144 144 143
MK08 20 × 10 523 523 523 555 523 523 523
MK09 20 × 10 307 320 311 342 339 312 310
MK10 20 × 15 312 239 229 242 242 229 216

Table 12. RPD value validation for comparison algorithm in BRdata.

BRdata n ×m
OPSO PPSO KBACO Heuristic IWOA NIMASS HWOA

RPD RPD RPD RPD RPD RPD RPD

MK01 10 × 6 11.11 11.11 8.33 16.67 11.11 11.11 11.11
MK02 10 × 6 12.5 20.83 20.86 16.67 8.33 20.86 8.33
MK03 15 × 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MK04 15 × 8 29.16 37.50 35.41 56.25 25.00 35.41 29.16
MK05 15 × 4 5.95 4.16 2.97 6.54 4.16 5.35 2.97
MK06 10 × 15 136.36 133.33 103.03 109.09 90.90 103.03 87.87
MK07 20 × 5 10.52 9.02 8.27 12.03 8.27 8.27 7.51
MK08 20 × 10 0.00 0.00 0.00 6.12 0.00 0.00 0.00
MK09 20 × 10 14.04 7.02 4.01 14.38 13.37 4.34 3.67
MK10 20 × 15 50.91 44.84 38.78 46.66 46.66 38.78 30.90
Mean - 27.05 26.78 22.16 28.44 20.78 22.71 18.15
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Comparison Experiment 2

The Kacem instances are introduced to reflect the effectiveness of the HWOA algorithm,
which is compared with the four algorithms KBACO [38], HGWO [42], IWOA [40], and
EQEA [4]. The experiment results are listed in Tables 13 and 14. In HWOA, KBACO, and
EQEA, the three algorithms perform well in both Cmin and RPD.
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Table 13. Comparison of different algorithms in Kacem.

Kacem n ×m
KBACO HGWO IWOA EQEA HWOA

Cmin Cmin Cmin Cmin Cmin

Kac01 4 × 5 11 11 11 11 11
Kac02 8 × 8 14 14 14 14 14
Kac03 10 × 7 11 11 13 11 11
Kac04 10 × 10 7 7 7 7 7
Kac05 15 × 10 11 13 14 11 11

Table 14. RPD value validation for comparison algorithm in Kacem.

Kacem n ×m
KBACO HGWO IWOA EQEA HWOA

RPD RPD RPD RPD RPD

Kac01 4 × 5 0.00 0.00 0.00 0.00 0.00
Kac02 8 × 8 0.00 0.00 0.00 0.00 0.00
Kac03 10 × 7 0.00 0.00 18.18 0.00 0.00
Kac04 10 × 10 0.00 0.00 0.00 0.00 0.00
Kac05 15 × 10 0.00 18.18 27.27 0.00 0.00

Comparison Experiment 3

Fattahin instances are selected to verify the performance of the HWOA, which contains
a total of 18 FJSPs, and the results of comparing HWOA with the following six algorithms:
FPA [43], M2 [44], HA [16], GOA [45], AIA [46], and EPSO [47] are presented in Tables 15 and 16.
As can be seen, HWOA achieves known lower bound solutions in 10 instances, and achieves
well-known solutions together with HA and EPSO in eight instances. Overall, HWOA
outperforms the four algorithms FPA, M2, GOA, and AIA in the Fattahin instances test.

Table 15. Comparison of different algorithms in Fattahin.

