
Citation: Wang, L.; Ye, X.; Wang, S.;

Li, P. ULO: An Underwater

Light-Weight Object Detector for

Edge Computing. Machines 2022, 10,

629. https://doi.org/10.3390/

machines10080629

Academic Editor: Antonios

Gasteratos

Received: 5 July 2022

Accepted: 27 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

ULO: An Underwater Light-Weight Object Detector for
Edge Computing †

Lin Wang 1 , Xiufen Ye 1,* , Shunli Wang 1 and Peng Li 2

1 College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
wanglin0222@hrbeu.edu.cn (L.W.); wangshunli@hrbeu.edu.cn (S.W.)

2 Management School, Harbin Commerce University, Harbin 150080, China; lipeng@hrbcu.edu.cn
* Correspondence: yexiufen@hrbeu.edu.cn
† This paper is an extended version of our paper published in YOLO Nano Underwater: A fast and compact

object detector for embedded device.

Abstract: Recent studies on underwater object detection have progressed with the development of
deep-learning methods. Generally, the model performance increase is accompanied by an increase
in computation. However, a significant fraction of remotely operated underwater vehicles (ROVs)
and autonomous underwater vehicles (AUVs) operate in environments with limited power and
computation resources, making large models inapplicable. In this paper, we propose a fast and
compact object detector—namely, the Underwater Light-weight Object detector (ULO)—for several
marine products, such as scallops, starfish, echinus, and holothurians. ULO achieves comparable
results to YOLO-v3 with less than 7% of its computation. ULO is modified based on the YOLO Nano
architecture, and some modern architectures are used to optimize it, such as the Ghost module and
decoupled head design in detection. We propose an adaptive pre-processing module for the image
degradation problem that is common in underwater images. The module is lightweight and simple to
use, and ablation experiments verify its effectiveness. Moreover, ULO Tiny, a lite version of ULO, is
proposed to achieve further computation reduction. Furthermore, we optimize the annotations of the
URPC2019 dataset, and the modified annotations are more accurate in localization and classification.
The refined annotations are available to the public for research use.

Keywords: object detection; edge computing; adaptive pre-processing; underwater

1. Introduction

The demand for aquatic products is growing. The poor operating environment of
manual underwater fishing, the high risk to personnel safety, and the increased workforce
cost have limited the industry’s scale. As artificial intelligence has been applied to an
increasing number of remotely operated underwater vehicles (ROVs) and autonomous
underwater vehicles (AUVs), there has been a trend to use robots to catch marine products
autonomously or semi-autonomously.

Many object detection and recognition algorithms have been directly transferred to
marine research and industrial use, promoting the development of these fields. However, a
large proportion of ROVs or AUVs work under power limitations (for instance, through
battery power), and their endurance is closely related to the operating power of the onboard
devices. Therefore, more efficient and lightweight algorithms become an immediate need
for these devices with severely limited computational resources.

Since R-CNN [1] made convolutional neural networks popular in object detection,
many state-of-the-art object detection architectures have been proposed. They can be
roughly divided into two-stage object detection methods and single-stage methods. Two-
stage methods, such as R-CNN, obtain the final results based on the region proposals
selected as the first step. Though the subsequent Fast R-CNN [2] and Faster R-CNN [3]
reduced the inference time, they still cannot meet the needs of the edge computing devices.

Machines 2022, 10, 629. https://doi.org/10.3390/machines10080629 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10080629
https://doi.org/10.3390/machines10080629
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-2374-0725
https://orcid.org/0000-0001-9812-2679
https://doi.org/10.3390/machines10080629
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10080629?type=check_update&version=3

Machines 2022, 10, 629 2 of 13

One-stage methods, such as SSD [4] and YOLO [5], were proposed for a better prac-
tical use as they search for the objects in the whole picture without the step for selecting
proposals, which have better performance on the inference time. Recently, researchers
have also used machine-learning methods to assist in searching efficient network architec-
tures [6–9]. These auto-designed architectures can have a good balance between accuracy
and inference time.

In this paper, we propose an underwater light-weight object detector—namely, ULO—
for aquatic products, i.e., scallops, starfish, echinus, and holothurians, and this runs on edge
computing devices, such as the NVIDIA Jetson Nano, with competitive performance. Moreover,
we provide a lite version of ULO, ULO Tiny, which reduces the computation further.

Furthermore, an adaptive pre-processing module is proposed as a plug-in block,
which benefits the detection performance. Furthermore, we optimized the annotations
of the URPC2019 dataset and provided more accurate locations and labels of the targets.
Code and refined labels will be available. (Code: https://github.com/wangsssky/YOLO_
Underwater, Refined annotations: https://github.com/wangsssky/Refined-training-set-
of-URPC2019/, accessed on 26 July 2022).