Fattahin n ×m LB
FPA M2 HA GOA AIA EPSO HWOA

Cmin Cmin Cmin Cmin Cmin Cmin Cmin

SFJS01 2 × 2 66 66 66 66 66 66 66 66
SFJS02 2 × 2 107 107 107 107 107 107 107 107
SFJS03 3 × 2 221 221 221 221 221 221 221 221
SFJS04 3 × 2 355 355 355 355 355 355 355 355
SFJS05 3 × 2 119 119 119 119 119 119 119 119
SFJS06 3 × 3 320 320 320 320 320 320 320 320
SFJS07 3 × 5 397 397 397 397 397 397 397 397
SFJS08 3 × 4 253 253 253 253 253 253 253 253
SFJS09 3 × 3 210 210 210 210 210 210 210 210
SFJS10 4 × 5 516 516 516 516 533 516 516 516
MFJS01 5 × 6 396 469 468 468 469 468 468 468
MFJS02 5 × 7 396 446 446 446 457 448 446 446
MFJS03 6 × 7 396 470 466 466 538 468 466 466
MFJS04 7 × 7 496 554 564 554 610 554 554 554
MFJS05 7 × 7 414 516 514 514 613 527 514 514
MFJS06 8 × 7 469 636 634 634 721 635 634 634
MFJS07 8 × 7 619 879 928 879 1092 879 879 879
MFJS08 9 × 8 619 884 - 884 1095 884 884 884

- Means the result was not given by the author.
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Table 16. RPD value validation for comparison algorithm in Fattahin.

Fattahin n ×m LB
FPA M2 HA GOA AIA EPSO HWOA

RPD RPD RPD RPD RPD RPD RPD

SFJS01 2 × 2 66 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS02 2 × 2 107 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS03 3 × 2 221 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS04 3 × 2 355 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS05 3 × 2 119 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS06 3 × 3 320 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS07 3 × 5 397 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS08 3 × 4 253 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS09 3 × 3 210 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFJS10 4 × 5 516 0.00 0.00 0.00 3.29 0.00 0.00 0.00
MFJS01 5 × 6 396 18.43 18.18 18.18 18.43 18.18 18.18 18.18
MFJS02 5 × 7 396 12.62 12.62 12.62 15.40 13.13 12.62 12.62
MFJS03 6 × 7 396 18.68 17.67 17.67 35.85 18.18 17.67 17.67
MFJS04 7 × 7 496 11.69 13.71 11.69 22.98 11.69 11.69 11.69
MFJS05 7 × 7 414 24.63 24.15 24.15 48.06 27.29 24.15 24.15
MFJS06 8 × 7 469 35..60 35.18 35.18 53.73 35.39 35.18 35.18
MFJS07 8 × 7 619 42.00 49.92 42.00 76.41 42.00 42.00 42.00
MFJS08 9 × 8 619 42.81 - 42.81 76.89 42.81 42.81 42.81

- Means the result was not given by the author.

Comparison Experiment 4

Forty instances of the Hurink benchmark with high flexibility are selected. Since
no lower limit is published for this instance, the well-known solutions obtained by other
scholars to solve these instances are used as the lower limit for comparison. This experiment
uses the results obtained for these instances in the HA [15] published by Li and Gao in 2016
as the effective lower bound benchmark. In Table 17, the results of the comparison with the
following three algorithms are included: N1-1000 [48], N2-1000 [48], and IJA [12].

Table 17. RPD value validation for comparison algorithm in Hurink (Vdata).

Vdata
N1-1000 N2-1000 IJA HWOA

RPD RPD RPD RPD

La01–La05 0.78 0.59 0.00 0.00
La06–La10 0.20 0.15 0.00 0.00
La11–La15 0.20 0.40 0.00 0.00
La16–La20 0.00 0.00 0.00 0.00
La21–La25 6.90 1.97 0.77 0.64
La26–La30 0.26 0.25 0.13 0.09
La31–La35 0.06 0.01 0.01 0.01
La36–La40 0.00 0.00 0.00 0.00

Mean 1.050 0.421 0.114 0.093

As can be seen from the results in Table 17, HWOA achieves good results in the
Hurink benchmark instances with a high degree of flexibility. The results obtained in most
instances are consistent with the lower bound value, while the percentage deviation of
the solution obtained from the HWOA solution with respect to the well-known solution is
smaller than that obtained by the other three algorithms. Based on the comparison results
of these instances, it can be concluded that HWOA performs equally well in solving highly
flexible problems.
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Comparison Experiment 5

Four randomly generated large-scale FJSP instances are tested by HWOA, which is
compared with WOA [24], MWOA [49], and IWOA [40]. The results of the comparative
test for this instance are presented in Table 18.