The preliminary work [10] was presented at the conference IEEE OCEANS 2020. In
this journal extension, we updated our original work with concrete improvements in both
structural designs and more comprehensive experiments.

• First, the novel network structures, ULO and ULO Tiny, are proposed, which further
reduce the requirements of computation resources.

• Secondly, the adaptive pre-processing module is introduced as a light-weight and easy
image enhancement method.

• Thirdly, more comprehensive experiments are conducted to evaluate the proposed
networks fully.

The rest of the paper is organized as follows: Section 2 introduces the URPC2019
dataset for underwater object detection and our optimizations to the annotations. Section 3
provides the details of the proposed networks and modules, such as YOLO Nano Underwater,
ULO, and ULO Tiny. In Section 4, we evaluate the proposed networks on the URPC2019
dataset and conduct an ablation study on the adaptive pre-processing module. Section 5
concludes this paper.

2. Dataset

A customized version of the dataset of the underwater robot picking contest 2019
(The competition website: http://www.urpc.org.cn/index.html, accesed on 29 July 2022)
(URPC2019) is used in this work. The dataset consists of 4757 underwater images with
corresponding annotations. Four types of objects are included, i.e., scallops, starfish,
echinus, and holothurians, which are commonly farmed products in the ocean.

Underwater optical images are often blurred due to the attenuation of light in the
underwater environment [11]. As a result, underwater targets are also more difficult to
label and are prone to category errors and deviations in the boundaries of bounding boxes.
Therefore, to evaluate the algorithm results more reasonably, the annotations of the dataset
are optimized.

Compared to the original annotations, the refined bounding boxes are more accurate
with fewer classification mistakes. Figure 1 shows some examples of the URPC2019 dataset
and the comparisons between the refined and the original bounding boxes. To encourage
the research of underwater object detection, we release the modified annotations to the
public for academic use.

For the following experiments, the images are randomly divided into the training,
validation, and testing sets. The ratio of the number of training/validation and testing
images are roughly set at 5:1 by convention. Specifically, there are 3600, 400, and 757 images
in training, validation, and testing sets, respectively.

https://github.com/wangsssky/YOLO_Underwater
https://github.com/wangsssky/YOLO_Underwater
https://github.com/wangsssky/Refined-training-set-of-URPC2019/
https://github.com/wangsssky/Refined-training-set-of-URPC2019/
http://www.urpc.org.cn/index.html

Machines 2022, 10, 629 3 of 13

Figure 1. Examplesof the underwater images in the URPC2019 dataset. We show the original
annotations (above) and the optimized annotations (below) corresponding to each image. The refined
bounding boxes contain fewer annotations errors of missing, mislabeling, and inaccurate positioning
caused by blurred images. Better viewed in zoom and color.

3. Methods

YOLO- [5,10,12–16] like object detectors are widely used both in academic scenarios
and industries for its excellent balance of performance and efficiency, which has been
proven to be a classic and pivotal approach of one-stage detection networks in practical
applications. In this paper, we propose a compact YOLO-like network structure for compu-
tation resources limited devices, which applies to autonomous marine vehicles. Moreover,
we propose an adaptive image enhancement module for the case of severe degradation
of underwater image quality. In the section, the originally proposed network structure,
YOLO Nano Underwater, is first introduced, and then the novel improvements made in this
extension are presented.

3.1. YOLO Nano Underwater

YOLO Nano [6] is designed to be a highly compact neural network based on the
YOLO-v3 network by the collaboration of machine-driven and human-specified design.

Machines 2022, 10, 629 4 of 13

The YOLO Nono network achieves a dramatic reduction in the number of parameters and
the amount of computation compared to YOLO-v2 and YOLO-v3 [6].

YOLO Nano Underwater is proposed based on the carefully designed YOLO Nano
network with two improvements. First, we remove several layers to further reduce the
number of parameters and the floating-point operations (FLOPs). Moreover, setting the
number of channels to an integer multiple of 8 helps to fully utilize the processing units of
the hardwares [17]. Therefore, we align the filter number of the convolutional layers to 8×.

The basic macro structures of YOLO Nano Underwater are kept the same as YOLO
Nano, and the network is stacked by the modules of the residual Projection Expansion
Projection (PEP), Expansion Projection (EP), and Fully Connected Attention (FCA). The
EP module is a depth-wise separable comvolution [18,19] with expanded channels. The
PEP module adds a convolutional layer with kernel size 1 × 1 before the EP module,
which projects the input into a lower dimension and reduces the computation [6]. The
FCA module introduces the attention mechanism into the architecture, which helps the
network pay greater attention to informative features. Figure 2 shows the architecture of
the proposed YOLO Nano Underwater.

EP moduleFCA modulePEP module

Conv3x3

Conv1x1

Depthwise Conv3x3

EP module

PEP module

FCA module

Fully connected layer

Im
a

g
e

Legend

fn
=1

6

fn
=3

2
, s

tr
id

e=
2

(hid, out, ratio)

fn
=h

id

fn
=h

id
 *

 r
at

io

fn
=h

id
 *

 r
at

io

fn
=o

u
t

(in, out, ratio)

fn
=i

n
 *

 r
at

io

fn
=i

n
 *

 r
at

io

fn
=o

u
t

Adaptive average pooling

(in, ratio)

o
u

t=
in

 /
 r

at
io

o
u

t=
in

(8
, 3

2
, 3

)

(3
2

, 6
4

, 3
),

 s
tr

id
e

=2

(1
6

, 6
4

, 3
)

(1
6

, 6
4

, 3
)

(6
4

, 1
2

8
, 3

),
 s

tr
id

e=
2

(3
2

, 1
2

8
, 3

)

fn
=1

2
8

(1
2

8
, 8

)

(3
2

, 1
2

8
, 3

)

(3
2

, 1
2

8
, 3

)

(1
2

8
, 2

5
6

, 3
),

 s
tr

id
e=

2

(6
4

, 2
5

6
, 3

)

(1
2

8
, 2

5
6

, 3
)

(2
5

6
, 2

5
6

, 3
)

(1
2

8
, 2

5
6

, 3
)

(6
4

, 2
5

6
, 3

)

(2
5

6
, 3

8
4

, 3
),

 s
tr

id
e=

2

(1
9

2
, 3

8
4

, 3
)

fn
=1

9
2

(1
9

2
, 3

8
4

, 3
)

(1
9

2
, 3

8
4

, 3
)

fn
=2

5
6

fn
=1

2
8

(1
2

8
, 2

5
6

, 3
)

(1
2

8
, 2

5
6

, 3
)

fn
=1

2
8

fn
=6

4

(6
4

, 1
2

8
, 3

)

(6
4

, 1
2

8
, 3

)

(6
4

, 1
2

8
, 3

)

fn
=2

7
fn

=2
7

(1
2

8
, 2

5
6

, 3
)

(2
5

6
, 5

1
2

, 3
)

fn
=2

7

Interpolation

Figure 2. Theschematic diagram of the YOLO Nano Underwater architecture. EP stands for the
Expansion Projection macro architecture, and PEP stands for the residual Projection Expansion
Projection structure. FCA is a lightweight Fully Connected Attention module. The specific parameters
of each layer are shown in the blocks. Batch normalizations and activations are omitted for simplicity.
* stands for multiply. Better viewed in zoom and color.

Table 1 shows the computation cost evaluated by FLOPs and network parameters
comparison with some state-of-the-art YOLO architectures. The FLOP and number of
parameters of our proposed YOLO Nano Underwater are only 88.51% and 70.99% of YOLO
Nano.

3.2. ULO and ULO Tiny

In the last two years, many new efficient architectures and network designs have
been proposed. We take these as the new gradients to modify our YOLO Nano underwater
network. Moreover, to address the problem of underwater optical image degradation, we
design an adaptive pre-processing module that can automatically learn pre-processing
parameters based on the task scenario. Two models for underwater light-weight object
detectors are proposed at different scales—namely, ULO and ULO Tiny, respectively.

Machines 2022, 10, 629 5 of 13

Table 1. The FLOPs and the number of parameters of different models. The input size of the network
is set to 1 × 3 × 512 × 512.

Model FLOPs (G) Parameters

YOLO-v3 49.47 61,539,889
YOLO-v3 Tiny 4.13 8,676,806

YOLO-v4 45.10 63,953,841
YOLO-v4 Tiny 5.60 6,074,582
YOLO Nano 6.57 6,396,048

YOLO Nano Underwater 4.93 4,540,792
ULO 3.42 3,943,632

ULO (w/o APM) 3.42 3,930,320
ULO Tiny 2.38 3,416,016

ULO Tiny (w/o APM) 2.38 3,402,704

3.2.1. Ghost Modules

GhostNet [20,21] is an efficient network architecture, which was proposed based on
the observation that the feature maps’ redundancy is important for the network’s success.
Therefore, the authors used cheap operations to generate pseudo feature maps, significantly
reducing the computation. GhostNet has been successfully used in many resource-limited
applications, such as remote-sensing and bed-side medical scenarios [22–24].