Table 18. Comparison of different algorithms in Ra.

Ra n ×m
WOA MWOA IWOA HWOA

Cmin Cmean CPU Cmin Cmean CPU Cmin Cmean CPU Cmin Cmean CPU
Ra01 30 × 15 2524 2664.6 152.77 2344 2419.2 106.13 2273 2397.2 169.36 1751 1857.7 96.81
Ra02 45 × 15 3522 3691.2 203.04 3336 3417.5 114.91 3190 3354.1 223.03 2715 3939.2 116.45
Ra03 50 × 10 3269 3382.4 152.77 3090 3168.2 95.82 3007 3193.4 169.36 2734 2878.4 98.84
Ra04 60 × 15 4454 4660.6 283.36 4261 4318.2 153.72 3947 4231.9 310.01 3669 3836.3 137.17

The best results are highlighted in boldface.

The convergence curve of the four algorithms, WOA, MWOA, IWOA, and HWOA
solving Ra instances is depicted in Figure 20. As can be seen, HWOA achieves the best
results among the four algorithms. The reasons for this are as follows: First, the good point
set population initialization mechanism assists HWOA in finding a good solution space at
the beginning of the iteration, resulting in rapid convergence and reduced running time;
second, the multi-neighborhood structure in the iterative operation ensures that HWOA
keeps breaking through the dilemma to avoid falling into a local optimum; and third, the
diversity reception mechanism also ensures the population diversity also of HWOA, which
improves computational accuracy. The scheduling Gantt chart for Ra instances is shown in
Figure 21.
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6. Conclusions

In this study, a novel hybrid whale optimization algorithm (HOWA) is proposed
to solve the flexible job shop scheduling problem with the objective of minimizing the
maximum makespan. The Whale Optimization Algorithm (WOA) is a new intelligent
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algorithm commonly used to solve optimization problems, and the WOA has been validated
by most scholars in solving continuous problems. In this study, WOA is used to solve the
discrete FJSP by a certain transformation. A variety of effective strategies are added to
WOA, namely HWOA, to make it better for solving FJSP. Firstly, the initial population is
generated by introducing the theory of good point set (GPS) to make the distribution of the
initial population more uniform and have more comprehensive coverage in the initial stage.
Secondly, in order to make the convergence factor a in WOA play a better coordination role,
a nonlinear convergence factor (NCF) a is proposed to coordinate the global search and local
search in WOA. Thirdly, a new multi-neighborhood structure (MNS) is proposed, within
which a total of three new neighborhoods are included. The N1 neighborhood structure
optimizes the scheduling solution in terms of different selections of machine pairings, the
N2 neighborhood structure optimizes the scheduling solution in terms of the operation
update mechanism; and the N3 neighborhood structure is used to enhance the local search
capability of HWOA. Finally, a population diversity reception mechanism (DRM) that
ensures to some extent that populations do not lose population diversity with iteration.
Finally, seven international standard functions, including 30-, 50-, and 100-dimensions, are
used to test the HWOA, and the results show that HWOA has a strong search ability on
almost all the tested functions. 73 international benchmark instances of FJSP of different
sizes and flexibility, and four randomly generated large-scale FJSP instances are used to
perform performance tests on HWOA and verify the effectiveness of HWOA, which further
demonstrates that HWOA shows strong competitiveness. Especially in the BRdata instance,
HWOA improves by 36.73% relative to WOA, and in the Kacem instance, HWOA improves
by 36.36% relative to WOA, with an average improvement rate of 16.19% in both instances.
With reference to the experimental results, the maximum Pro of HWOA relative to OPSP,
PPSO, KBACO, Heuristic, IWOA, and NIMASS is 44.44%, 24.19%, 11.54%, 20.97%, 12.04%,
and 8.06%, respectively. To sum up, HWOA has strong robustness. For future research,
multiple objectives of FJSP would be considered to better adapt to the complicated scenarios
of enterprise production.
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