The Ghost module is the basic block of the GhostNet. It separates the conventional
convolution layer into two steps: First, the input passes through the normal convolution
layer with fewer filters. Then, more feature maps are created based on the output of the
first step by cheap linear operations. The Ghost bottleneck is built by stacking two Ghost
modules, such as the residual block [25]. Moreover, as the attention mechanism is proven
to be an effective module in practice [26], the squeeze-and-excitation block [27] (the FCA
module in YOLO Nano) also becomes an optional component in the Ghost bottleneck
module.

In addition, the cheap operations used in the convolution layer, we also apply G-
GhostNet mechanism [21] to the YOLO Nano Underwater network that the cheap operations
are used to produce pseudo feature maps across layers to spare the computation resources
further. Figure 3 shows the structure of the Ghost module and Ghost bottleneck.

G
h

o
st

 m
o

d
u

le

FC
A

 (
o

p
ti

o
n

al
)

G
h

o
st

 m
o

d
u

le

CΦ concat

cheap operations

convolutional

layer

(a) (b)
Figure 3. The schematic diagram of the Ghost module (a) and Ghost bottleneck (b). The Ghost
module partially uses cheap operations to generate pseudo feature maps, which is more computation
efficient than traditional convolution. The Ghost bottleneck is a residual unit [25] built up by two
ghost modules and an optional squeeze-and-excitation block. Batch normalizations and activations
are omitted for simplicity.

3.2.2. Decoupled Head

The coupled head for classification and localization may harm the performance [16,28].
Furthermore, experiments show that the network with decoupled head converges faster
than the network with coupled head [16]. Therefore, we use a decoupled head in our ULO
and ULO Tiny network design. The schematic diagram of the decoupled head is shown in
Figure 4.

Machines 2022, 10, 629 6 of 13

H×W×#anchor

×(#class + 4 + 1)

conv layer

H×W×#anchor

×4

H×W×#anchor

×#class

H×W×#anchor

×1

Cls. head

Reg. head

Obj. head

(a) (b)
Figure 4. The schematic diagram for the decoupled head in detection. The decoupled head
deals with the classification and localization by separated network structures. (a) Coupled head.
(b) Decoupled head.

3.2.3. Adaptive Pre-Processing Module

The underwater images suffer from problems, such as non-uniform lighting, low
contrast, and diminished color [29]. Moreover, the degradation of underwater images
fails in computer systems used for visual inspection of images [30]. Some methods have
been proposed to handle this with deep neural networks [31,32] and achieved good results.
However, heavy computation may not be applicable for edge computing. Therefore, we
propose the adaptive pre-processing module (APM), a simple but effective pre-processing
module. APM automatically adapts to the task. Moreover, it is light-weight and easy to use.

Digital gain, white balance, color correction, and gamma correction are widely used
manipulations in image enhancement [33]. They are defined as follows:

GDigital Gain(x, φ) = φdg · x, (1)

GWhite Balance

xr
xg
xb

, φ

 =

φr · xr
xg

φb · xb

, (2)

GColor Correction

xr
xg
xb

, φ

 =

φ11 φ12 φ13
φ21 φ22 φ23
φ31 φ32 φ33

xr
xg
xb

+

φb1
φb2
φb3

, (3)

GGamma Correction(x, φ) = xφγ , (4)

where x is the input RGB color image, φ is the hyperparameters for adjustments. For sim-
plicity, we merge such manipulations in one step and set the individual gamma correction
parameters for each channel, as the light attenuation rates are different for different colors.
Therefore, the overall image enhancement is defined as:

G

xr
xg
xb

, φ

 =

φ11 φ12 φ13
φ21 φ22 φ23
φ31 φ32 φ33

xr
xg
xb

+

φb1
φb2
φb3

[φγr ,φγg ,φγb]
T

. (5)

There are 15 hyperparameters in total for a three-channel input image. Methodolog-
ically, this method applies to input images with an arbitrary number of channels. For
example, there will be three parameters for a single-channel grayscale image and 24 for a
four-channel CMYK image. We design a small module for learning the hyperparameters
automatically. The adaptively learned parameters may better fit the specific tasks than
manually designed pre-processing methods.

The APM module consists of an adaptive average pooling layer and two fully-
connected layers. The pooling layer dramatically reduces the dimension of the input image
and extracts the primary information about the color in the image. The fully-connected
layers enable the fusion of information between different color channels and output the
15 parameters for the image enhancement processing. Finally, the sigmoid activation en-

Machines 2022, 10, 629 7 of 13

sures that the output values are in the interval (−1, 1), which facilitates stability during
training. Figure 5 shows the structure of the APM.

Input

A
d

ap
t.

av
g.

p
o

o
lin

g
(8

,8
)

R

G

B

Fl
at

te
n

8*8*3 64

RELU

15

Sigmoid

Figure 5. The schematic diagram of the adaptive pre-processing module. The APM module inputs the
RGB image and outputs the hyperparameters adapted to the specific task for the image enhancement
processing.

3.2.4. Architectures of ULO and ULO Tiny

We keep the framework of the newly proposed ULO the same as YOLO Nano Underwa-
ter and replace the EP and PEP modules with Ghost modules or Ghost bottleneck modules.
Moreover, the decoupled head and APM are used. The structure of ULO and ULO Tiny are
shown in Figure 6.

Conv3x3

Conv1x1

Ghost module

Ghost bottleneck

Im
a

g
e

Legend

fn
=1

6

fn
=3

2
, s

tr
id

e=
2

(3
2

, 3
2

),
 S

E

fn
=6

4
, s

tr
id

e=
2

(9
6

, 6
4

),
 S

E

(1
6

0
, 1

2
8

),
 s

tr
id

e=
2

(1
9

2
, 1

2
8

),
 S

E

(5
1

2
, 1

2
8

),
 S

E

(7
6

8
, 1

2
8

)

(7
6

8
, 1

2
8

),
 s

tr
id

e=
2

(1
0

2
4

, 1
2

8
),

 S
E

(1
0

2
4

, 1
2

8
)

fn
=1

2
8

(7
6

8
, 2

5
6

)

fn
=1

2
8

fn
=6

4

(5
1

2
, 1

2
8

)

(1
0

2
4

, 5
1

2
)

fn
=1

2

Interpolation

(3
8

4
, 1

2
8

),
 s

tr
id

e=
2

Cheap operations

Adaptive average pooling

Fully Connected

CCCC

CC

CCCC

CC

CCCC CCCC

(1
0

2
4

, 5
1

2
)

fn
=1

2
fn

=3

(1
0

2
4

, 5
1

2
)

fn
=1

2

(1
0

2
4

, 5
1

2
)

fn
=1

2
fn

=3

(1
0

2
4

, 5
1

2
)

fn
=1

2

(1
0

2
4

, 5
1

2
)

fn
=1

2
fn

=3A
d

ap
ti

ve
 p

re
-p

ro
ce

ss
in

g
m

o
d

u
le

Figure 6. The schematic diagram of the ULO and ULO Tiny architectures. In the newly proposed
networks, Ghost modules, decoupled head, and adaptive pre-processing module are used. The
difference in structure between ULO Tiny and ULO is that ULO Tiny does not contain the structure
in the dotted box to reduce the network parameters further. Batch normalizations and activations are
omitted for simplicity. Better viewed in zoom and color.

The computation cost of ULO and ULO Tiny are shown in Table 1. The FLOPs and the
number of parameters in ULO are 3.42 G and 3.94 M, only 59.37% and 86.85% of that in
YOLO Nano Underwater. Moreover, ULO Tiny takes 2.38 G FLOPs and 3.40 M parameters,
further reducing the need for computation resources.

Machines 2022, 10, 629 8 of 13

4. Experiments and Results

In this section, we first conduct experiments to evaluate our models’ performance
in the underwater detection scenario, and then we investigate the role of the proposed
adaptive pre-processing module by ablation study.

4.1. Implementations Details

Experiments were conducted on the URPC2019 dataset to compare our model with
the state-of-the-art YOLO models, i.e., YOLO-v4, YOLO-v4 Tiny, YOLO-v3, YOLO-v3 Tiny,
and YOLO Nano. For a fair comparison, we implemented the compared networks using
PyTorch and kept the same training parameters, random seed, and image pre-processing
methods.

Augmentations were deployed during the training phase, such as cropping, randomly
flipping, affine transformation, and color jitter. The input image size is 512× 512. The
ADAM is the optimizer with weight decay 5× 10−4. The cosine annealing schedule [15,34]
was applied, and the initial learning rate is 1× 10−3. All the models were trained with
300 epochs and batch-size 64 from scratch. The confidence and NMS thresholds were set to
0.25 and 0.45, respectively.

4.2. Main Results

The model is trained on the training set and evaluated on the validation set for model
selection. The final results were tested using the testing set. Table 2 lists the results
evaluated by average precision on both the testing and validation sets. Figure 7 illustrates
the FLOPs-mAP curve and the Parameters-mAP curve, respectively.

Table 2. Performance of the object detectors evaluated by average precision. The top three results are
marked in red, green, and blue, respectively.

Model
Average Precision @Testing-Set @Validation-Set

Mean Holothurian Echinus Scallop Starfish Mean

YOLO-v3 64.91% 47.45% 83.36% 57.96% 70.89% 65.4396%
YOLO-v3 Tiny 36.15% 8.11% 66.27% 29.20% 41.03% 38.7254%

YOLO-v4 52.27% 26.63% 71.72% 47.57% 63.15% 53.2539%
YOLO-v4 Tiny 49.36% 23.94% 70.05% 41.77% 61.67% 50.1678%
YOLO Nano 44.00% 13.45% 73.88% 44.44% 44.21% 44.2392%

YOLO Nano Underwater 46.37% 13.04% 75.43% 45.89% 51.11% 47.5504%
ULO 63.53% 40.35% 84.25% 58.73% 70.79% 65.1283%

ULO Tiny 53.48% 25.49% 79.21% 46.99% 62.22% 56.9383%

Overall, YOLO-v3 achieved the best performance on the URPC2019 dataset, following
1 ULO and ULO Tiny. However, the ULO and ULO Tiny models were much smaller
than YOLO-v3. Moreover, the difference between ULO and YOLO-v3 in mAP was only
1.38%. Therefore, the ULO and ULO Tiny can be more applicable to the devices in which
computation resources are limited.

Comparing architectures with similar network designs, the larger models often achieved
better performance. For example, YOLO-v3 outperformed YOLO-v3 Tiny, and YOLO-v4
outperformed YOLO-v4 Tiny. This is also true for ULO and ULO Tiny, as the larger models
with more detection heads can provide more anchors. On the other hand, small models
also significantly reduce the computational complexity, lower hardware requirements, and
broaden usage scenarios.

However, the model performance of YOLO-v4 in URPC2019 is not better than YOLO-
v3, somewhat beyond our expectation, likely because more complex models tend to require
richer data for training, and the URPC2019 dataset is still not as rich in content and sample
scale as the object detection datasets for natural scenes, such as VOC [35] and COCO [36].

Machines 2022, 10, 629 9 of 13

As can be seen from the performance-computational resource curves presented in
Figure 7, our proposed ULO and ULO Tiny models have significantly smaller resource
requirements and competitive performance simultaneously.

0 10 20 30 40 50 60
FLOPs (G)

10

20

30

40

50

60

70

m
A

P
(%

)
YOLO-v3

YOLO-v3 Tiny

YOLO-v4
YOLO-v4 Tiny

YOLO Nano
YOLO Nano Underwater

ULO

ULO Tiny

0 10 20 30 40 50 60 70
Parameters (M)

10

20

30

40

50

60

70

m
A

P
(%

)

YOLO-v3

YOLO-v3 Tiny

YOLO-v4
YOLO-v4 Tiny

YOLO Nano
YOLO Nano Underwater

ULO

ULO Tiny

Figure 7. The FLOPs-mAP curve (left) and the Parameters-mAP curve (right).

4.3. Ablation Study on APM

In the ablation experiment, we investigated the effects of APM on performance en-
hancement. Experiments were deployed to observe whether there is a difference in perfor-
mance between adding APM when training the ULO and ULO Tiny. The training settings
were kept the same, except for whether the APM was used or not. Figure 8 shows the
mAPs evaluated on the validation set of each epoch during training. Table 3 illustrates the
performance tested on the testing set of URPC2019.

0 50 100 150 200 250 300
epoch

0

10

20

30

40

50

60

70

m
A

P
(%

)

ULO (w APM)
ULO (w/o APM)

0 50 100 150 200 250 300
epoch

0

10

20

30

40

50

60

70

m
A

P
(%

)

ULO Tiny (w APM)
ULO Tiny (w/o APM)

(a) (b)
Figure 8. The mean average precision values tested on the validation set during training. The models
with APM have a more significant performance improvement in the middle and final stages of
training than those without. (a) ULO. (b) ULO Tiny.

Machines 2022, 10, 629 10 of 13

Table 3. Ablation study of the adaptive pre-processing module. Experiments were conducted on
ULO and ULO Tiny networks with or without APM, and the results were evaluated by the mAP. The
results demonstrate that APM is beneficial in improving performance in both ULO and ULO Tiny.
The best results are in bold.

Model
Average Precision @Testing-Set @Validation-Set

Mean Holothurian Echinus Scallop Starfish Mean

ULO (w/o APM) 59.78% 32.34% 83.45% 58.20% 65.15% 63.2606%
ULO (w APM) 63.53% 40.35% 84.25% 58.73% 70.79% 65.1283%

ULO Tiny (w/o APM) 53.18% 24.08% 78.81% 47.57% 62.26% 55.5682%
ULO Tiny (w APM) 53.48% 25.49% 79.21% 46.99% 62.22% 56.9383%

As can be seen in Figure 8, the performance improvement of the models with APM
was slightly faster at the beginning of the training, and in the middle and final stages of
training, the performance improvement of the model with APM is more evident than that
of the model without APM. Table 3 also numerically demonstrates the improvement of
APM for model performance, indicating that APM is beneficial to the model performance.

We show some examples of the images processed by the APM module in Figure 9.
It can be seen that the processed image corrects the color bias of the underwater image
to some extent compared to the original image, and this is all achieved in the task-based
learning by the model itself.

(a) Input images (b) Pre-processed images by APM
Figure 9. Compared to the original images (a), the pre-processed images output by APM (b) correct
the underwater color bias to an extent.

Machines 2022, 10, 629 11 of 13

Experiments on Edge Device

We deployed our models to Nvidia Jetson Nano, a 10-watt, $120 edge computing
device. The details of the experiments’ results are shown in Table 4. It achieves an inference
speed of 5.11 and 6.73 FPS with the PyTorch framework for ULO and ULO Tiny, respectively.
In the semi-precision mode, the performance of the model remains roughly unchanged,
with some insignificant improvements in inference time, which may be related to the
hardware architecture.

We also observe a 30% improvement in inference time with an input size of 416 but a
10-point decrease in performance, which may be because we focus more on the impact of
the model design and do not use multi-scaled inputs in training. In practical applications,
adopting more training techniques, such as diverse input scales, mixup/mosaic augmen-
tation, and using pre-training of the models on large datasets are expected to improve
the performance of the models further. Moreover, there is still much room to improve the
inference time, such as accelerating by TensorRT [37] or TVM [38].

Table 4. The average processing time, FPS, and mean precision of each model evaluated on Nvidia
Jetson Nano.

Settings
ULO ULO Tiny

avg. Time (s) FPS mAP (%) avg. Time (s) FPS mAP (%)

PyTorch fp32 @512 0.1955 5.11 63.45 0.1485 6.73 53.47
PyTorch fp16 @512 0.1931 5.17 62.69 0.1470 6.80 52.23
PyTorch fp16 @416 0.1370 7.30 53.06 0.1029 9.71 41.84

ONNX [39] fp32 @512 0.3640 2.75 63.45 0.2274 4.40 53.47

5. Conclusions

Underwater intelligent systems suffer from limited power consumption and computa-
tional resources. In response, this paper proposed a series of light-weight models, including
ULO, ULO Tiny, and YOLO Nano Underwater, which can work on edge computing devices,
such as Nvidia Jetson Nano, with satisfying performance.

Some of the latest network designs, such as Ghost modules, decoupled head, and
the attention mechanism, were used. With such ingredients, the proposed well-designed
models are compact and efficient. These models are significantly reduced in terms of
FLOPs, and the model parameters compared to YOLO-v3/YOLO-v4. The performance was
preserved, while the computational resource consumption decreased. ULO achieved 97.9%
of YOLO-v3’s performance using less than 7% of the FLOPs, which allows these models
to better adapt to low-power, computational resource-constrained scenarios. Moreover,
we deployed an adaptive pre-processing module for automatic image enhancement and
proved it can improve the task performance in underwater object detection.

At the same time, underwater images have been relatively less studied compared
with natural scenes, and fewer datasets are available. Therefore, high-quality underwater
detection datasets are essential for the development of related research. For this reason, we
optimized some mis-annotated labels in the URPC2019 dataset, hoping to provide a more
reliable reference for evaluating the underwater models. The modified annotations have
been released to the public for research use.

Author Contributions: Conceptualization, software, and methodology, L.W.; data curation, L.W. and
S.W.; writing—original draft preparation, L.W.; writing—review and editing, X.Y., S.W. and P.L.;
visualization, P.L.; supervision, project administration, and funding acquisition, X.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
41876100), the National key research and development program of China (Grant No. 2018YFC0310102
and 2017YFC0306001), and the State Key Program of National Natural Science Foundation of China
(Grant No. 61633004).

Machines 2022, 10, 629 12 of 13

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28
June 2014; pp. 580–587.

2. Girshick, R. Fast R-CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 8–10 June 2015; pp. 1440–1448.

3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. (NeurIPS) 2015, 28. [CrossRef] [PubMed]

4. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.

5. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

6. Wong, A.; Famuori, M.; Shafiee, M.J.; Li, F.; Chwyl, B.; Chung, J. YOLO Nano: A highly compact you only look once convolutional
neural network for object detection. In Proceedings of the Fifth Workshop on Energy Efficient Machine Learning and Cognitive
Computing-NeurIPS Edition (EMC2-NeurIPS), Vancouver, BC, Canada, 13 December 2019; pp. 22–25.

7. Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

8. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine
Learning (ICML), PMLR, Virtual, 18–24 July 2021; pp. 10096–10106.

9. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790.

10. Wang, L.; Ye, X.; Xing, H.; Wang, Z.; Li, P. YOLO Nano Underwater: A fast and compact object detector for embedded device. In
Proceedings of the Global Oceans 2020: Singapore–US Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–4.

11. Akkaynak, D.; Treibitz, T. Sea-thru: A method for removing water from underwater images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1682–1691.

12. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

13. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
14. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers.

In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2503–2510.

15. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
16. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
17. Yu, J.; Huang, T.S. Universally slimmable networks and improved training techniques. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 1803–1811.
18. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
19. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23
June 2018; pp. 4510–4520.

20. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.

21. Han, K.; Wang, Y.; Xu, C.; Guo, J.; Xu, C.; Wu, E.; Tian, Q. GhostNets on Heterogeneous Devices via Cheap Operations. Int. J.
Comput. Vis. 2022, 130, 1050–1069. [CrossRef]

22. Paoletti, M.E.; Haut, J.M.; Pereira, N.S.; Plaza, J.; Plaza, A. Ghostnet for hyperspectral image classification. IEEE Trans. Geosci.
Remote. Sens. 2021, 59, 10378–10393. [CrossRef]

23. Cai, Z.; Xie, Q. Attention based GC-GhostNet for forest pests detection. In Proceedings of the 2021 IEEE fourth International
Conference on Electronics and Communication Engineering (ICECE), Xi’an, China, 17–19 December 2021; pp. 113–117.

24. Li, P.; Wang, L.; Luo, Y. Ghost-UNet: An Efficient Method for Wound Surface Segmentation. Basic Clin. Pharmacol. Toxicol. 2020,
127, 288.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1007/s11263-022-01575-y
http://dx.doi.org/10.1109/TGRS.2021.3050257

Machines 2022, 10, 629 13 of 13

26. Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention
mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]

27. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 8, 7132–7141.
28. Wu, Y.; Chen, Y.; Yuan, L.; Liu, Z.; Wang, L.; Li, H.; Fu, Y. Rethinking classification and localization for object detection. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 10186–10195.

29. Bazeille, S.; Quidu, I.; Jaulin, L.; Malkasse, J.P. Automatic underwater image pre-processing. In Proceedings of the CMM’06,
Brest, France, 16–19 October 2006.

30. Raveendran, S.; Patil, M.D.; Birajdar, G.K. Underwater image enhancement: A comprehensive review, recent trends, challenges
and applications. Artif. Intell. Rev. 2021, 54, 5413–5467. [CrossRef]

31. Yu, X.; Qu, Y.; Hong, M. Underwater-GAN: Underwater image restoration via conditional generative adversarial network.
In Proceedings of the International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 66–75.

32. Yang, M.; Hu, K.; Du, Y.; Wei, Z.; Sheng, Z.; Hu, J. Underwater image enhancement based on conditional generative adversarial
network. Signal Process. Image Commun. 2020, 81, 115723. [CrossRef]

33. Kim, H.; Lee, K.M. Controllable Image Enhancement. arXiv 2022, arXiv:2206.08488.
34. Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.
35. Everingham, M.; Eslami, S.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A

retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
36. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in

context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755.

37. Vanholder, H. Efficient inference with tensorrt. In Proceedings of the GPU Technology Conference, San Jose McEnery Convention
Center, Silicon Valley, CA, USA, 4–7 April 2016; Volume 1, p. 2.

38. Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E.; Shen, H.; Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; et al. {TVM}: An automated
{End-to-End} optimizing compiler for deep learning. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), Carlsbad, CA, USA, 8–10 October 2018; pp. 578–594.

39. Bai, J.; Lu, F.; Zhang, K. Onnx: Open Neural Network Exchange. Available online: https://github.com/onnx/onnx (accessed on
26 July 2022).

http://dx.doi.org/10.1007/s41095-022-0271-y
http://dx.doi.org/10.1007/s10462-021-10025-z
http://dx.doi.org/10.1016/j.image.2019.115723
http://dx.doi.org/10.1007/s11263-014-0733-5
https://github.com/onnx/onnx

	Introduction
	Dataset
	Methods
	YOLO Nano Underwater
	ULO and ULO Tiny
	Ghost Modules
	Decoupled Head
	Adaptive Pre-Processing Module
	Architectures of ULO and ULO Tiny

	Experiments and Results
	Implementations Details
	Main Results
	Ablation Study on APM

	Conclusions
	References

